167/2024

Weiterentwicklung des Modells zur Frühschätzung der Energiebilanz

Endbericht

von:

Hans Georg Buttermann, Tina Baten Energy Environment Forecast Analysis EEFA GmbH & Co.KG, Münster

Thomas Nieder

Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg, Stuttgart

Herausgeber:

Umweltbundesamt

Projektnummer 177616 FB001661

Weiterentwicklung des Modells zur Frühschätzung der Energiebilanz

Endbericht

von

Hans Georg Buttermann, Tina Baten Energy Environment Forecast Analysis EEFA GmbH & Co.KG, Münster

Thomas Nieder Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg, Stuttgart

Im Auftrag des Umweltbundesamtes

Impressum

Herausgeber

Umweltbundesamt Wörlitzer Platz 1 06844 Dessau-Roßlau Tel: +49 340-2103-0

Fax: +49 340-2103-2285 buergerservice@uba.de

Internet: www.umweltbundesamt.de

Durchführung der Studie:

Arbeitsgemeinschaft Energiebilanzen e.V. Reinhardtstr. 32 11017 Berlin

Abschlussdatum:

November 2024

Redaktion:

Fachgebiet V 1.5 Energiedaten Detlef Drosihn / Johannes Grübel

DOI:

https://doi.org/10.60810/openumwelt-7612

ISSN 1862-4804

Dessau-Roßlau, Dezember 2024

Die Verantwortung für den Inhalt dieser Veröffentlichung liegt bei den Autorinnen und Autoren.

Kurzbeschreibung: Weiterentwicklung des Modells zur Frühschätzung der Energiebilanz

Die laufende Erarbeitung von Frühschätzungen der Energiebilanz Deutschland, jeweils zum 15. Februar für das Berichtsjahr t-1, ist fester Bestandteil der Arbeiten zur Erstellung der Energiebilanzen. Die Methodik zur Ermittlung vollständiger, in sich konsistenter Schätzenergiebilanzen zu einem so frühen Zeitpunkt (an dem die erforderlichen statistischen Datengrundlagen zur Aufstellung endgültiger Bilanzen noch nicht vorliegen) wurde bereits 2021 im Rahmen einer Pilotstudie entwickelt, die Anfang 2023 als UBA-Text Nr. 18/2023 publiziert wurde. Auf der Grundlage dieser Vorarbeiten wurden inzwischen Frühschätzungen für die Berichtsjahre von 2020 bis 2022 ermittelt und die Ergebnisse (2020 bis 2021) laufend mit den empirischen Befunden der endgültigen Energiebilanzen verglichen. Auf der Grundlage dieser numerischen Vergleiche wurden ausgewählte Möglichkeiten zur Verbesserung des verwendeten Prognoseinstrumentariums identifiziert. Als ein wesentlicher Ansatzpunkt zur Verbesserung der Prognosegenauigkeit wurde eine tiefere sektorale Differenzierung des Modellrahmens zur Erklärung des Energieverbrauchs in der Industrie ausgemacht.

Im Mittelpunkt der vorliegenden Studie steht (neben einer umfassenden Aktualisierung der Datenbasis des Industriemodells und der damit verbundenen Schätzungen) die zusätzliche Aufnahme ausgewählter energieintensiver Wirtschaftszweige, die in der aggregierten Gliederung der Wirtschaftszweige in der Energiebilanz ansonsten nicht sichtbar wären. Die Modellierung der energieintensiven Subsektoren wird in der hier vorgelegten Untersuchung genauer beleuchtet und das erweiterte Modell verschiedenen Tests und Evaluierungen unterzogen.

Einen weiteren Schwerpunkt der Studie bildet die Frage, welche zusätzlichen Frühindikatoren (exogenen Erklärungsvariablen des Energieverbrauchs) ggf. in das erweiterte und aktualisierte Industriemodell sowie andere Verfahren, die zur Aufstellung der Frühschätzung eingesetzt werden, einbezogen werden könnten. Zur zuverlässigeren Prognose sollte sich die Auswahl solcher Frühindikatoren keineswegs ausschließlich an ihrer "ökonometrischen" Relevanz bzw. dem potenziellen Erklärungsbeitrag, sondern gleichermaßen an der empirischen Verfügbarkeit am 15. Februar als beobachteter Statistikwert für Berichtsjahre von t-1 orientieren. Mit Hilfe solcher Einflussgrößen lassen sich die ökonometrischen Modellrechnungen als Prognose innerhalb des Beobachtungszeitraum durchführen, so dass Prognosefehler allein auf die Spezifikation des Modellansatzes und nicht auf Setzungen oder Annahmen zu den Randbedingungen der Prognose zurückzuführen sind.

Die vorgelegten Analysen und Evaluierungen auf der Grundlage des weiterentwickelten Modells (tiefere sektorale Disaggregation, Aufnahme zusätzlicher Indikatoren bzw. Erklärungsgrößen) lassen in der Gesamtschau den Schluss zu, dass mit Hilfe des verbesserten Modellinstrumentariums eine höhere Prognosegenauigkeit erzielt wird.

Abstract: Further development of the model for an early estimation of the energy balance

The ongoing preparation of early estimates of the energy balance for Germany, each as of February 15 for reporting years t-1, is an integral part of the work on preparing the energy balances. The methodology for determining complete, internally consistent estimated energy balances at such an early point in time (when the necessary statistical data basis for drawing up final balances is not yet available) was already developed in 2021 as part of a pilot study, which was published at the beginning of 2023 as UBA Text No. 18/2023. Based on this preliminary work, early estimates for the reporting years from 2020 to 2022 have now been determined and the results (2020 to 2021) continuously compared with the empirical findings of the final energy balances. Based on these numerical comparisons, selected options for improving the forecasting toolkit used have been identified. A deeper sectoral differentiation of the model framework used

to explain energy consumption in industry was identified as a key starting point for improving forecast accuracy.

The focus of the present study (in addition to a comprehensive update of the industrial model's database and the associated estimates) is the additional inclusion of selected energy-intensive economic sectors that would otherwise not be visible in the aggregated breakdown of economic sectors in the energy balance. The modeling of the energy-intensive sub-sectors is examined in more detail in the study presented here, and the expanded model is subjected to various tests and evaluations.

Another focus of the study is the question of which additional leading indicators (exogenous explanatory variables of energy consumption), if any, could be included in the extended and updated industry model as well as in other procedures used to compile the early estimate. For a more reliable forecast, the selection of such leading indicators should by no means be based exclusively on their "econometric" relevance or potential explanatory contribution, but equally on their empirical availability on February 15 as observed statistical values for reporting years of t-1. With the help of such influencing variables, the econometric model calculations can be carried out as a forecast within the observation period, so that forecast errors can be attributed solely to the specification of the model approach and not to settings or assumptions regarding the boundary conditions of the forecast.

The analyses and evaluations presented on the basis of the further developed model (deeper sectoral disaggregation, inclusion of additional indicators and explanatory variables) allow the overall conclusion to be drawn that the improved model tools will help to achieve greater forecasting accuracy.

Inhaltsverzeichnis

Α	bbildun	gsverzeichnis	. 10
Τá	abellenv	erzeichnis	. 11
Α	bkürzun	gsverzeichnis	. 14
Zι	usamme	nfassung	. 15
Sι	ummary		. 21
1	Aufg	abenstellung	. 27
2	Vorb	emerkungen	. 29
	2.1	Methodik zur Frühschätzung / Vorgängerstudie	. 29
	2.2	Vorliegende Frühschätzungen	. 29
	2.3	Erkenntnisse aus den empirischen Vergleichen der Frühschätzungen mit den endgültige Energiebilanzen (2020 bis 2021)	
3	Verb	esserung des Verfahrens zur Prognose des Endenergieverbrauchs in der Industrie	. 33
	3.1	Konzeption und formaler Aufbau des verbesserten Modells zur Erklärung des Energieverbrauchs in der Industrie	33
	3.1.1	Konzeption	
	3.1.2	Formaler Aufbau	
	3.1.3	Datenbasis	
	3.2	Das Gleichungssystem des Modells im Einzelnen	
	3.2.1	Gleichungen zur Erklärung des sektoralen Brennstoff-/Wärmeeinsatzes	
	3.2.1.1	Schätzfunktionen für die Brennstoffnachfrage der Energiebilanzsektoren	
	3.2.1.2	Schätzfunktionen für die Brennstoffnachfrage energieintensiver Subsektoren	
	3.2.1.3	Schätzfunktionen zur Erfassung der Energieträgerstruktur ("Fuel Switch")	55
	3.2.2	Gleichungen zur Erklärung des sektoralen Stromeinsatzes	57
	3.2.3	Prognose- und Simulationshilfen – Sub-Modelle Energiepreise und Produktion	. 61
	3.3	Modellvalidierung	. 63
	3.3.1	Ramsey RESET	. 63
	3.3.2	Ex-post-Prognose innerhalb des Stützzeitraums des Modells – Auswertung aggregierter Fehlermaße (2012 bis 2021)	66
	3.3.3	Ex-post-Prognose innerhalb des Stützzeitraums des Modells – Grafische Darstellung ausgewählter Bereiche (2012 bis 2021)	72
	3.3.4	Simulation im Ex-post-Zeitraum	. 81
	3.3.5	Ex-ante-Prognose für das Berichtsjahr 2022	. 84
	3.3.5.1	Exogene Randbedingungen der Ex-ante-Prognose (außerhalb des Stützzeitraums, innerhalb des Beobachtungszeitraums)	84

	3.3.5.2	Ergebnisse der Prognose für 2022	85
4		vesserung des Verfahrens zur Prognose des Energieverbrauchs in den	91
	4.1	Energieverbrauch im Umwandlungsbereich nach Energieträgern (Energiebilanzzeilen 3: bis 39)	
	4.1.1	Konzeption	91
	4.1.2	Formaler Aufbau und Datenbasis	
	4.1.3	Die Gleichungen des Modells im Einzelnen	94
	4.1.4	Modellvalidierung	
	4.1.4.1	Ex-post-Prognose innerhalb des Stützzeitraums des Modells – Auswertung aggregierter Fehlermaße (2012 bis 2021)	98
	4.1.4.2	Vergleich der Ergebnisse aus der Ex-post-Prognose (weiterentwickeltes Modell) mit den Resultaten des monokausalen Fortschreibungsverfahrens (Pilotstudie)	99
	4.1.4.3	Ex-ante-Prognose für 2022	. 102
	4.2	Umwandlungseinsatz in Heizwerken (Energiebilanzzeile 16)	. 103
	4.2.1	Schätzung des Umwandlungseinsatzes in reinen Heizwerken: bisheriges Vorgehen	. 103
	4.2.2	Schätzung des Umwandlungseinsatzes in reinen Heizwerken: geografische Disaggregierung	. 106
	4.2.3	Schätzung des Umwandlungseinsatzes in reinen Heizwerken: Trennung temperaturabhängiger und -unabhängiger Teile	. 106
	4.2.4	Schätzung des Umwandlungseinsatzes in reinen Heizwerken: Ökonometrie	. 107
5	Weit	ere empirische Aspekte zur Verbesserung der Prognosegenauigkeit (Frühindikatoren)	. 110
	5.1	Stromerzeugung und Energieeinsätze zur Stromerzeugung	. 111
	5.1.1	BDEW-Schnellstatistik - Stromerzeugung und -verbrauch in Deutschland	. 112
	5.1.2	Daten der European Transmission System Operators - ENTSO-E	. 113
	5.2	Daten der Trading Hub Europe GmbH	. 121
	5.2.1	Vergleich der THE-Daten mit der amtlichen Monatsstatistik 068	. 121
	5.2.2	Vergleich der THE-Daten mit den amtlichen Jahresdaten im Bereich des Verarbeitenden Gewerbes	. 124
	5.2.3	Vergleich mit den amtlichen Jahresdaten der Sektoren Private Haushalte und GHD	. 125
	5.3	Verwendung sektorspezifischer Verbandsinformationen	. 126
	5.4	Frühindikatoren des Statistischen Bundesamtes	. 128
	5.4.1	Indizes der Produktion im Verarbeitenden Gewerbe	. 129
	5.4.2	Verwendung vollständiger Produktionsindizes von Januar bis Dezember	. 129
	5.4.3	Kombinierte Betrachtung Produktionsindizes und Indizes der Auftragseingänge	. 130
	5.4.4	Schnellschätzung des Bruttoinlandsproduktes	. 131

6	Verg	leich zwischen Frühschätzungen und der endgültigen Energiebilanz Deutschland	133
	6.1	Einfluss der Datenrevision vom 31. März 2023 in den Energiebilanzen für Berichtsjahre von 2003 bis 2021 auf die Frühschätzung	135
	6.2	Vergleich der Frühschätzungen 2022 (Variante B und C) mit der endgültigen Energiebilanz Deutschland 2022	137
	6.2.1	Endenergieverbrauch der Industrie	137
	6.2.1.1	Metallerzeugung (EBZ 54)	138
	6.2.1.2	Verarbeitung von Steinen und Erden (EBZ 53)	140
	6.2.1.3	Papiergewerbe (EBZ 48)	142
	6.2.2	Gesamter fossiler Endenergieverbrauch	150
	6.2.3	Umwandlungseinsatz Fernheizwerke	152
	6.2.4	Umwandlungseinsatz Wärmekraftwerke	154
	6.2.5	Energieverbrauch im Umwandlungssektor	156
7	Fazit		159
8	Que	llenverzeichnis	163
Α	Anha	ang A	167
В	Anha	ang B	168

Abbildungsverzeichnis

Abbildung 1:	Untergliederung der Produktionsbereiche/Wirtschaftszweige
	des Industriemodells31
Abbildung 2:	Formaler Aufbau des Modells zur Erklärung des
	Energieverbrauchs in der Industrie35
Abbildung 3:	Endenergieverbrauch der Industrie (EBZ 60)72
Abbildung 4:	Endenergieverbrauch der Industrie nach Energieträgern (EBZ 60)72
Abbildung 5:	Energieverbrauch Sektor Papiergewerbe nach Energieträgern (EBZ 48)73
Abbildung 6:	Energieverbrauch Sektor Ver. v. Steinen u. Erden nach Energieträgern (EBZ 53)74
Abbildung 7:	Energieverbrauch Sektor Metallerzeugung nach Energieträgern (EBZ 54)74
Abbildung 8:	Endenergieverbrauch ausgewählter Industriesektoren (1)75
Abbildung 9:	Endenergieverbrauch ausgewählter Industriesektoren (2)76
Abbildung 10:	Endenergieverbrauch Subsektoren Papiergewerbe (ex EBZ 48)77
Abbildung 11:	Endenergieverbrauch Subsektoren Verarb. v. Steinen u. Erden (ex EBZ 53)78
Abbildung 12:	Endenergieverbrauch Sektor Metallerzeugung nach Produktionsstufen (ex EBZ 54)79
Abbildung 13:	Brennstoffeinsatz Sektor Metallerzeugung nach
	Produktionsstufen (ex EBZ 54)80
Abbildung 14:	Endenergieverbrauch der Industrie (EBZ 60) nach Szenarien83
Abbildung 15:	Endenergieverbrauch der Industrie nach Energieträgern in Szenario 2 (EBZ 60)83
Abbildung 16:	Prognose Energieverbrauch der Industrie nach Energieträgern (EBZ 60)86
Abbildung 17:	Prognose Energieverbrauch des Sektors Papiergewerbe nach Energieträgern (EBZ 48)87
Abbildung 18:	Prognose Energieverbrauch des Sektors Verarbeitung von Steinen und Erden (EBZ 53) nach Energieträgern88
Abbildung 19:	Prognose Energieverbrauch des Sektors Metallerzeugung (EBZ 54) nach Energieträgern89
Abbildung 20:	Formaler Aufbau des verbesserten Modells zur Erklärung des Energieverbrauchs im Umwandlungsbereich (EBZ 33 bis 39)92
Abbildung 21:	Energieverbrauch der Umwandlungssektoren: Ergebnisvergleich nach Sektoren100
Abbildung 22:	Energieverbrauch der Umwandlungssektoren: Ergebnisvergleich nach Energieträgern101
Abbildung 23:	Prognose des Energieverbrauchs im Umwandlungsbereich nach Energieträgern (EBZ 40)102

Abbildung 24:	Monatliche Stromerzeugung aus Steinkohle nach EnStat066
	und ENTSO-E
Abbildung 25:	Monatliche Stromerzeugung aus Braunkohle nach EnStat066 und ENTSO-E116
Abbildung 26.	
Abbildung 26:	Monatliche Stromerzeugung aus Erdgas nach EnStat066 und ENTSO-E
Abbildung 27:	Monatliche Stromerzeugung aus Mineralöl nach EnStat066 und
0	ENTSO-E118
Abbildung 28:	Monatliche Stromerzeugung aus Pumpspeichern nach
	EnStat066 und ENTSO-E119
Abbildung 29:	Monatliche Stromerzeugung aus Abfällen nach EnStat066 und
	ENTSO-E120
Abbildung 30:	Vergleich des Inlandsabsatzes nach EnStat068 mit dem
	Erdgasverbrauch nach THE123
Tabellenverz	eichnis
Taballa 4	Discourse Westellands Madellands Edilinated
Tabelle 1:	Die exogenen Variablen des Modells zur Erklärung des
	Energieverbrauchs der Industrie
Tabelle 2:	Schätzgleichungen zur Erklärung des gesamten Brennstoff-
	/Wärmeeinsatzes der Industrie (Sektoren der Energiebilanz
	Deutschland)48
Tabelle 3:	Schätzgleichungen zur Erklärung des gesamten Brennstoff-
	/Wärmeeinsatzes ausgewählter energieintensiver Subsektoren
	(Industrie)54
Tabelle 4:	Schätzgleichungen zur Erklärung des Stromverbrauchs der
	Industrie (Sektoren der Energiebilanz Deutschland)58
Tabelle 5:	Schätzgleichungen zur Erklärung des Stromverbrauchs
	ausgewählter energieintensiver Subsektoren (Industrie)60
Tabelle 6:	Ergebnisse des Ramsey RESET für
	Brennstoffnachfragefunktionen64
Tabelle 7:	Ergebnisse des Ramsey RESET für Stromnachfragefunktionen65
Tabelle 8:	Fehleranalyse des Industriemodells nach Sektoren
	(Kopfgrößen)67
Tabelle 9:	Fehleranalyse des Industriemodells (energieintensive
	Subsektoren EBZ 48, 53 u. 54)69
Tabelle 10:	Fehleranalyse des Industriemodells ("fuel switch", EBZ 60)71
Tabelle 11:	Produktionsindex im Verarbeitenden Gewerbe nach Sektoren
	2021 und 202284
Tabelle 12:	Prognose des Energieverbrauchs im Sektor Metallerzeugung
	nach Produktionsstufen88
Tabelle 13:	Schätzgleichungen zur Erklärung des Stromverbrauchs der
	Umwandlungssektoren (EBZ 33 bis EBZ 38)95

Tabelle 14:	Schätzgleichungen zur Erklärung des Brennstoffverbrauchs im
	Umwandlungssektor Kokereien (EBZ 33)96
Tabelle 15:	Schätzgleichungen zur Erklärung des Brennstoffverbrauchs im
	Sektor Braunkohlenzechen- und Brikettfabriken (EBZ 35)96
Tabelle 16:	Schätzgleichungen zur Erklärung des Brennstoffverbrauchs im
	Sektor Erdöl- und Erdgasgewinnung (EBZ 37)96
Tabelle 17:	Schätzgleichungen zur Erklärung des Brennstoffverbrauchs im
	Sektor Mineralölverarbeitung (EBZ 38)97
Tabelle 18:	Fehleranalyse für den Sektor Energieverbrauch im
	Umwandlungsbereich (Energiebilanzzeile 40)98
Tabelle 19:	Vergleich Fernwärmeerzeugung nach amtlicher Statistik mit
	Hilfe von verschiedenen Fortschreibungsvarianten, hier:
	Steinkohlen104
Tabelle 20:	Vergleich Fernwärmeerzeugung nach amtlicher Statistik mit
	Hilfe von verschiedenen Fortschreibungsvarianten, hier:
	Mineralöle104
Tabelle 21:	Vergleich Fernwärmeerzeugung nach amtlicher Statistik mit
	Hilfe von verschiedenen Fortschreibungsvarianten, hier: Gase
	(inkl. Erdgas)105
Tabelle 22:	Vergleich Fernwärmeerzeugung nach amtlicher Statistik mit
	Hilfe von verschiedenen Fortschreibungsvarianten, hier:
	Sonstige Energieträger105
Tabelle 23:	Fehleranalyse für den Sektor Fernheizwerke im
	Umwandlungssektor (Energiebilanzzeile 16) nach
	ökonometrischen Verfahren108
Tabelle 24:	Fehleranalyse für den Sektor Fernheizwerke im
	Umwandlungssektor (Energiebilanzzeile 16) nach
	definitorischem Verfahren109
Tabelle 25:	Lag-Struktur des sektoralen Auftragseinganges in Bezug auf die
	Produktion131
Tabelle 26:	Abweichungen fossiler Endenergieverbrauch 2022 nach
	Energieträgern zwischen Frühschätzung (Variante A und B) und
	endgültiger Energiebilanz136
Tabelle 27:	Fossiler Endenergieverbrauch im Sektor Metallerzeugung (EBZ
	54) nach Frühschätzung und endgültiger Energiebilanz
	Deutschland 2022139
Tabelle 28:	Fossiler Endenergieverbrauch im Sektor Verarbeitung von
	Steinen und Erden (EBZ 53) nach Frühschätzung und
	endgültiger Energiebilanz Deutschland 2022141
Tabelle 29:	Fossiler Endenergieverbrauch im Sektor Papiergewerbe (EBZ
	48) nach Frühschätzung und endgültiger Energiebilanz
	Deutschland 2022143

Tabelle 30:	Fossiler Endenergieverbrauch der auf der Ebene von Sub-
	Sektoren neu modellierten Industriezweige ¹ nach
	Frühschätzung und endgültiger Energiebilanz Deutschland
	2022146
Tabelle 31:	Energiebedingte CO ₂ -Emissionen der auf der Ebene von Sub-
	Sektoren neu modellierten Industriezweige ¹ nach
	Frühschätzung und endgültiger Energiebilanz Deutschland
	2022147
Tabelle 32:	Fossiler Endenergieverbrauch der Industrie (EBZ 60) nach
	Frühschätzung und endgültiger Energiebilanz Deutschland
	2022149
Tabelle 33:	Gesamter fossiler Endenergieverbrauch nach Frühschätzung
	und endgültiger Energiebilanz Deutschland 2022150
Tabelle 34:	Fossiler Umwandlungseinsatz Fernheizwerke (EBZ 16) nach
	Frühschätzung und endgültiger Energiebilanz Deutschland
	2022153
Tabelle 35:	Fossiler Umwandlungseinsatz Wärmekraftwerke (EBZ 11) nach
	Frühschätzung und endgültiger Energiebilanz Deutschland
	2022155
Tabelle 36:	Fossiler Energieverbrauch im Umwandlungsbereich (EBZ 40)
	nach Frühschätzung und endgültiger Energiebilanz Deutschland
	2022158

Abkürzungsverzeichnis

Arbeitsgemeinschaft Energiebilanzen e.V.		
Bundesverband der Energie- und Wasserwirtschaft e.V.		
Erhebungen über die Brennstoff-, Gas- und Stromwirtschaft der Hochofen-, Stahl- und Walzwerke sowie Schmiede-, Press- und Hammerwerke einschließlich der örtlich verbundenen sonstigen Betriebe (ohne Kokerei)		
Blockheizkraftwerk		
Bruttoinlandsprodukt		
Bundesministerium für Wirtschaft und Klimaschutz		
Braunkohle		
Statistisches Bundesamt		
Energiebilanzzeile		
Energy Environment Forecast Analysis GmbH & Co.KG		
Endenergieverbrauch		
Erdgas		
Energiestatistik		
European Network of Transmission System Operators for Electricity		
Gewerbe, Handel, Dienstleistungen		
Gradtagzahlen		
Holzschliff, Zellstoff, Papier und Pappe		
Klimaschutzgesetz		
Mittlerer absoluter Fehler		
Mittlerer absoluter prozentualer Fehler		
Mittlerer Fehler		
Ordinary Least Squares		
Primärenergieverbrauch		
Petajoule		
Ramsey Regression Equation Specification Error Test		
Entnahmestellen mit registrierender Leistungsmessung		
Wurzel aus dem quadratischen Fehler		
Steinkohle		
Standard-Lastprofil-Kunden		
Trading Hub Europe GmbH		
Treibhausgas-Emissionen		
Umweltbundesamt		
Vektor-Auto-Regressives Modell		
Wirtschaftszweig		
Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg		

Zusammenfassung

Im Mittelpunkt der vorliegenden Studie stand die Frage, wie die laufenden Frühschätzungen der vollständigen Energiebilanz Deutschland, die seit 2021 (beginnend für das Bilanz- bzw. Berichtsjahr 2020) jeweils Mitte Februar erstellt werden, hinsichtlich der Prognosegüte in Zukunft weiter verbessert werden können. Das Instrumentarium, mit dessen Hilfe diese Prognosen der Energiebilanzen bzw. die Fortschreibung noch nicht vorhandener, statistischer (Monats-)Daten, die zur Erstellung der Energiebilanz unabdingbar sind, bislang praktisch umgesetzt wurde, ist bereits in einer umfassenden Pilotstudie näher beleuchtet worden. Der hier vorgelegte Bericht setzt auf den Erkenntnissen und empirischen Befunden dieser Vorgängerstudie auf, die Anfang 2023 publiziert wurde.

Bislang wurden Frühschätzungen der kompletten Energiebilanz Deutschland auf Basis der in der Pilotstudie skizzierten methodischen Vorgehensweise für die Berichtsjahre 2020 bis 2022 erstellt, wobei zu berücksichtigen ist, dass sich diese Schätzungen noch auf die nicht revidierten Zeitreihen der Energiebilanz Deutschland (Datenstand: bis Mai 2023) stützten. Die Analysen der Pilotstudie, insbesondere aber auch die empirischen, felderscharfen Vergleiche zwischen den nachfolgenden Frühschätzungen der Energiebilanz mit den späteren Datenständen der endgültigen Energiebilanzen, haben für ausgewählte Bilanzbereiche größere Abweichungen bzw. Prognoseungenauigkeiten aufgezeigt. Diese Differenzen wurden zum Anlass genommen, das Verfahren zur Frühschätzung insgesamt einer kritischen Überprüfung zu unterziehen und das Modellinstrumentarium punktuell weiterzuentwickeln.

Zur Verbesserung der Prognosegenauigkeit im Zusammenhang mit der Erklärung des Energieverbrauchs in der Industrie (nach Sektoren und Energieträgern) wurde beispielsweise ins Auge gefasst, ausgewählte energieintensive Wirtschaftszweige im Rahmen einer weiterentwickelten Fassung des Modells deutlich tiefer zu disaggregieren. Auf diese Weise sollen die Zusammenhänge zwischen Niveau und Struktur des Energieverbrauchs der Wirtschaftszweige "Papiergewerbe" (Energiebilanzzeile 48), "Verarbeitung von Steinen und Erden" (Energiebilanzzeile 53) sowie "Metallerzeugung" (Energiebilanzzeile 54) sowohl nach energieintensiven Subsektoren bzw. Produktionsstufen, als auch nach Energieträgern und der Energiepreisentwicklung sachgerechter erfasst werden, als dies bislang in der aggregierten Betrachtung der Fall gewesen ist. Die tiefere Untergliederung der genannten energieintensiven Branchen eröffnet zudem die Möglichkeit, wichtige sektorspezifische Einflussgrößen (die die Besonderheiten der hier anzutreffenden Produktionsprozesse besser widerspiegeln) und ihre Bedeutung für einzelne Komponenten des Energieverbrauchs zu identifizieren bzw. adäquat in den Prognoserechnungen zu berücksichtigen.

Aufgrund der Modifikationen und Ergänzungen werden nunmehr im vorliegenden Modell zur Prognose bzw. Frühschätzung des Endenergieverbrauchs der Industrie (Version 2023) zwölf energieintensive Subsektoren unterschieden, nämlich:

- Herstellung von Holzschliff, Zellstoff, Papier und Pappe (WZ 17.1, ex Energiebilanzzeile 48),
- ▶ Herstellung von Waren aus Papier und Pappe (WZ 17.2, ex Energiebilanzeile 48),
- ► Herstellung von Zement (WZ 23.51, ex Energiebilanzzeile 53),
- ▶ Herstellung von Kalk (WZ 23.52, ex Energiebilanzzeile 53) und
- ► Herstellung sonstiger Erzeugnisse der Steine- und Erdenindustrie (WZ 23.6 bis 23.9, ex Energiebilanzzeile 53).

Der Wirtschaftszweig Metallerzeugung zerfällt im weiterentwickelten Modell in die Produktionsstufen (keine WZ-Klassifikation):

- Frischdampfkesselhaus,
- Sintererzeugung,
- Roheisenerzeugung (Hochofen),
- Oxygenstahlerzeugung,
- ► Elektrostahlerzeugung,
- Walzstahlerzeugung und
- Weiterverarbeitung.

Im weiterentwickelten Industriemodell ersetzen die Erklärungsansätze für diese Subsektoren/Produktionsstufen die Modellierung der drei zusammenfassenden Energiebilanzsektoren (Energiebilanzzeilen 48, 53 und 54) im Prototyp des Modells.

Voraussetzung für die Weiterentwicklung und Ergänzung des Industriemodells war selbstverständlich eine umfassende und vor allem energiebilanzkompatible Erweiterung der Datengrundlagen. Die Zeitreihen zur Entwicklung des Energieverbrauchs (nach Energieträgern) umfassen für die Produktionsstufen im Sektor "Metallerzeugung" nunmehr Beobachtungen für die Jahre von 1995 bis 2021. Für die übrigen energieintensiven Subsektoren (Papiergewerbe, Verarbeitung von Steinen und Erden) wurden, gestützt auf die amtlichen Erhebungen zur Entwicklung des Energieverbrauchs in der Industrie, sektorale Verbrauchsdaten für Zeiträume zwischen 2003 und 2021 aufbereitet. Es versteht sich von selbst, dass sich die neu hinzugekommenen Energiedaten nahtlos und widerspruchsfrei in das Gesamtgerüst der revidierten Energiebilanzzeitreihe einfügen.

Eingebettet in die Arbeiten zur Modifikation und Erweiterung des Industriemodells war zugleich eine Aktualisierung des Stützzeitraums (bis 2021) sowie damit verbunden die Neuschätzung sämtlicher Modellgleichungen, auch der Verhaltensgleichungen zur Erklärung der Verbrauchsentwicklung in den energieextensiven Wirtschaftszweigen.

Den ersten Schritt zur Überprüfung des modifizierten Modells stellte die Überprüfung einzelner Gleichungen des Systems dar. In diesem Kontext wurden zunächst die geschätzten Regressionskoeffizienten hinsichtlich ihrer vor dem Hintergrund der ökonomischen Theorie plausiblen Vorzeichen und Elastizitäten (Energiepreise, Produktion) geprüft. Des Weiteren wurden bereits auf der Ebene einzelner Verhaltensgleichungen Anstrengungen unternommen, die Erklärungsgüte etwa durch die Aufnahme weiterer bzw. alternativer Einflussgrößen zu steigern. Die in den Tabellen (und Schaubildern) ausgewiesen Resultate lassen erkennen, dass nicht alle geschätzten Parameter (p-Werte bzw. Regressionskoeffizienten) signifikant sind oder die Anforderungen an weitergehende ökometrische Tests gänzlich erfüllen. Beispielsweise deuten Überprüfungen der wichtigsten Modellgleichungen im Rahmen der Durchführung von RAMSEY-Reset-Tests in wenigen Fällen auf Spezifikationsfehler (Wahl der falschen Funktionsform) hin. Zur "ökonometrischen" Verbesserung dieser Gleichungen müssten zusätzliche exogene Erklärungsvariablen in das Modell aufgenommen werden¹, die allerdings häufig an der Verfügbarkeit geeigneter, empirisch quantifizierbarer Einflussgrößen zur Erklärung des Energieverbrauchs der betrachteten Sektoren/Produktionsprozesse scheitern.

 $^{^{\}rm 1}$ Alternative Funktionsformen wurden getestet, haben aber nicht zur Lösung des Problems beigetragen.

Eine weitere bedeutsame Beschränkung im Zusammenhang mit der Aufnahme zusätzlicher sektorspezifischer Erklärungsgrößen ergibt sich aus der Zielsetzung, die Kurzfristprognose zur Frühschätzung der Energiebilanz weitestgehend im Beobachtungszeitraum durchzuführen, d.h. exogene Variablen idealerweise bereits als beobachtete Statistikdaten in die Modellrechnung einfließen zu lassen. Dieses zuvor genannte Ziel nicht zu verfolgen könnte den unerwünschten Effekt haben, dass zusätzliche exogene Einflussgrößen ihrerseits zusätzliche Prognoseprobleme nach sich ziehen bzw. in Form einer plausiblen Setzung oder als Annahme in die bedingte Prognose einbezogen werden müssten. Um diesem Problem im Rahmen der angestrebten Kurzfristprognose zu begegnen, wurde in Einzelfällen auf die Aufnahme sektorspezifischer, am aktuellen Rand statistisch nicht verfügbarer Erklärungsgrößen verzichtet.

Den zweiten Schritt zur Validierung des weiterentwickelten und aktualisierten Modells zur Erklärung des industriellen Energieverbrauchs stellt eine dynamische Ex-post-Prognose im Stützbereich (2011 bis 2021) dar, die das Anpassungsverhalten des Gesamtsystems verdeutlicht. Der mittlere absolute prozentuale Fehler (MAPE), über den Ex-post-Zeitraum von 2011 bis 2021, kann mit 1,08 % beziffert werden. Er zeigt, dass die Erklärung des Endenergieverbrauchs der Industrie und seiner Komponenten² die beobachteten Werte recht gut widerspiegeln und die Prognosegüte des weiterentwickelten Industriemodells insgesamt als sehr gut eingestuft werden kann.

Das weiterentwickelte Industriemodell wurde in einem dritten Schritt darüber hinaus im Rahmen einfacher Simulationsexperimente im Ex-post-Zeitraum (Szenario 1: Erhöhung des Rohölpreises, Szenario 2: höheres Wirtschaftswachstum, jeweils in einem Jahr) getestet. Zur praktischen Umsetzung dieser Szenarienrechnungen wurden zusätzliche Module (Preismodell, Produktionsmodell) zur Erklärung von Variablenblöcken, die im Rahmen der Frühschätzung weitgehend als beobachtete Größen in die Berechnungen bzw. Prognosen einfließen, in das Industriemodell integriert. Im Ergebnis haben die Simulationsversuche gezeigt, dass das Modell auch plausibel auf veränderte exogene Rahmenbedingungen reagiert.

Eine Prognose außerhalb des Stützbereichs des Modells (für das Berichtsjahr 2022) schließt im vierten Schritt die Evaluierung des aktualisierten und weiterentwickelten Modells zur Erklärung des industriellen Energieverbrauchs ab. Danach verringert sich der Endenergieverbrauch der Industrie von 2.621 PJ (2021) auf 2.374 PJ (2022); dies entspricht einem Rückgang um 9,4 %. Bezogen auf den beobachteten Endenergieverbrauch der Industrie 2021 in Höhe von 2.607 PJ folgt daraus ein (korrigierter) Schätzwert von 2.360 PJ für das Jahr 2022. Zum Vergleich: Nach den empirischen Befunden der vorläufigen Energiebilanz Deutschland 2022 (Datenstand 16.9.2023) errechnete sich für 2022 ein Schätzwert von 2.403 PJ. Die inzwischen vorliegende endgültige Energiebilanz Deutschland für das Berichtsjahr 2022 (Datenstand: 31.1.2024) errechnet auf der Basis amtlicher Statistikwerte einen Endenergieverbrauch der Industrie in Höhe von 2.392 PJ.

Insgesamt kann festgehalten werden, dass das aktualisierte und weiterentwickelte Industriemodell hinsichtlich Anpassungsverhalten, Reaktionsweisen sowie Prognoseresultaten vernünftige Größenordnungen errechnet. Im weiteren Fortgang der Studie wird dieses Modell im Rahmen der Neuberechnung der bereits zum 15. Februar 2023 erstellten Frühschätzung der Energiebilanz Deutschland eingesetzt und die Ergebnisse miteinander verglichen.

² Für die einzelnen Energiebilanzsektoren (Energiebilanzzeilen 46 bis 59) variieren die MAPE (2011 bis 2021) zwischen 0,84 % und maximal 4,18 %. Der MAPE für den gesamten Brennstoff-/Wärmeeinsatz der Industrie liegt im gleichen Zeitraum bei 1,61 %, die mittlere absolute prozentuale Abweichung zwischen beobachtetem und modelliertem Verbrauch an elektrischem Strom in der Industrie hingegen bei 1,17 %.

Der zweite Teilbereich, für den das Verfahren zur Frühschätzung der Energiebilanz Deutschland über den Einsatz ökometrischer Verfahren weiterentwickelt wurde, ist der "Energieverbrauch im Umwandlungsgereich" (Energiebilanzzeilen 33 bis 39).

Der Rückgriff auf ökonometrische Verfahren löst den bislang zur Fortschreibung in diesem Bereich genutzten Indikatorenansatz ab, wobei zu beachten ist, dass das weiterentwickelte Modell nicht schätzbare Bilanzfelder weiterhin nach dem alten Verfahren prognostiziert. Eine dynamische Ex-post-Prognose im Zeitraum von 2012 bis 2021 zeigt, dass das auf diese Weise weiterentwickelte Modell die beobachteten Werte gut repliziert. Der MAPE für den Gesamtsektor liegt bei 0,74 %, wobei die Ex-post-Anpassung in den einzelnen Sektoren zwischen 1,2 % und 4,5 % schwankt.

Stellt man die neuen Ergebnisse direkt den Befunden gegenüber, die sich nach dem alten Indikatorenansatz ergeben, zeigt sich folgendes Bild: Die Anpassungsgüte, die mit der verbesserten Modellvariante im Vergleich zu den Resultaten erreicht wird, die mit Hilfe des bislang genutzten Indikatorenansatzes im Rahmen von Prognosen erzielt wird, ist als durchweg höher bzw. besser einzustufen. Der MAPE nach der neuen, weiterentwickelten Schätzmethode liegt im Ex-post-Zeitraum von 2012 bis 2021 mit 0,74 % spürbar unter dem Fehler bzw. der Abweichung, die sich nach dem alten Verfahren (MAPE: 4,5 %) ergeben würde.

Eine weitere methodische Verbesserung konnte im Zusammenhang mit der Schätzung der Fernwärmeerzeugung bzw. des damit verbundenen Brennstoffeinsatzes erreicht werden (Teil der Energiebilanzzeile 16). Zur Frühschätzung muss der Brennstoffeinsatz der Heizwerke (nach amtlicher Statistik Nr. 064, "Jahreserhebung über Erzeugung und Verwendung von Wärme sowie über den Betrieb von Wärmenetzen", die nur als Jahreserhebung vorliegt) über eine Schätzung vervollständigt werden. Dazu wurde bislang eine einfache Fortschreibung dieser Daten mit Hilfe der Gradtagzahlen verwendet. Im Zuge einer weiterentwickelten Modellierung wird nunmehr zusätzlich die Produktionsentwicklung "wärmeintensiver" Wirtschaftszweige als zusätzliche Erklärungsgröße im Rahmen eines Regressionsansatzes genutzt. Inhaltlich wird die Prognose damit realitätsnäher, weil ein erheblicher Teil der Fernwärmenachfrage, nämlich insbesondere der für industrielle Produktionsprozesse, nicht von den Witterungsverhältnissen abhängt.

Einen weiteren Schwerpunkt des empirischen Teils der vorliegenden Studie bildete die Analyse ausgewählter Optionen zur Weiterentwicklung des Verfahrens zur Frühschätzung der Energiebilanz Deutschland. In diesem Zusammenhang wurden insbesondere die Möglichkeiten zur Aufnahme verbesserter Frühindikatoren geprüft, die in Zukunft verstärkt in die Erstellung der Schätzenergiebilanz zum 15. Februar einfließen könnten. Dabei zeigte sich, dass beispielsweise die sehr zeitnah (tagesaktuell) vorliegenden Datensätze der Trading Hub Europe GmbH (THE) eine hohe Übereinstimmung mit den Daten der amtlichen Monatserhebung über die Gasversorgung (Stat. Nr. 068) aufweisen. Die THE-Daten sollen deshalb in Zukunft zur Fortschreibung bzw. Prognose des Inlandsabsatzes an Erdgas im Dezember des Vorjahres herangezogen werden.³ Im Gegensatz dazu haben weitere Analysen gezeigt, dass die THE-Daten

³ In der Fachliteratur wird darauf verwiesen, dass die THE-Daten am aktuellen Rand üblicherweise laufenden Revisionen unterliegen. Vgl. dazu Ruhnau, O.; Stiewe, C.; Muessel, J. und Hirth, L. (2023), Natural gas savings in Germany during the 2022 energy crisis, in: Nature Energy, Vol. 8, S. 621-628, S. 626. In der Praxis spielt diese Einschränkung für die Belange dieser Studie keine nennenswerte Rolle. Während die THE-Daten für RLM-Kunden gemessene Werte darstellen und kaum Revisionen unterliegen, werden die Angaben für SLP-Kunden am aktuellen Rand revidiert. Allerdings liegen auch die Angaben zum Erdgasverbrauch der SLP-Kunden zum Zeitpunkt Mitte Februar, für Berichtszeiträume von Januar bis Dezember des Vorjahres, in Form endgültiger bzw. revidierter Datensätze vor. Konkret lagen beispielsweise die THE-Daten vom 1. Januar 2023 bis 30. November 2023 zum Zeitpunkt der Frühschätzung bereits mit dem Status "Final" vor, die Daten vom 1. bis 31. Dezember 2023 hingegen mit dem Status "Corrected". Die Differenzen zwischen den gegenüber den vorläufigen Datenständen bereits korrigierten Daten und den endgültigen Daten sind sehr gering u. haben sich beispielsweise für Dezember 2023 in der Größenordnung von 0,01 % bewegt.

aufgrund der unzureichenden Aufgliederung nach Verbrauchsgruppen keine signifikante Korrelation mit der Entwicklung des Erdgasverbrauchs in den Energiebilanzsektoren (Industrie, GHD) aufweisen und deshalb als praktikabler Frühindikator eher ungeeignet sind.

Zur Erhöhung der Prognosegenauigkeit im Bereich der Stromerzeugung und des damit verbundenen Brennstoffeinsatzes lassen die in dieser Studie vorgelegten empirischen Untersuchungen folgende Schlüsse zu:

- ▶ Die BDEW-Schnellstatistik bietet zwar monatliche Daten zur Entwicklung der Stromerzeugung am aktuellen Rand, die vergleichsweise hohe Aggregation nach Energieträgern schränkt die Nutzung als Frühindikator zur Erstellung von Energiebilanzen jedoch spürbar ein. Hinzu kommt, dass die Schnellstatistik am aktuellen Rand ihrerseits bereits geschätzte Daten einschließt.
- ▶ Im Gegensatz dazu bieten die Daten zur Stromerzeugung der europäischen Übertragungsnetzbetreiber (European Network of Transmission System Operators for Electricity, kurz ENTSO-E) für die angestrebten Bilanzierungszwecke eine hinreichend tiefe Aufgliederung nach Energieträgern. Außerdem stehen die Daten von ENTSO-E mit einer zeitlichen Verzögerung von 90 Minuten zur Verfügung, sie sind folglich als Frühindikator unter zeitlichen Aspekten sehr gut geeignet. Empirische Vergleiche zwischen den Angaben zur monatlichen Entwicklung der Stromerzeugung laut ENTSO-E und Statistischem Bundesamt (Stromerzeugung der Kraftwerke der allgemeinen Versorgung, Stat. Nr. 066) für Zeiträume ab Januar 2015 zeigen für einzelne Energieträger ein heterogenes Bild. Während für die Stromerzeugung aus Stein- und Braunkohle eine hohe Übereinstimmung zwischen beiden Datenquellen erkennbar ist, ist diese Kohärenz bei anderen Energieträgern (Erdgas, Mineralöle usw.) nicht gegeben. Vor diesem Hintergrund ist beabsichtigt, den Frühindikator nur zur Fortschreibung der amtlichen Daten über die Stromerzeugung bei Energieversorgern aus Stein- und Braunkohle einzusetzen. Für die anderen Energieträger wird das in der Pilotstudie beschriebene Prognoseverfahren beibehalten.

Eine wichtige Einflussgröße des Energieverbrauchs stellt die Produktionsentwicklung in den einzelnen Wirtschaftszweigen dar. Als zentraler Frühindikator zur Erhöhung der Prognosegenauigkeit dienen die amtlichen Produktionsindizes. Allerdings liegen auch diese Angaben zum 5. Februar für das Berichtsjahr t-1 in der Regel nur bis November vor. Hinweise über den Stand bzw. die Entwicklung sektoraler Produktionsindizes für den zum Zeitpunkt der Frühschätzung fehlenden Berichtsmonat ließen sich ggf. durch Hinzuziehung amtlicher Informationen über die Auftragseingänge gewinnen, die die Nachfrage nach produzierten Erzeugnissen erfassen; sie laufen der Produktion folglich voraus. Die zeitliche Verzögerung, mit der die Auftragseingänge tatsächlich produktionswirksam wird, variiert von Sektor zu Sektor und müsste demzufolge geschätzt werden. Eine kritische Würdigung der Alternativen führt zu der Empfehlung, Unsicherheiten, die aus Fortschreibung der Produktionsindizes resultieren, vollständig zu vermeiden, indem der vereinbarte Datenschluss im Zusammenhang mit der Erstellung der Frühschätzung um wenige Tage in die Zukunft verschoben wird.

Untersucht man, um das Bild abzurunden, die gegenüber der Prototypvariante neu in das Modell zur Erklärung des Energieverbrauchs in der Industrie hinzugekommenen zwölf energieintensiven Subsektoren hinsichtlich der zeitlichen Verfügbarkeit der zusätzlich erforderlichen exogenen Erklärungsgrößen (insbesondere physische Produktionsmengen) lassen sich folgende Schlüsse ziehen: Monatliche Zeitreihen zur physischen Produktionsentwicklung der energieintensiven Branchen liegen zum Zeitpunkt der Frühschätzung allein für die Stahlindustrie (differenziert nach Produktionsstufen) als beobachtete Statistikinformation vor. Informationen zu den Produktionsmengen (Tonnen)

anderer energieintensiver Branchen (Zement- oder Kalkindustrie sowie Herstellung von Papier, Karton und Pappe) stehen hingegen lediglich als Jahresdaten zur Verfügung. Die Publikation der Produktionszahlen im Rahmen der Verbandsstatistiken erfolgt in diesen Fällen zu einem für die Belange der Frühschätzung zu spätem Zeitpunkt. Es wäre also zu prüfen, ob die Angaben zur Produktion für diese Branchen auf Nachfrage bei den Industrieverbänden ggf. bereits vor dem 15. Februar bereitgestellt werden könnten, um die Prognosegenauigkeit der Energiebilanz zu erhöhen. Andernfalls wären eigene Schätzungen bzw. Fortschreibungen dieser exogenen Variablen ggf. unter Inkaufnahme eines größeren Prognosefehlers unabdingbar.

Die zum Abschluss der Studie ebenfalls durchgeführten empirischen Vergleiche der Prognoseergebnisse mit den Befunden der endgültigen Energiebilanz Deutschland (für das Berichtsjahr 2022) bestätigen frühere Resultate, die in den Abschnitten 3.3. und 4.14 im Zusammenhang mit der Ex-post-Validierung der weiterentwickelten Modellteile für Zeiträume von 2012 bis 2021 aufgezeigt wurden (kleinere Fehlermaße über den Ex-post-Zeitraum). Die Weiterentwicklung der Frühschätzung hat auch für das Berichtsjahr 2022 insgesamt zu einer Verbesserung der Schätzung geführt. Insbesondere in den energieintensiven Sektoren Metallerzeugung (EBZ 54) und Verarbeitung von Steinen und Erden (EBZ 53) liegen die mit dem weiterentwickelten (sektoral tiefer disaggregierten) Modell zur Erklärung des Endenergieverbrauchs prognostizierten Schätzwerte für das Berichtsjahr 2022 näher an den Befunden der endgültigen Energiebilanz Deutschland, als dies mit dem alten Verfahren der Fall gewesen ist. Generell ist festzustellen, dass sich die Erklärung bzw. Prognose des industriellen Endenergieverbrauchs in den betrachteten energieintensiven Wirtschaftszweigen vor allem im Hinblick auf die Erfassung bzw. Schätzung des Energieträgermix ("fuel switch") gegenüber der Prototypversion des Modells (keine Aufgliederung nach Sub-Sektoren) verbessert hat.

Im Sektor Papiergewerbe (EBZ 48) konnte im Zusammenhang mit der Weiterentwicklung des Modellansatzes (Aufgliederung des Sektors in Herstellung von Holzschliff, Zellstoff, Papier und Pappe (WZ 17.1) und Herstellung von Waren aus Papier und Pappe (WZ 17.2)) für das Prognosejahr 2022 keine Verbesserung festgestellt werden. Vielmehr zeigt sich speziell für das Prognosejahr 2022 eine Vergrößerung der Abweichungen im Vergleich zur endgültigen Energiebilanz, die insbesondere die Schätzung des Erdgaseinsatzes betrifft. Eine genauere Überprüfung der Modellgleichungen und Schätzergebnisse hat die Ursachen für diese Verschlechterung aufgezeigt. Eine Lösung für das skizzierte Problem liegt vor, die allerdings im Verlauf der vorliegenden Studie aus Gründen der Vergleichbarkeit und Konsistenz der Gesamtergebnisse nicht angewendet bzw. umgesetzt werden darf. Eine geringfügige Anpassung des Modells für die Papierindustrie erfolgt vor diesem Hintergrund im Rahmen der Modellaktualisierung für die Frühschätzung der Energiebilanz Deutschland 2024 (wird zum 15. Februar 2025 vorgelegt).

Summary

The focus of the present study was the question of how the ongoing early estimates of the complete energy balance for Germany, which have been produced since 2021, starting in mid-February for each balance year, can be further improved in terms of forecast quality in the future. The instruments that have been used to date to practically implement these forecasts of the energy balances and the updating of statistical (monthly) data that are not yet available and are indispensable for the preparation of the energy balance have already been examined in more detail in a comprehensive pilot study. The report presented here builds on the findings and empirical results of this previous study, which was published in early 2023.

So far, early estimates of the complete energy balance for Germany have been prepared on the basis of the methodological approach outlined in the pilot study for the reporting years 2020 to 2022 in which estimates were still based on the unrevised time series of the energy balance for Germany (data status: up to May 2023). The analyses of the pilot study, and in particular the subsequent empirical, field-specific comparisons between the early estimates of the energy balance with the later data statuses of the final energy balances, have revealed major deviations or forecast inaccuracies for selected balance areas. These differences were taken as an opportunity to critically review the early estimation procedure as a whole and to further develop the model instruments in specific areas.

In order to improve the accuracy of forecasts in connection with the explanation of energy consumption in industry (by sector and energy source), for example, it was envisaged to disaggregate selected energy-intensive sectors of the economy to a much greater extent as part of a further developed version of the model. In this way, the correlations between the level and structure of energy consumption in the industries "paper industry" (energy balance line 48), "processing of stones and earths" (energy balance line 53) and "metal production" (energy balance line 54) are to be more appropriately captured both by energy-intensive sub-sectors or production stages and by energy carriers and the development of energy prices than was previously the case in the aggregated view. The more detailed breakdown of the energy-intensive sectors mentioned above also opens up the possibility of identifying important sector-specific influencing variables (which better reflect the special features of the production processes found here) and their significance for individual components of energy consumption, and of taking them adequately into account in the forecast calculations.

Due to the modifications and additions, 12 energy-intensive sub-sectors are now distinguished in the present model for forecasting or early estimation of final energy consumption in industry (version 2023), namely:

- ▶ Manufacture of pulp, paper and paperboard (WZ 17.1, ex energy balance line 48),
- ▶ Manufacture of articles of paper and paperboard" (WZ 17.2 ex energy balance line 48),
- ▶ Manufacture of cement" (WZ 23.51 ex energy balance line 53),
- ▶ Manufacture of lime" (WZ 23.52 ex energy balance line 53),
- ► Manufacture of other non-metallic mineral products (WZ 23.6 to 23.9 ex energy balance line 53).

In the advanced model, the metal production industry is broken down into production stages (no WZ classification):

Live steam boiler house.

- sinter production,
- pig iron production (blast furnace),
- oxygen steelmaking,
- Electric steelmaking,
- Rolled steel production and
- Further processing.

In the further developed industrial model, the explanatory approaches for these subsectors/production stages replace the modeling of the three summary energy balance sectors (energy balance lines 48, 53 and 54) in the prototype of the model. A prerequisite for the further development and supplementation of the industrial model was, of course, a comprehensive and, above all, energy balance-compatible expansion of the data basis. The time series on the development of energy consumption (by energy source) now include observations for years from 1995 to 2021 for the production stages in the "metal production" sector. Sectoral consumption data for periods between 2003 and 2021 were prepared for the other energy-intensive sub-sectors (paper industry, processing of stones and earths) on the basis of the official surveys on the development of energy consumption in industry. It goes without saying that the newly added energy data fit seamlessly and without contradiction into the overall framework of the revised energy balance time series.

The work on modifying and extending the industrial model also involved updating the sample period (up to 2021) and, in connection with this, reestimating all the model equations, including the behavioral equations to explain the development of consumption in the energy-extensive sectors of the economy.

The first step in checking the modified model was to examine individual equations of the system. In this context, the estimated regression coefficients were first checked with regard to their plausible signs and elasticities (energy prices, production) against the background of economic theory. Furthermore, efforts were already made at the level of individual behavioral equations to increase the explanatory quality, for example by including additional or alternative influencing variables. The results shown in the tables (and graphs) indicate that not all estimated parameters (t-values or regression coefficients) are significant or fully meet the requirements for more advanced econometric tests. For example, checks of the main model equations in the context of performing RAMSEY reset tests indicate specification errors (choice of the wrong functional form) in a few cases. For an "econometric" improvement of these equations, additional exogenous explanatory variables would have to be included in the model. The inclusion of these variables, however, often fails due to the availability of suitable empirically quantifiable influencing variables to explain the energy consumption of the sectors/production processes under consideration.

Another significant limitation in connection with the inclusion of additional sector-specific explanatory variables results from the objective of conducting the short-term forecast for the early estimation of the energy balance as far as possible in the observation period, i.e. ideally, exogenous variables should already be included in the model calculation as observed statistical data. Not pursuing this aforementioned goal could have the undesirable effect that additional exogenous variables would cause an additional forecasting problem or would have to be included in the conditional forecast in the form of a plausible setting or as an assumption. To address this problem in the context of the intended short-term forecast, sector-specific

explanatory variables for which observational data are not available at the current margin were not included in individual cases.

The second step in validating the further developed and updated model for explaining industrial energy consumption is a dynamic ex-post forecast in the sample period (2011 to 2021), which illustrates the adjustment behavior of the overall system. The mean absolute percentage error (MAPE), over the ex-post period from 2011 to 2021, equals 1.08%. It shows that the explanation of the final energy consumption of the industry and its components reflect the observed values quite well and that the forecast quality of the further developed industry model can be classified as very good overall.

In a third step, the refined industry model was also tested in simple simulation experiments in the ex-post period (scenario 1: increase in crude oil price, scenario 2: higher economic growth, each in one year). For the practical implementation of these scenario calculations, additional modules (price model, production model) were integrated into the industry model to explain blocks of variables that are largely included in the calculations or forecasts as observed variables in the early estimation. As a result, the simulation tests have shown that the model also reacts plausibly to changes in exogenous framework conditions.

In the fourth step, a forecast outside the sample period of the model (for the reporting year 2022) concludes the evaluation of the updated and further developed model to explain industrial energy consumption. According to this, final energy consumption of industry decreases from 2,621 PJ (2021) to 2,374 PJ (2022); this represents a decrease of 9.4%. Based on the observed final energy consumption of industry in 2021 of 2,607 PJ, this results in a (corrected) estimated value of 2,360 PJ for 2022. For comparison: according to the empirical findings of the Energy Balance Germany 2022 (data as of Sept. 16, 2023), an estimated value of 2,403 PJ is calculated for 2022. The final energy balance for Germany for the reporting year 2022 (data status: 31.1.2024) now available calculates final energy consumption in industry of 2,392 PJ on the basis of official statistical values.

Overall, it can be stated that the updated and further developed industrial model calculates reasonable orders of magnitude in terms of adjustment behavior, response modes and forecast results. In the further course of the study, this model will be used as part of the recalculation of the early estimate of the energy balance for Germany, which was prepared as of February 15, 2023, and the results will be compared.

The second subarea for which the procedure for the early estimate of the energy balance for Germany was further developed using econometric methods is "Energy consumption in the transformation sector" (energy balance lines 33 to 39).

The use of econometric methods replaces the indicator approach previously used for updating in this area, although it should be noted that the further developed model continues to forecast balance fields that cannot be estimated using the old method. A dynamic ex-post forecast period (2012 to 2021) shows that the model developed in this way replicates the observed values well. The MAPE for the overall sector is 0.74%, with the ex-post adjustment varying between 1.2% and 4.5% across sectors.

If the new results are compared directly with the findings obtained using the old (indicator) approach, the following picture emerges: the quality of adjustment achieved with the improved model variant compared with the results obtained using the previously used indicator approach in the context of forecasting can be classified as consistently higher or better. In the ex-post period from 2012 to 2021, the MAPE of the new, improved estimation method is 0.74%, which is

noticeably lower than the error or deviation that would result from the old method (MAPE: 4.5%).

A further methodological improvement was achieved in connection with the estimation of district heating production and the associated fuel input (part of the energy balance line 16). For the early estimate, the fuel input of the heating plants (according to official Stat. No. 064, which is only available as an annual survey) must be completed via an estimate. For this purpose, a simple update of these data using degree-day figures has been used so far. In the course of a more advanced modeling, the production development of "heat-intensive" economic sectors is now also used as an additional explanatory variable within the framework of a regression approach. In terms of content, this makes the forecast more realistic, because a considerable part of the district heating demand, in particular that for industrial production processes, does not depend on weather conditions.

The empirical part of the present study also focuses on the analysis of selected options for the further development of the procedure for the early estimation of the energy balance for Germany. In this context, the possibilities of including improved leading indicators were examined in particular, which could be increasingly incorporated into the preparation of the estimated energy balance as of February 15 in the future. It was found, for example, that the very timely (daily updated) data sets from Trading Hub Europe (THE) show a high degree of agreement with the data from the official monthly survey on gas supply (EnStat068). The THE data will therefore be used in the future to update or forecast domestic sales of natural gas in December of the previous year.⁴ In contrast, further analyses have shown that the THE data do not show any significant correlation with the development of natural gas consumption in the energy balance sectors (industry, tertiary sector) due to the insufficient breakdown by consumption groups and are therefore rather unsuitable as a viable leading indicator.

In order to increase the forecast accuracy in the field of electricity generation and the associated fuel use, the empirical investigations presented in this study allow the following conclusions:

- Although the BDEW preliminary statistics provide monthly data on the development of electricity generation at the current margin, the comparatively high level of aggregation by energy source noticeably limits its use as an early indicator for drawing up energy balances. In addition, the current margin preliminary statistics already include estimated data.
- ▶ In contrast, the data on electricity generation of the European transmission system operators (European Network of Transmission System Operators for Electricity, ENTSO-E for short) offer a sufficiently deep breakdown by energy source for the intended balancing purposes. In addition, the data from ENTSO-E are available with a time lag of 90 minutes and are therefore very well suited as an early indicator from a timeliness perspective. Empirical comparisons between the data on the monthly development of electricity generation according to ENTSO-E and the German Federal Statistical Office (electricity generation by power plants in the general supply, Stat. No. 066) for periods starting in January 2015 show a heterogeneous picture for individual energy sources. While for electricity generation from hard coal and lignite a high consistency between both data sources can be seen, this

⁴ The specialist literature points out that the THE data at the current margin is usually subject to ongoing revisions. See Ruhnau, O.; Stiewe, C.; Muessel, J. and Hirth, L. (2023), Natural gas savings in Germany during the 2022 energy crisis, in: Nature Energy, Vol. 8, pp. 621-628, p. 626. In practice, this limitation does not play a significant role for the purposes of this study. While the THE data for RLM customers represent measured values and are hardly subject to revision, the data for SLP customers are revised at the current margin. However, the data on the natural gas consumption of SLP customers is also available as of mid-February for reporting periods from January to December of the previous year in the form of final or revised data records. Specifically, for example, the THE data from January 1, 2023 to November 30, 2023 was already available with the status "Final" at the time of the early estimate, while the data from December 1 to 31, 2023 had the status "Corrected". The differences between the data already corrected compared to the preliminary data and the final data are very small and were in the order of 0.01% for December 2023, for example.

consistency is not given for other energy sources (natural gas, mineral oils, etc.). Against this background, it is intended to use the leading indicator only for updating the official data on electricity generation from hard coal and lignite. For the other energy sources, the forecast procedure described in the pilot study will be retained.

An important factor influencing energy consumption is the development of production in the individual sectors of the economy. The official production indices serve as a central leading indicator for increasing the accuracy of forecasts. However, as of February 5 for the reporting year t-1, these data are generally only available up to November. Information on the status or development of sectoral production indices for the reporting month missing at the time of the early estimate could be obtained, if necessary, by consulting official information on incoming orders, which record the demand for manufactured products; consequently, they run ahead of production. The time lag with which new orders actually affect production varies from sector to sector and would therefore have to be estimated. A critical appraisal of the alternatives leads to the recommendation to completely avoid uncertainties resulting from updating the production indices by postponing the agreed data cut-off of the compilation of the early estimate by a few days into the future.

If, to round off the picture, the energy-intensive 12 subsectors newly added to the prototype model to explain energy consumption in industry are examined with regard to the temporal availability of the additionally required exogenous explanatory variables (in particular physical production quantities), the following conclusions can be drawn: at the time of the early estimate, monthly time series on the physical production development of the energy-intensive sectors are available as observed statistical information for the steel industry alone (differentiated by production stages). Information on the production volumes (tons) of other energy-intensive industries (cement or lime industry as well as production of paper, cardboard and paperboard), on the other hand, is only available as annual data. In these cases, the publication of production figures as part of the association statistics takes place at a point in time that is too late for the purposes of early estimation. It should therefore be examined whether the production data for these sectors could be made available before February 15 on request from the industry associations in order to increase the forecasting accuracy of the energy balance. Otherwise, own estimates or updates of these exogenous variables would be indispensable, possibly also at the expense of a larger forecast error.

The empirical comparisons of the forecast results with the findings of the final German energy balance (for the reporting year 2022) also carried out at the end of the study confirm earlier results that were shown in sections 3.3. and 4.14 in connection with the ex-post validation of the further developed model parts for periods from 2012 to 2021 (smaller error measures over the ex-post period). The further development of the early estimate has also led to an overall improvement in the estimate for the 2022 reporting year. Particularly in the energy-intensive metal production (EBZ 54) and mineral processing (EBZ 53) sectors, the estimated values for the 2022 reporting year forecast using the further developed (sectorally more disaggregated) model to explain final energy consumption are closer to the findings of the final German energy balance than was the case with the old method. In general, it should be noted that the explanation or forecast of industrial final energy consumption in the energy-intensive sectors of the economy under consideration has improved compared to the prototype version of the model (no breakdown by sub-sector), particularly with regard to the recording or estimation of the energy carrier mix ("fuel switch").

In the paper industry sector (EBZ 48), no improvement was observed in connection with the further development of the model approach (breakdown of the sector into the manufacture of groundwood pulp, pulp, paper and cardboard (WZ 17.1) and the manufacture of paper and

cardboard products (WZ 17.2)) for the forecast year 2022. On the contrary, there is an increase in deviations compared to the final energy balance, especially for the forecast year 2022, which particularly concerns the estimate of natural gas use. A closer examination of the model equations and estimation results has revealed the causes of this deterioration. A solution to the problem outlined is available, but for reasons of comparability and consistency of the overall results, it may not be applied or implemented in the course of this study. Against this background, a slight adjustment of the model for the paper industry will be made as part of the model update for the early estimate of the German energy balance 2024 (to be presented on February 15, 2025).

1 Aufgabenstellung

Im Dezember 2019 haben der Bundestag und der Bundesrat das Klimaschutzgesetz (KSG) beschlossen. Mit diesem Gesetz werden die Klimaschutzziele gesetzlich verbindlich für jedes Berichtsjahr von 2020 bis 2030 und aufgegliedert nach einzelnen Sektoren festgelegt. Im Ergebnis gelten in Deutschland damit erstmals verbindliche und überprüfbare Ziele für jeden Sektor. Mit der für die laufende Evaluierung der Zielerreichung oder -verfehlung erforderlichen Berichterstattung ist das Umweltbundesamt (UBA) betraut. Vor diesem Hintergrund ist das UBA nach § 5 KSG verpflichtet, bis zum 15. März eines jeden Berichtjahres die Emissionsdaten des Berichtsjahres (t-1) zur Überprüfung der sektoralen Zielerreichungsfortschritte an den Expertenrat für Klimafragen zu übermitteln.⁵

Selbstverständlich erfordert die laufende Überprüfung der Zielfortschritte eine umfassende und zugleich nach Wirtschaftszweigen und Energieträgern disaggregierte empirische Datenbasis. Zur Ermittlung der ("energiebedingten") Emissionen bildet die Energiebilanz Deutschland die mit Abstand wichtigste empirische Datenquelle zur Schätzung der THG-Emissionen.⁶ Die Energiebilanz stellt in Form einer Matrix das Aufkommen, die Umwandlung und die Verwendung von Energieträgern in einer Volkswirtschaft möglichst lückenlos, detailliert (nach Sektoren) und in sich konsistent dar. Allein konsistente, methodisch eindeutig definierte Energiebilanzen lassen sich widerspruchsfrei zu energiewirtschaftlichen Eckgrößen wie z.B. dem Primärenergieverbrauch verdichten und sollten deshalb als zentrale Ausgangsbasis zu Emissionsberechnungen herangezogen werden. Die Verwendung verstreut vorliegender amtlicher und nichtamtlicher Rohdaten birgt stets die Gefahr methodischer und statistischer Inkonsistenzen.

Die Energiebilanz Deutschland wird von der Arbeitsgemeinschaft Energiebilanzen (AGEB) in regelmäßigem Abstand publiziert. Für Deutschland liegt inzwischen eine geschlossene Zeitreihe endgültiger Energiebilanzen für die Jahre von 1990 bis 2022 vor. Für das Berichtsjahr 2023 existiert darüber hinaus eine Frühschätzung der Energiebilanz nach dem in der Vorgängerstudie beschriebenen Verfahren, Stand 15. Februar 2024.

Die bisherigen Ausführungen lassen erkennen, dass zwischen den in § 5 KSG genannten Terminen und Verpflichtungen und den zu diesem Zeitpunkt vorliegenden endgültigen empirischen Daten zur Entwicklung des Energieverbrauchs und den damit verbundenen Emissionen (nach Sektoren) eine erhebliche Diskrepanz besteht.⁷

Um die skizzierten Datenlücken zur Entwicklung des Energieverbrauchs am aktuellen Rand für die Belange der Emissionsberichterstattung bzw. Evaluierung der Zielerreichung im Rahmen der

⁵ Am 24. Juni 2021 hat der Bundestag, vor dem Hintergrund einer Entscheidung des Bundesverfassungsgerichtes, die die bestehenden Vorschriften des KSG mit den Grundrechten für nicht vereinbar eingestuft hat, die erste Novelle des Klimaschutzgesetzes beschlossen. Die Gesetzesnovelle ist am 31. August 2021 in Kraft getreten. Im Rahmen der Novelle wurde u.a. das Minderungsziel für 2030 verschärft, d.h. Deutschland soll bis zum Jahr 2030 seinen Ausstoß an Treibhausgasen um 65 % gegenüber dem Jahr 1990 reduzieren. Die Zielverschärfung wirkt sich zugleich auf die CO₂-Minderungsziele in den einzelnen Sektoren aus. Die zweite Novelle des KSG wurde im April 2024 vom Bundestag verabschiedet. Ziel der Novellierung ist es, den Klimaschutz insgesamt flexibler und effizienter zu gestalten, indem zukünftig mehrjährige und sektorübergreifende Emissionsbudgets zur Evaluierung der Zielerreichung herangezogen und im Falle von Zielabweichungen für weitere Minderungsmaßnahmen ausschlaggebend sind.

⁶ Während die endgültige und die vorläufige Energiebilanz Deutschland für die Berichterstattung der THG-Emissionen unter der Klimarahmenkonvention herangezogen werden, stützt sich die THG-Vorjahresschätzung im Rahmen des Bundes-Klimaschutzgesetzes auf die Frühschätzung der Energiebilanz Deutschland.

⁷ Die voranstehenden Abschnitte wurden zur besseren Einordung der Problemstellung in dieser weiterführenden Untersuchung aus der Vorgängerstudie übernommen, vgl. Vgl. EEFA/ZSW (2023), Pilotprojekt zur Frühschätzung der Energiebilanz 2020 und Vergleich zu späteren definierten Datenständen, UBA-Texte 18/2023, Projektnummer 152983, S. 22ff., Internet: https://www.umweltbundesamt.de/sites/default/files/medien/479/publikationen/texte_18-2023_pilotprojekt_zur_fruehschaetzung_der_energiebilanz_2020.pdf (Abrufdatum: 11.9.2023).

Vorgaben des KSG zu schließen, hat das Umweltbundesamt im Frühjahr 2021 eine Pilotstudie vergeben, um die Frühschätzung der vollständigen Energiebilanz für Deutschland (seinerzeit für das Berichtsjahr 2020) bereits zum 15. Februar 2021 zu erstellen. Diese Studie ("Pilotprojekt zur Frühschätzung der Energiebilanz 2020 und Vergleich zu späteren definierten Datenständen", Projektnummer 152983) wurde im Auftrag der AG Energiebilanzen von den beiden Forschungsinstituten Energy Environment Forecast Analysis EEFA GmbH & Co. KG (EEFA) und Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW) im Oktober 2022 fertiggestellt.

Inzwischen ist die Erarbeitung laufender Frühschätzungen der Energiebilanz (Berichtsjahr t-1) zum 15. Februar fester Bestandteil der Arbeiten im BMWK-Auftrag zur Erstellung der Energiebilanzen (Einzelheiten vgl. Erstellung der Energiebilanzen für die Bundesrepublik Deutschland (2021-2023), Projekt Nr. 19/21).

Die o.g. UBA-Pilotstudie musste in ihren zentralen Bestandteilen (nämlich der Erstellung der eigentlichen Frühschätzung der Energiebilanz für das Jahr 2020) unter einem erheblichen Zeitdruck erarbeitet werden. Ungeachtet dessen wurde das gewählte Verfahren zur Frühschätzung (Hybrid-Ansatz) im Lichte der Ergebnisse der ersten Pilotstudie als belastbar bzw. die Vorgehensweise insgesamt als erfolgreich eingestuft. Gleichwohl haben die im späteren Projektverlauf durchgeführten Vergleiche mit der endgültigen Energiebilanz 2020 in einzelnen Bereichen auch Verbesserungspotenziale aufgezeigt.

Vor diesem Hintergrund hat das UBA ein Folgevorhaben beauftragt, mit dessen Hilfe aufbauend auf den Erkenntnissen der bereits vorliegenden Pilotstudie punktuelle Weiterentwicklungen und Verbesserungen am Prognosemodell zur Durchführung der Frühschätzung umgesetzt werden sollen. Zu diesem Vorhaben legen die beiden Institute EEFA und ZSW den folgenden Endbericht vor.

2 Vorbemerkungen

2.1 Methodik zur Frühschätzung / Vorgängerstudie

Die Frühschätzung der Energiebilanz Deutschland (jeweils zum 15. Februar) für das Berichtsjahr t-1 erfolgt nach dem sogenannten Hybrid-Ansatz. Konkret bedeutet dies, dass die felderscharfe Frühschätzung der gesamten Bilanz nicht in einem methodisch einheitlichen, formalen Schätzverfahren erfolgt, sondern sich vielmehr an den verfügbaren empirischen Datengrundlagen innerhalb der verschiedenen Bilanzbereiche orientiert. Insbesondere soll die gewählte Vorgehensweise sicherstellen, dass zum Zeitpunkt der Frühschätzung ggf. bereits vorliegende unterjährige Statistikinformationen (amtliche und nichtamtliche Daten) als beobachtete Größen (ggf. ergänzt um Prognosen fehlender Monate am aktuellen Rand) in die jeweilige Bilanzschätzung einfließen.

Es liegt auf der Hand, dass der gewählte Hybrid-Ansatz unter Einbeziehung aller verfügbaren unterjährigen Informationen (in der Regel Daten in monatlicher Granularität) auf der einen Seite die Genauigkeit der Frühschätzung verbessert, auf der anderen Seite ist dieser Ansatz im Gegensatz zur reinen Schätzung auf der Ebene jährlicher Energiebilanzdaten naturgemäß mit einem spürbar erhöhten Aufwand verbunden. Einzelheiten zum genauen Aufbau des Hybrid-Ansatzes (inkl. der verwendeten Schätzverfahren zur Vervollständigung von Monatsdaten) können in der Vorgängerstudie in den Kapiteln 2 und 3 genauer nachgelesen werden.⁸

Die in dieser Studie angestrebte Weiterentwicklung des Modells zur Frühschätzung tangiert die Grundmethodik des Hybrid-Ansatzes nicht. Vielmehr konzentrieren sich die Verbesserungen in hohem Maße auf die Schätzung des Energieverbrauchs (nach Energieträgern) differenziert nach Wirtschaftszweigen der Industrie. Bislang erfolgte die Prognose unter Zuhilfenahme eines ökonometrischen Erklärungsmodells (Stützzeitraum Pilotstudie 1995 bis 2018) ausschließlich in der zusammenfassenden sektoralen Gliederung der Energiebilanz Deutschland.

2.2 Vorliegende Frühschätzungen

Die erste Frühschätzung der Energiebilanz Deutschland für das Berichtsjahr 2020 wurde Mitte Februar 2021 vorgelegt. Diese Frühschätzung für das Berichtsjahr 2020 war Teil der bereits erwähnten Pilotstudie zur Frühschätzung der Energiebilanz aus dem Jahr 2023 (Erscheinungsjahr).

Inzwischen hat die AG Energiebilanzen auch für die Berichtsjahre 2021, 2022 und 2023 Frühschätzungen der vollständigen Energiebilanzen vorgelegt. Die Ergebnisse der Frühschätzungen für die Berichtsjahre 2020 und 2021 wurden einem numerischen, felderscharfen Vergleich mit den inzwischen vorliegenden endgültigen Energiebilanzen unterzogen und es wurden auffällige Abweichungen zwischen der jeweiligen Frühschätzung und den beobachteten Daten analysiert. Der numerische Vergleich der Frühschätzung für das Berichtsjahr 2022 kann frühestens ab Ende Januar 2023 erfolgen, sobald die endgültige Energiebilanz 2022 vorliegt bzw. publiziert wird. Er ist Gegenstand des zweiten Zwischenberichtes bzw. des vorliegenden Endberichtes zu dieser Studie.

Sämtliche bislang vorgelegten Frühschätzungen der Energiebilanzen stützen sich im Rahmen von Prognosen auf die nicht revidierten Energiebilanzen für Deutschland (1995 bis 2021). Im März 2023 hat die AG Energiebilanzen für die Berichtsjahre ab 2003 eine revidierte Zeitreihe von Energiebilanzen erarbeitet und dem Auftraggeber übergeben. Die revidierten

⁸ Vgl. EEFA/ZSW (2023), Kapitel 2.2, S. 41ff. und Kapitel 3, S. 52ff.

Energiebilanzen berücksichtigen den jeweils aktuellen, verfügbaren Datenstand, kleinere Fehlerkorrekturen, Verbesserungen der Zeitreihenkonsistenz und nicht zuletzt Verfeinerungen der Schätzmethodik in nicht von der amtlichen Statistik erfassten Bilanzsegmenten.

Seit Anfang Dezember 2023 hat die AG Energiebilanzen die revidierten Energiebilanzen (2003 bis 2021 mit Datenstand: 31.3.2023) und sämtliche o.g. Folgeprodukte (Auswertungstabellen, Effizienzindikatoren, Anwendungsbilanzen usw.) auf ihrer Internetseite (www.ag-energiebilanzen.de) publiziert. Intern, d.h. beispielsweise zur Berechnung der Treibhausgase im deutschen Emissionsinventar oder als Datengrundlage zur Verbesserung der Modelle im Zusammenhang mit der Erstellung der Frühschätzung, wurde der aktualisierte bzw. revidierte Datenstand bereits berücksichtigt. Die Frühschätzung der Energiebilanz Deutschland für das Berichtsjahr 2023 (Stand 15. Februar 2024) setzt selbstverständlich vollständig auf dem revidierten Datenstand der Energiebilanzen auf.

2.3 Erkenntnisse aus den empirischen Vergleichen der Frühschätzungen mit den endgültigen Energiebilanzen (2020 bis 2021)

Größere Abweichungen zwischen den Prognoseresultaten der Frühschätzung und den beobachteten Daten der endgültigen Energiebilanz sind insbesondere in den Sektoren des Endenergieverbrauchs zu erwarten. Ursächlich hierfür sind in diesem Teilbereich der Bilanz in erster Linie empirische Einschränkungen in der Verfügbarkeit unterjähriger Daten. Im Gegensatz zur Aufkommensseite der Energiebilanz Deutschland müssen sich im Endenergieverbrauch sämtliche Schätzungen allein auf Jahresdaten für die zurückliegenden Bilanzjahre stützen.

Als verbesserungswürdig wurden insbesondere Abweichungen zwischen der endgültigen Energiebilanz Deutschland und der prognostizierten Entwicklung des Energieverbrauchs laut Frühschätzung in einigen energieintensiven Wirtschaftszweigen sowie für ausgewählte Energieträger identifiziert. Beispielsweise traten im Rahmen des Vergleichs mit der endgültigen Energiebilanz größere Differenzen beim Einsatz von Steinkohle und Steinkohlenkoks in der "Metallerzeugung" (Energiebilanzzeile 54) sowie bei anderen Braunkohlenprodukten im Sektor "Verarbeitung von Steinen und Erden" (Energiebilanzzeile 53) auf.

Im Rahmen der Interpretation der Ergebnisse der Vorgängerstudie (Pilotstudie) wurde bereits darauf hingewiesen, dass die hohe Aggregation energieintensiver Bereiche des Verarbeitenden Gewerbes in der Energiebilanz Deutschland (die zugleich dem Gliederungsschema des Modell-Prototypen entspricht) nicht zweckmäßig ist, da sie weder die sektorspezifischen Besonderheiten bzw. Determinanten zur Erklärung des Energieverbrauchs noch unterschiedliche "konjunkturelle" Entwicklungen innerhalb der energieintensiven Sub-Branchen (nachfrageinduzierter, intrasektoraler Strukturwandel) adäquat erfasst.

Um die skizzierte Heterogenität in Zukunft besser im Prognosemodell erfassen zu können, soll der Energieverbrauch der Industrie für ausgewählte energieintensive Bereiche auf der Ebene von Subbranchen aufgegliedert bzw. erklärt werden, wobei der eisenschaffenden Industrie aufgrund der außerordentlich hohen Energie- und CO₂-Intensität eine besondere Rolle für die Genauigkeit der Frühschätzung zufällt.

⁹ Diese Zusammenhänge wurden von den Autorinnen und Autoren bereits in Vgl. EEFA/ZSW (2023), Kapitel 2.2., S. 29ff. beschrieben.

Aufgrund dieser Modifikationen und Ergänzungen werden in das bestehende Industriemodul zwölf überwiegend energieintensive Subsektoren bzw. Produktionsstufen (Metallerzeugung) eingefügt, darunter die Herstellung von

- Zement,
- Kalk,
- ► Holzschliff, Zellstoff, Papier und Pappe,
- Sinter (Erzvorbereitungsanlagen)
- ► Roheisen (Hochofen)
- Oxygenstahl
- ► Elektrostahl
- Walzstahl und
- sonstige weiterverarbeitete Stahlerzeugnisse (Weiterverarbeitung).

Abbildung 1: Untergliederung der Produktionsbereiche/Wirtschaftszweige des Industriemodells

WZ 2008	Wirtschaftszweig	EB-Zeile	Index im Modell
08	Gewinnung von Steinen und Erden, sonst. Bergbau	46	EBZ46S33
10, 11, 12	Ernährung und Tabak	47	EBZ47S33
17	Papiergewerbe	48	EBZ48S33
17.1	Herst. v.HZPP		EBZ48HZ33
17.2	Herst. v. Waren aus Papier u. Pappe		EBZ48PP33
20.1	Grundstoffchemie	49	EBZ49S33
20 und 21 ohne 20.1	Sonstige chemische Industrie	50	EBZ50S33
22	Gummi- u. Kunststoffwaren	51	EBZ51S33
23.1, 23.2, 23.31 und 23.4	Glas u. Keramik	52	EBZ52S33
23 ohne 23.1, 23.2, 23.31 und 23.4	Verarbeitung v. Steine u. Erden	53	EBZ53S33
23.51	Zementindustrie		EBZ53ZE33
23.52	Kalkindustrie		EBZ53KA33
23.6 bis 23.9	Sonstige Steine u. Erden		EBZ53SO33
24.1	Metallerzeugung	54	EBZ54S33
BGS-Stat. (keine WZ-Klassifikation)	Frischdampfkesselhaus		EBZ54DA33
BGS-Stat. (keine WZ-Klassifikation)	Sinterwerke		EBZ54SI33
BGS-Stat. (keine WZ-Klassifikation)	Hochofenwerke		EBZ54HO33
BGS-Stat. (keine WZ-Klassifikation)	Oxygenstahlwerke		EBZ54OX33
BGS-Stat. (keine WZ-Klassifikation)	Elektrostahlwerke		EBZ54EL33
BGS-Stat. (keine WZ-Klassifikation)	Walzstahlwerke		EBZ54WZ33
BGS-Stat. (keine WZ-Klassifikation)	Weiterverarbeitung		EBZ54WV33
24.4 und 24.5	NE-Metalle, -gießereien	55	EBZ55S33
24.2, 24.3, und 25	Metallbearbeitung	56	EBZ56S33
28 ohne 28.23	Maschinenbau	57	EBZ57S33
29, 30	Fahrzeugbau	58	EBZ58S33
alle übrigen Nummern außer 05.1, 05.2, 06, 09, 19.1 und 19.2	Sonstige Wirtschaftszweige	59	EBZ59S33

Quelle: Eigene Darstellung EEFA und ZSW.

Abbildung 1 fasst die Klassifikation der Wirtschaftszweige des erweiterten Industriemodells strukturiert und vollständig zusammen. Es wird deutlich, dass die zwölf neu eingefügten Subbranchen zusammengefasst wieder die in der Energiebilanz aufgeführten 14 Sektoren des Verarbeitenden Gewerbes (Energiebilanzzeilen 46 bis 59) ergeben. Darüber hinaus stellt die Abbildung die Verbindung zwischen den Wirtschaftszweigen laut Energiebilanz Deutschland (Energiebilanzzeilen 46 bis 59) sowie den im erweiterten Modell zur Erklärung des Energieverbrauchs in der Industrie neu hinzugekommenen energieintensiven Subsektoren/Produktionsstufen und der Klassifikation der Wirtschaftszweige, Ausgabe 2008 (WZ 2008) her. In der letzten Spalte ist zudem die Bezeichnung der Variablen für den gesamten Energieverbrauch des Sektors/Subsektors (Zeile der Energiebilanz bzw. Subsektor und Spalte 33 der Energiebilanz, Endenergieverbrauch insgesamt) dargestellt.

Über die energieintensiven Bereiche des industriellen Endenergieverbrauchs hinaus wurden im Nachgang zur ersten Pilotstudie weitere Sektoren der Energiebilanz identifiziert, in denen die ggf. verfeinerten Methoden zur Erstellung der Frühschätzung unter Berücksichtigung der verfügbaren Datengrundlagen sowie von Aufwand und Ertrag (Verbesserungspotenzial im Rahmen der Prognose) geprüft werden sollen. Dies betrifft in erster Linie Bereiche, die in der Frühschätzung in der Vergangenheit primär unter Rückgriff auf einfache Indikatorenansätze geschätzt bzw. fortgeschrieben wurden. Zu diesen Bilanzbereichen gehört insbesondere der Sektor "Energieverbrauch im Umwandlungsbereich" (Energiebilanzzeile 40) mit den folgenden Subsektoren:

- der Energieverbrauch im Umwandlungsbereich "Kokereien" (Energiebilanzzeile 33),
- der Energieverbrauch im Umwandlungsbereich "Steinkohlenzechen und -brikettfabriken" (Energiebilanzzeile 34),
- der Energieverbrauch im Umwandlungsbereich "Braunkohlengruben und -brikettfabriken" (Energiebilanzzeile 35),
- der Energieverbrauch im Umwandlungsbereich "Erdöl- und Erdgasgewinnung" (Energiebilanzzeile 37),
- der Energieverbrauch im Umwandlungsbereich "Mineralölverarbeitung" (Energiebilanzzeile 38) und
- ► der Energieverbrauch im Umwandlungsbereich "Sonstige Energieerzeuger" (Energiebilanzzeile 39).

Schließlich sollen zusätzlich Möglichkeiten zur Verbesserung der Frühschätzung für den Sektor "Fernheizwerke" (Energiebilanzzeile 16) geprüft werden.

3 Verbesserung des Verfahrens zur Prognose des Endenergieverbrauchs in der Industrie

Aufgrund der gegenüber dem Prototyp des Modells zur Erklärung des Energieverbrauchs in der Industrie bereits angesprochenen tieferen sektoralen Untergliederung ändert sich die formale Struktur des verbesserten bzw. erweiterten Modells in einigen Punkten. Es ist offensichtlich, dass das definitorische Gerüst des Industriemodells so angepasst werden muss, dass sich der Endenergieverbrauch der Industrie als Ganzes aus den Teilmodulen der (alten und neuen) Sektoren differenziert nach Energieträgern von i bis j (Energiebilanzspalten 1 bis 30, zzgl. drei Summenspalten) gewissermaßen nach dem Baukastenprinzip widerspruchsfrei zum formalen Rahmen der Energiebilanz Deutschland zusammenfügen lässt.

Die Veränderungen im definitorischen Rahmen implizieren im nächsten Schritt, dass anstelle der im Prototyp verwendeten Erklärungsgrößen (relative Energiepreise, reale Produktionswerte usw.) insbesondere auf der Ebene der neuen Subsektoren nunmehr eine Vielzahl sektorspezifischer, technisch-ökonomischer Kennziffern treten, die den Energieverbrauch in den energieintensiven Subsektoren maßgeblich beeinflussen. Zu dieser neuen Gruppe von exogenen Variablen (ohne Anspruch auf Vollständigkeit)¹⁰ zählen beispielsweise:

- physische Produktionsmengen (in 1.000 Tonnen) zur Erfassung der konjunkturellen Entwicklung (Roheisen, Oxygenstahl, Elektrostahl, Walzstahl, Zement- bzw. Klinkererzeugung, Papierproduktion),
- ► Recyclingquoten/Kreislaufwirtschaft energieintensiver Produktionsprozesse (der Einsatz von Altpapier in der Papierindustrie oder Schrott in der Stahlindustrie), Einsatz von Hüttensand zur Herstellung von Zementen mit mehreren Hauptbestandteilen in der Zementindustrie, ökonomisch: Substitution von fossiler Energie durch Material,
- ► Anzahl und Art der betriebenen Ofenanlagen (Hochofen, Zyklon-Vorwärmer-Drehrohrofen, Kapazitäten dieser Anlagen zur Erfassung von Skaleneffekten falls statistisch verfügbar, Auslastungsvariablen), ökonomisch: Substitution von Energie durch Kapital,
- ▶ sektorspezifische Energiepreise (Preis für den Brennstoff- und Wärmeeinsatz als Ganzes, Strom- oder Gaspreis) für energieintensive Subsektoren.

Die tiefere sektorale Untergliederung des verbesserten Industriemodells sowie die damit verbundene Aufnahme zusätzlicher Erklärungsgrößen, die die spezifischen Produktionsbedingungen der betrachteten energieintensiven Prozesse genauer widerspiegeln, ziehen keine Veränderungen des methodischen Grundgerüstes bzw. der zweistufigen Modellkonzeption nach sich.

3.1 Konzeption und formaler Aufbau des verbesserten Modells zur Erklärung des Energieverbrauchs in der Industrie

3.1.1 Konzeption

Die Grundkonzeption des gewählten Erklärungsansatzes im tiefer disaggregierten Modell zur Erklärung des Energieverbrauchs in der Industrie bleibt gegenüber der o.g. Pilotstudie

¹⁰ Eine vollständige Liste der exogenen Variablen findet sich in Tabelle 1.

unverändert. Die nachfolgende Beschreibung folgt im Wesentlichen den Ausführungen in der vorangegangenen Pilotstudie. 11

Zur Erklärung des industriellen Energieverbrauchs (nach Branchen in der Gliederung der Energiebilanz Deutschland sowie für ausgewählte energieintensive Subsektoren, vgl. Kapitel 3.2.1) wird weiterhin ein zweistufiger Modellaufbau gewählt (vgl. Abbildung 2). Auf der ersten Stufe werden für jeden Wirtschaftszweig die Verbräuche von Energieträgern, sofern sie zur Bereitstellung von Prozess- oder Raumwärme dienen, zum Aggregat "Wärmeenergie (Brennstoffe und Fernwärme)" zusammengefasst. Elektrischer Strom dient (abgesehen von wenigen Ausnahmen in energieintensiven Industriezweigen, wie z.B. bei der Produktion von Elektrostahl zum Einschmelzen von Stahlschrott, in der chemischen Industrie bei der Produktion von Chlor oder in der Glasindustrie, die Strom in größerem Umfang auch als Prozessenergie einsetzen) zu Antriebszwecken und wird auf der ersten Modellstufe separat erklärt.

Der Einsatz von Energie zu Wärmezwecken in den Wirtschaftszweigen hängt neben der Produktion (Aktivitätsgröße) in der Regel von den Energiepreisen sowie den spezifischen technologischen Gegebenheiten in dem betrachteten Sektor ab.

Der sektorale Wärmeverbrauch insgesamt ist in der Regel durch eine gewisse Substitutionskonkurrenz ("fuel switch") zwischen den einzelnen Energieträgern gekennzeichnet. Auf der zweiten Stufe der Modellierung erfolgt vor diesem Hintergrund die Aufteilung des Wärmeenergieverbrauchs auf einzelne Energieträger, indem für die Energieträger jeweils die Entwicklung ihrer Anteile am Gesamtverbrauch, vor allem in Abhängigkeit von den relativen Energieträgerpreisen, geschätzt wird.¹² Nach diesem zweistufigen Konzept führt also die Steigerung eines Energieträgerpreises zu Preiserhöhungen bei Wärmeenergie insgesamt und in Folge zur Verringerung des Energieverbrauchs auf der ersten Stufe. Auf der zweiten Stufe (der Ebene einzelner Energieträger) kann der Einfluss des Rückgangs des gesamten Brennstoffeinsatzes auf den Verbrauch des betrachteten Energieträgers in Abhängigkeit von der Kreuzpreiselastizität ganz oder teilweise kompensiert werden.

Im Allgemeinen geht die ökonomische Theorie davon aus, dass sich das Nachfrageverhalten (hier der Industrie nach Energie) nicht unmittelbar an neue Randbedingungen bzw. Datenkonstellationen (veränderte Energiepreise) anpasst. Vielmehr dürften technische (Anpassungen des Kapitalstocks), rechtlich-institutionelle sowie schließlich verhaltensbedingte Faktoren (wie z.B. menschliches Beharrungsvermögen) typischerweise zur Folge haben, dass der Einfluss eines (Energie-)Preisimpulses ausgehend von einem bestimmten Zeitpunkt, gewissermaßen verzögert über einen längeren Zeitraum in die Zukunft stetig kleiner wird bzw. seine Wirkung sukzessive entfaltet. Um derartige Anpassungsprozesse zu berücksichtigen, wurden die Gleichungen i.d.R. mit Hilfe eines Koyck-Lag-Ansatzes (distributed lag) geschätzt. 13

Die skizzierte Grundkonzeption des Modellansatzes lässt, wie in Abbildung 2 dargestellt, erkennen, dass in die Schätzung der Energienachfragefunktionen unter anderem die Energiepreise als erklärende Variablen einfließen. In diesem Zusammenhang wird häufig

¹¹ Vgl. EEFA/ZSW (2023), Kapitel 2.2.1., S. 30ff.

¹² Vgl. zu dieser konzeptionellen Vorgehensweise auch Rheinisch-Westfälisches Institut für Wirtschaftsforschung (1987), Ein Energiemodell für die Bundesrepublik Deutschland, Band 1: Gesamtdarstellung, Essen.

¹³ Einzelheiten zur Koyck-Lag-Transformation, vgl. Rau, R. (1975), Ökonometrische Analyse der Ausgabearten des Privaten Verbrauchs: Eine ökonometrische Analyse des Privaten Verbrauchs nach Ausgabearten für die Bundesrepublik Deutschland 1950-1967, Schriftenreihe des Rheinisch-Westfälischen Instituts für Wirtschaftsforschung Essen, Nr. 35, S. 55 ff. sowie Franses, P. H. and van Oest, R. (2004), On the econometrics of the Koyck model, Econometric Institute Report 2004-07, Econometric Institute, Erasmus University Rotterdam.

hervorgehoben, dass die Energiepreise ihrerseits von der Nachfrage abhängig sind. Die klassische Regressionsanalyse setzt allerdings voraus, dass eine Schätzgleichung aufgestellt werden kann, bei der Ursache und Wirkung strikt voneinander getrennt sind. Es existiert folglich eine modellendogene (zu erklärende oder abhängige Variable) und eine bzw. mehrere (modellexogene oder unabhängige) Variablen, die die zu erklärende Variable beeinflussen bzw. auf diese wirken.

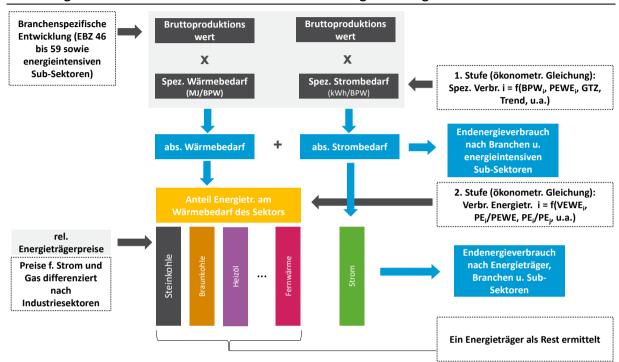


Abbildung 2: Formaler Aufbau des Modells zur Erklärung des Energieverbrauchs in der Industrie

Quelle: Eigene Darstellung EEFA und ZSW.

Greift das Regressionsmodell hingegen auf eine endogene erklärende Variable zurück (Endogenitätsproblem), ist also die scheinbar "exogene" Erklärungsgröße mit dem Stör-Term korreliert, sind die Prämissen des klassischen OLS-Schätzverfahrens (Erwartungstreue und Konsistenz) verletzt.¹⁴ Endogenität (z.B. zwischen Energieverbrauch und Energiepreisen) führt letztlich zu verzerrten und inkonsistenten Schätzergebnissen.¹⁵

Nach Einschätzung der Autorinnen und Autoren dürfte die Brennstoffnachfrage der deutschen Industrie die Energiepreisentwicklung, die für die nicht leitungsgebundenen fossilen Importenergieträger überwiegend auf den Weltmärkten stattfindet, kaum beeinflussen. ¹⁶

¹⁴ Einzelheiten vgl. Wooldridge, J. M. (2012), Introductory Econonometrics: A Modern Approach, 5th Edition, South-Western Cengage Learning, S. 88ff., S. 317ff.

¹⁵ Einzelheiten zu Simultaneous Equations Models vgl. z.B. Wooldridge, J. M. (2012), S. 554ff.

¹⁶ Die Preisbildung sekundärer Energieträger wie Strom und Wärme (sofern in der Energiebilanz Deutschland nicht im Brennstoffeinsatz der Industrie erfasst) vollzieht sich hingegen zum großen Teil auch auf den Märkten im Inland. Da im Rahmen der hier durchgeführten Modellierung jedoch nur Teile der Stromnachfrage (insbesondere Industrie) und diese zudem in tiefer sektoraler Gliederung bis hin zu einzelnen Produktionsstufen (z.B. der Metallerzeugung) ökonometrisch geschätzt werden, kann nach Einschätzung der Autorinnen und Autoren auch in Bezug auf die Strompreisbildung von einem Mengenanpassungsverhalten der Unternehmen ausgegangen werden. Eine ausführlichere, methodisch tiefergehende Diskussion der angesprochenen Endogenitäts-Problematik findet sich u.a. in Kennan, J. (1989), Simultaneous Equations Bias in Disaggregated Econometric Models, in: "Review of Economic Studies", Oxford University Press, vol. 56(1), S. 151-156. Vor diesem Hintergrund können ökonometrische Probleme hinsichtlich der Endogenität an dieser Stelle nicht gänzlich ausgeschlossen werden. Eine tiefergehende Diskussion der aufgeworfenen Fragestellung würde allerdings den Rahmen dieser Studie sprengen.

3.1.2 Formaler Aufbau

Das gesamte Modell zur Erklärung des Endenergieverbrauchs der Industrie besteht nach der Umsetzung der Verbesserungen/Erweiterung aus insgesamt 804 Gleichungen, darunter 237 Verhaltensgleichungen. Die Definitionsgleichungen verteilen sich auf das definitorische Gerüst der Energiebilanz (Zeilen- und Spaltensummen des Bilanzblocks "Energieverbrauch der Industrie", also der Energieverbrauch der Industrie, Energiebilanzzeile 60, nach Energieträgern oder der Endenergieverbrauch eines Sektors insgesamt), auf Bilanzfelder, die über die gesamte Zeitreihe des Stützzeitraumes den Wert Null aufweisen, sowie auf Zwischengrößen (gesamter Brennstoff- und Wärmeeinsatz eines Sektors u.a.), die für die Funktionsweise des Modells erforderlich sind.

Im Rahmen der Anwendung des Modells zur Erstellung der Frühschätzung¹⁷, also unter Verwendung beobachteter Daten über die Entwicklung der Energiepreise und der Produktionswerte u.a., fließen in die Prognose derzeit 227 exogene Variablen ein.

Um Prognosen außerhalb des Beobachtungszeitraums der exogenen Erklärungsgrößen zu erstellen oder alternative Szenarien (Simulationen) zu berechnen, müssen weitere Teile des Modells endogenisiert werden, darunter insbesondere das Energiepreissystem sowie der makroökonomische Rahmen (vor allem die sektoralen Produktionswerte). ¹⁸ Integriert man diese Bausteine in das vorliegende Modell zur Erklärung des industriellen Energieverbrauchs, erhöht sich die Anzahl der Variablen auf insgesamt 1.172, darunter 972 endogene und 175 exogene Größen.

Als wichtigste exogene Vorgaben zur Bestimmung der Energienachfrage der Industrie, differenziert nach Wirtschaftszweigen und Energieträgern, im Rahmen der jährlichen Frühschätzung sind das Wirtschaftswachstum und die Bevölkerung, die sektoralen Produktionswerte (sowie physischen Produktionsmengen für die energieintensiven Subsektoren), die Energiepreise, sektorspezifische Erklärungsgrößen (Anzahl der Zementöfen, Altpapiereinsatzquote usw.) sowie witterungsbedingte Einflussgrößen (Gradtagzahlen) zu nennen (vgl. Tabelle 1).

Exogen sind überdies ausgewählte Bilanzfelder im Bereich des industriellen Endenergieverbrauchs, die z.B. am aktuellen Rand dauerhaft den Wert Null oder in der Zeitreihe nur vereinzelte, erratisch stark schwankende Werte annehmen. Diese Felderwerte treten aufgrund der gewählten Modellierung in der originären Energieträger-Gliederung der Energiebilanz Deutschland auf, sie sind ökonometrisch nicht sinnvoll schätzbar und werden im Rahmen einer Expertenschätzung exogen fortgeschrieben. Schließlich sind technische Größen zur Anpassung des Modells an den Ex-post-Zeitraum, wie Dummy-Variablen oder die Trendvariable zur Erfassung des autonomen technischen Fortschritts, exogen.

¹⁷ Die Frühschätzung stellt modelltechnisch eine Prognose außerhalb des Stützzeitraums des Gleichungssystems (Mitte September 2023: 1995 bis 2021), jedoch innerhalb des Beobachtungszeitraums für die exogenen Einflussgrößen bzw. Determinanten des industriellen Energieverbrauchs dar.

¹⁸ Zur Erstellung längerfristiger Szenarien wird typischerweise auf ein Modellsystem zurückgegriffen, welches die Wechselwirkungen zwischen Energienachfrage und -angebot, den Energiepreisen und sektoralen Herstellungskosten, verfügbarem Einkommen und Energiekosten sowie der sektoralen Produktionsentwicklung u.a. explizit abbildet. Dazu wird das Energiemodell mit einem sektoral differenzierten Strukturmodell (Input-Output-Modell mit 60 Sektoren) verknüpft. In dieser Studie findet die Kopplung dieser umfassenden Modelle nicht statt, da hier zum einen kein vollständiges Energiemodell (sondern nur ein Modell zur Erklärung des Endenergieverbrauchs) zum Einsatz kommt, zum anderen der Fokus auf der Erstellung "kurzfristiger" Frühschätzungen der Energiebilanz für Zeiträume t+1 liegt, sodass die sektoralen Inputgrößen weitgehend bekannt sind.

¹⁹ Im Zusammenhang mit einer aggregierten Modellierung auf der Ebene homogener Energieträgergruppen (z.B. Steinkohle, Braunkohle, Sekundärkohle, Dieselkraftstoff, Ottokraftstoff, Heizöl leicht, Heizöl schwer, Rohbenzin, sonstige Mineralölprodukte, Erdgas, Sonstige hergestellte Gase, Erneuerbare Energien, Strom, Fernwärme) würde ein Großteil dieser Bilanzfelder in die ökonometrischen Schätzansätze einbezogen werden können.

Tabelle 1: Die exogenen Variablen des Modells zur Erklärung des Energieverbrauchs der Industrie

Nr.	Variable	Bezeichnung	Einheit
1	apq	Altpapiereinsatzquote	in %
2	auslka	Auslastung Produktionskapazität Kalkindustrie	in %
3	bevg	Bevölkerung	Mio.
4	bip	Bruttoinlandsprodukt	Mrd. €, preisber.
5	d1997	Dummyvariable	1997=1
6	d1998	Dummyvariable	1998=1
7	d1999	Dummyvariable	1999=1
8	d2000	Dummyvariable	2000=1
9	d2001	Dummyvariable	2001=1
10	d2002	Dummyvariable	2002=1
11	d2003	Dummyvariable	2003=1
12	d2004	Dummyvariable	2004=1
13	d2005	Dummyvariable	2005=1
14	d2006	Dummyvariable	2006=1
15	d2007	Dummyvariable	2007=1
16	d2008	Dummyvariable	2008=1
17	d2009	Dummyvariable	2009=1
18	d2010	Dummyvariable	2010=1
19	d2011	Dummyvariable	2011=1
20	d2012	Dummyvariable	2012=1
21	d2013	Dummyvariable	2013=1
22	d2014	Dummyvariable	2014=1
23	d2015	Dummyvariable	2015=1
24	d2016	Dummyvariable	2016=1
25	d2017	Dummyvariable	2017=1
26	d2018	Dummyvariable	2018=1
27	d2019	Dummyvariable	2019=1
28	d2020	Dummyvariable	2020=1
29	d2021	Dummyvariable	2021=1

Nr.	Variable	Bezeichnung	Einheit
30	dab2014	Dummyvariable	ab 2014=1
31	ebz46s1	Energiebilanzzeile (EBZ), Spalte (S)	TJ
32	ebz46s20	Energiebilanzzeile (EBZ), Spalte (S)	TJ
33	ebz46s26	Energiebilanzzeile (EBZ), Spalte (S)	TJ
34	ebz46s27	Energiebilanzzeile (EBZ), Spalte (S)	TJ
35	ebz46s5	Energiebilanzzeile (EBZ), Spalte (S)	TJ
36	ebz46s6	Energiebilanzzeile (EBZ), Spalte (S)	TJ
37	ebz47s13	Energiebilanzzeile (EBZ), Spalte (S)	TJ
38	ebz47s2	Energiebilanzzeile (EBZ), Spalte (S)	TJ
39	ebz47s20	Energiebilanzzeile (EBZ), Spalte (S)	TJ
40	ebz47s25	Energiebilanzzeile (EBZ), Spalte (S)	TJ
41	ebz47s26	Energiebilanzzeile (EBZ), Spalte (S)	TJ
42	ebz47s27	Energiebilanzzeile (EBZ), Spalte (S)	TJ
43	ebz48hz2	Subsektor HZPP, EBZ 48, Bilanzspalte 2	TJ
44	ebz48hz4	Subsektor HZPP, EBZ 48, Bilanzspalte 4	TJ
45	ebz48hz5	Subsektor HZPP, EBZ 48, Bilanzspalte 5	TJ
46	ebz48pp1	Subsektor Herst. v. Waren aus Papier u. Pappe, EBZ 48, Bilanzspalte 1	TJ
47	ebz48pp4	Subsektor Herst. v. Waren aus Papier u. Pappe, EBZ 48, Bilanzspalte 4	TJ
48	ebz48pp7	Subsektor Herst. v. Waren aus Papier u. Pappe, EBZ 48, Bilanzspalte 7	TJ
49	ebz49s13	Energiebilanzzeile (EBZ), Spalte (S)	TJ
50	ebz49s16	Energiebilanzzeile (EBZ), Spalte (S)	TJ
51	ebz49s18	Energiebilanzzeile (EBZ), Spalte (S)	TJ
52	ebz49s20	Energiebilanzzeile (EBZ), Spalte (S)	TJ
53	ebz49s23	Energiebilanzzeile (EBZ), Spalte (S)	TJ
54	ebz49s25	Energiebilanzzeile (EBZ), Spalte (S)	TJ
55	ebz49s26	Energiebilanzzeile (EBZ), Spalte (S)	TJ
56	ebz49s3	Energiebilanzzeile (EBZ), Spalte (S)	TJ
57	ebz49s6	Energiebilanzzeile (EBZ), Spalte (S)	TJ
58	ebz50s16	Energiebilanzzeile (EBZ), Spalte (S)	TJ
59	ebz50s18	Energiebilanzzeile (EBZ), Spalte (S)	TJ
60	ebz50s19	Energiebilanzzeile (EBZ), Spalte (S)	TJ
61	ebz50s20	Energiebilanzzeile (EBZ), Spalte (S)	TJ

Nr.	Variable	Bezeichnung	Einheit
62	ebz50s23	Energiebilanzzeile (EBZ), Spalte (S)	TJ
63	ebz50s3	Energiebilanzzeile (EBZ), Spalte (S)	TJ
64	ebz50s6	Energiebilanzzeile (EBZ), Spalte (S)	TJ
65	ebz50s7	Energiebilanzzeile (EBZ), Spalte (S)	TJ
66	ebz51s1	Energiebilanzzeile (EBZ), Spalte (S)	TJ
67	ebz51s13	Energiebilanzzeile (EBZ), Spalte (S)	TJ
68	ebz51s20	Energiebilanzzeile (EBZ), Spalte (S)	TJ
69	ebz51s23	Energiebilanzzeile (EBZ), Spalte (S)	TJ
70	ebz51s27	Energiebilanzzeile (EBZ), Spalte (S)	TJ
71	ebz51s5	Energiebilanzzeile (EBZ), Spalte (S)	TJ
72	ebz51s6	Energiebilanzzeile (EBZ), Spalte (S)	TJ
73	ebz51s7	Energiebilanzzeile (EBZ), Spalte (S)	TJ
74	ebz52s1	Energiebilanzzeile (EBZ), Spalte (S)	TJ
75	ebz52s16	Energiebilanzzeile (EBZ), Spalte (S)	TJ
76	ebz52s17	Energiebilanzzeile (EBZ), Spalte (S)	TJ
77	ebz52s19	Energiebilanzzeile (EBZ), Spalte (S)	TJ
78	ebz52s20	Energiebilanzzeile (EBZ), Spalte (S)	TJ
79	ebz52s25	Energiebilanzzeile (EBZ), Spalte (S)	TJ
80	ebz52s27	Energiebilanzzeile (EBZ), Spalte (S)	TJ
81	ebz52s3	Energiebilanzzeile (EBZ), Spalte (S)	TJ
82	ebz52s5	Energiebilanzzeile (EBZ), Spalte (S)	TJ
83	ebz52s6	Energiebilanzzeile (EBZ), Spalte (S)	TJ
84	ebz52s7	Energiebilanzzeile (EBZ), Spalte (S)	TJ
85	ebz53ka13	Subsektor Kalk, EBZ 53, Bilanzspalte 13	TJ
86	ebz53ka15	Subsektor Kalk, EBZ 53, Bilanzspalte 15	TJ
87	ebz53ka16	Subsektor Kalk, EBZ 53, Bilanzspalte 16	TJ
88	ebz53ka2	Subsektor Kalk, EBZ 53, Bilanzspalte 2	TJ
89	ebz53ue2	Subsektor Sonstige Herst. v. Steine u. Erden, EBZ 53, Bilanzspalte 2	TJ
90	ebz53ue20	Subsektor Sonstige Herst. v. Steine u. Erden, EBZ 53, Bilanzspalte 20	TJ
91	ebz53ue23	Subsektor Sonstige Herst. v. Steine u. Erden, EBZ 53, Bilanzspalte 23	TJ
92	ebz53ue26	Subsektor Sonstige Herst. v. Steine u. Erden, EBZ 53, Bilanzspalte 26	TJ
93	ebz53ue27	Subsektor Sonstige Herst. v. Steine u. Erden, EBZ 53, Bilanzspalte 27	TJ

Nr.	Variable	Bezeichnung	Einheit
94	ebz53ue5	Subsektor Sonstige Herst. v. Steine u. Erden, EBZ 53, Bilanzspalte 5	TJ
95	ebz53ue6	Subsektor Sonstige Herst. v. Steine u. Erden, EBZ 53, Bilanzspalte 6	TJ
96	ebz53ze3	Subsektor Zement, EBZ 53, Bilanzspalte 3	TJ
97	ebz53ze5	Subsektor Zement, EBZ 53, Bilanzspalte 5	TJ
98	ebz53ze6	Subsektor Zement, EBZ 53, Bilanzspalte 6	TJ
99	ebz54da1	Subsektor Frischdampfkesselhaus, EBZ 54, Bilanzspalte 1	TJ
100	ebz54da13	Subsektor Frischdampfkesselhaus, EBZ 54, Bilanzspalte 13	TJ
101	ebz54da14	Subsektor Frischdampfkesselhaus, EBZ 54, Bilanzspalte 14	TJ
102	ebz54da15	Subsektor Frischdampfkesselhaus, EBZ 54, Bilanzspalte 15	TJ
103	ebz54da17	Subsektor Frischdampfkesselhaus, EBZ 54, Bilanzspalte 17	TJ
104	ebz54da19	Subsektor Frischdampfkesselhaus, EBZ 54, Bilanzspalte 19	TJ
105	ebz54da3	Subsektor Frischdampfkesselhaus, EBZ 54, Bilanzspalte 3	TJ
106	ebz54ho19	Subsektor Hochofen, EBZ 54, Bilanzspalte 19	TJ
107	ebz54ho2	Subsektor Hochofen, EBZ 54, Bilanzspalte 2	TJ
108	ebz54ho25	Subsektor Hochofen, EBZ 54, Bilanzspalte 25	TJ
109	ebz54ho26	Subsektor Hochofen, EBZ 54, Bilanzspalte 26	TJ
110	ebz54ho5	Subsektor Hochofen, EBZ 54, Bilanzspalte 5	TJ
111	ebz54ho6	Subsektor Hochofen, EBZ 54, Bilanzspalte 6	TJ
112	ebz54wv1	Subsektor Weiterver. Stahl, EBZ 54, Bilanzspalte 1	TJ
113	ebz54wz19	Subsektor Weiterver. Stahl, EBZ 54, Bilanzspalte 19	TJ
114	ebz55s13	Energiebilanzzeile (EBZ), Spalte (S)	TJ
115	ebz55s19	Energiebilanzzeile (EBZ), Spalte (S)	TJ
116	ebz55s20	Energiebilanzzeile (EBZ), Spalte (S)	TJ
117	ebz55s25	Energiebilanzzeile (EBZ), Spalte (S)	TJ
118	ebz55s26	Energiebilanzzeile (EBZ), Spalte (S)	TJ
119	ebz55s5	Energiebilanzzeile (EBZ), Spalte (S)	TJ
120	ebz55s6	Energiebilanzzeile (EBZ), Spalte (S)	TJ
121	ebz55s7	Energiebilanzzeile (EBZ), Spalte (S)	TJ
122	ebz55s8	Energiebilanzzeile (EBZ), Spalte (S)	TJ
123	ebz56s1	Energiebilanzzeile (EBZ), Spalte (S)	TJ
124	ebz56s16	Energiebilanzzeile (EBZ), Spalte (S)	TJ
125	ebz56s3	Energiebilanzzeile (EBZ), Spalte (S)	TJ

Nr.	Variable	Bezeichnung	Einheit
126	ebz56s5	Energiebilanzzeile (EBZ), Spalte (S)	TJ
127	ebz56s6	Energiebilanzzeile (EBZ), Spalte (S)	TJ
128	ebz56s7	Energiebilanzzeile (EBZ), Spalte (S)	TJ
129	ebz57s1	Energiebilanzzeile (EBZ), Spalte (S)	TJ
130	ebz57s19	Energiebilanzzeile (EBZ), Spalte (S)	TJ
131	ebz57s20	Energiebilanzzeile (EBZ), Spalte (S)	TJ
132	ebz57s5	Energiebilanzzeile (EBZ), Spalte (S)	TJ
133	ebz57s6	Energiebilanzzeile (EBZ), Spalte (S)	TJ
134	ebz57s7	Energiebilanzzeile (EBZ), Spalte (S)	TJ
135	ebz58s15	Energiebilanzzeile (EBZ), Spalte (S)	TJ
136	ebz58s26	Energiebilanzzeile (EBZ), Spalte (S)	TJ
137	ebz58s27	Energiebilanzzeile (EBZ), Spalte (S)	TJ
138	ebz58s3	Energiebilanzzeile (EBZ), Spalte (S)	TJ
139	ebz58s5	Energiebilanzzeile (EBZ), Spalte (S)	TJ
140	ebz58s6	Energiebilanzzeile (EBZ), Spalte (S)	TJ
141	ebz58s7	Energiebilanzzeile (EBZ), Spalte (S)	TJ
142	ebz59s16	Energiebilanzzeile (EBZ), Spalte (S)	TJ
143	ebz59s2	Energiebilanzzeile (EBZ), Spalte (S)	TJ
144	ebz59s5	Energiebilanzzeile (EBZ), Spalte (S)	TJ
145	ebz59s6	Energiebilanzzeile (EBZ), Spalte (S)	TJ
146	gtzd	Gradtagzahlen	Anzahl
147	hos	Hochofensand	1000 t
148	ofesbho	Anzahl der betriebenen Hochöfen	Anzahl
149	ofze	Anzahl der Zementöfen	Anzahl
150	pe01	Erzeugerpreis Steinkohle	€/GJ
151	pe01in	Preis Steinkohle Industrie	€/GJ
152	pe02	Erzeugerpreis Braunkohle	€/GJ
153	pe02in	Erzeugerpreis Braunkohle, Industrie	€/GJ
154	pe03	Erzeugerpreis Übrige Kohleprodukte	€/GJ
155	pe03in	Preis übrige Kohle Industrie	€/GJ
156	pe07dk	Erzeugerpreis Diesel	€/GJ
157	pe08	Erzeugerpreis Heizöl, leicht	€/GJ

Nr.	Variable	Bezeichnung	Einheit
158	pe08in	Preis Heizöl, leicht Industrie	€/GJ
159	pe09in	Preis Heizöl, schwer Industrie	€/GJ
160	pe10bitu	Erzeugerpreis Bitumen	€/GJ
161	pe10ptrk	Erzeugerpreis Petrolkoks	€/GJ
162	pe11ch	Preis Erdgas, Chemie	€/GJ
163	pe11in	Preis Erdgas, energieintensive Industrie	€/GJ
164	pe12	Erzeugerpreis übrige hergest. Gase	€/GJ
165	pe13ch	Strompreis Chemie	€/GJ
166	pe13eg	Strompreis Gießerei	€/GJ
167	pe13es	Strompreis Metallerzeugung	€/GJ
168	pe13gl	Strompreis Glas	€/GJ
169	pe13hz	Strompreis HZPP	€/GJ
170	pe13ku	Strompreis Kunststoffe	€/GJ
171	pe13mb	Strompreis Maschinenbau	€/GJ
172	pe13ne	Strompreis NE-Metalle	€/GJ
173	pe13nm	Strompreis Ernährung	€/GJ
174	pe13slf	Strompreis Fahrzeugbau	€/GJ
175	pe13stso	Strompreis übrige Herst. v. Steine u. Erden	€/GJ
176	pe13stze	Strompreis Zement	€/GJ
177	pe13uvb	Strom Übrige Verbrauchsgüter	€/GJ
178	pe14in	Preis Fernwärme, Industrie	€/GJ
179	pewe46	Preis Brennstoff/Wärme Gewinnung von Steinen und Erden, sonst. Bergbau	€/GJ
180	pewe47	Preis Brennstoff/Wärme Ernährung und Tabak	€/GJ
181	pewe48hz	Preis Brennstoff/Wärme Herst. von Holzschliff, Zellstoff, Papier u. Pappe (HZPP)	€/GJ
182	pewe48pp	Preis Brennstoff/Wärme Herst. von Waren aus Papier und Pappe	€/GJ
183	pewe49	Preis Brennstoff/Wärme Grundstoffchemie	€/GJ
184	pewe50	Preis Brennstoff/Wärme Sonstige chemische Industrie	€/GJ
185	pewe51	Preis Brennstoff/Wärme Gummi- u. Kunststoffwaren	€/GJ
186	pewe52	Preis Brennstoff/Wärme Glas u. Keramik	€/GJ
187	pewe53ka	Preis Brennstoff/Wärme Herst. v. Kalk	€/GJ
188	pewe53ue	Preis Brennstoff/Wärme Herst. sonst. Steine u. Erden	€/GJ

Nr.	Variable	Bezeichnung	Einheit
189	pewe53ze	Preis Brennstoff/Wärme Herst. v. Zement	€/GJ
190	pewe54da	Preis Brennstoff/Wärme Bereitst. Frischdampf (Stahl)	€/GJ
191	pewe54el	Preis Brennstoff/Wärme Herst. v. Elektrostahl	€/GJ
192	pewe54ho	Preis Brennstoff/Wärme Herst. v. Roheisen (Hochofen)	€/GJ
193	pewe54ox	Preis Brennstoff/Wärme Herst. v. Oxygenstahl	€/GJ
194	pewe54si	Preis Brennstoff/Wärme Herst. v. Sinter	€/GJ
195	pewe54wv	Preis Brennstoff/Wärme Weiterverarb. Stahl	€/GJ
196	pewe54wz	Preis Brennstoff/Wärme Herst. v. Walzstahl	€/GJ
197	pewe55	Preis Brennstoff/Wärme NE-Metalle, -gießereien	€/GJ
198	pewe56	Preis Brennstoff/Wärme Metallbearbeitung	€/GJ
199	pewe57	Preis Brennstoff/Wärme Maschinenbau	€/GJ
200	pewe58	Preis Brennstoff/Wärme Fahrzeugbau	€/GJ
201	pewe59	Preis Brennstoff/Wärme Sonstige Wirtschaftszweige	€/GJ
202	tdze	Klinkerkapazität Zementindustrie	t/d
203	vmscel	Schrotteinsatz Elektrostahlwerke	1000 t
204	vmscox	Schrotteinsatz Oxygenstahlwerke	1000 t
205	xr46	Produktionswert Gew. v. Steine u. Erden	Mio. €, preisber.
206	xr47	Produktionswert Ernährung und Tabak	Mio. €, preisber.
207	xr48pp	Produktionswert Herst. Papier u. Pappe	Mio. €, preisber.
208	xr49	Produktionswert Grundstoffchemie	Mio. €, preisber.
209	xr50	Produktionswert Sonstige chemische Industrie	Mio. €, preisber.
210	xr51	Produktionswert Gummi- u. Kunststoffwaren	Mio. €, preisber.
211	xr52	Produktionswert Glas u. Keramik	Mio. €, preisber.
212	xr53ue	Produktionswert Übrige Ver. v. Steine u. Erden	Mio. €, preisber.
213	xr55	Produktionswert NE-Metalle, -gießereien	Mio. €, preisber.
214	xr56	Produktionswert Metallbearbeitung	Mio. €, preisber.

Nr.	Variable	Bezeichnung	Einheit
215	xr57	Produktionswert Maschinenbau	Mio. €, preisber.
216	xr58	Produktionswert Fahrzeugbau	Mio. €, preisber.
217	xr59	Produktionswert Sonstige Wirtschaftszweige	Mio. €, preisber.
218	xtka	Produktion Kalk	Mio. t
219	xtkl	Produktion Zementklinker	Mio. t
220	xtpp	Produktion Papier u. Pappe	1000 t
221	xtre	Produktion Roheisen	1000 t
222	xtrs	Produktion Rohstahl	1000 t
223	xtrsel	Produktion Elektrostahl	1000 t
224	xtrsox	Produktion Oxygenstahl	1000 t
225	xtsi	Produktion Sinter	1000 t
226	xtws	Produktion Walzstahl	1000 t
227	xtze	Produktion Zement	Mio. t

Quelle: Eigene Darstellung EEFA und ZSW.

3.1.3 Datenbasis

Die angestrebte vertiefte Modellierung des Energieverbrauchs der energieintensiven Industriezweige im Rahmen eines sektoral differenzierten Gleichungssystems setzt eine umfassende und zugleich konsistente Datengrundlage voraus. Sowohl die stochastischen Gleichungen, deren Parameter mit Hilfe ökonometrischer Verfahren geschätzt werden, als auch die Definitionsgleichungen, die den industriellen Endenergieverbrauch entsprechend den Konventionen und Gepflogenheiten der Energiebilanz Deutschland mit sektoralen Entwicklungen verbinden, benötigen in die Vergangenheit reichende jährliche Angaben über die jeweiligen Größen.

Die Aufgliederung der Datenbasis zur Erfassung des Energieverbrauchs, differenziert nach den in Kapitel 2.1 genannten energieintensiven Subsektoren, musste selbstverständlich unter strikter Beachtung der energiestatistischen Konventionen sowie der energieträgerspezifischen Detaillierung der Energiebilanz Deutschland erfolgen.

Vor diesem Hintergrund wurden die erforderlichen Daten zur Entwicklung des Energieverbrauchs für die Wirtschaftszweige "Herstellung von Holzschliff, Zellstoff, Papier und Pappe" (WZ 17.1 ex Energiebilanzzeile 48), "Herstellung von Waren aus Papier und Pappe" (WZ 17.2 ex Energiebilanzeile 48), "Herstellung von Zement" (WZ 23.51 ex Energiebilanzzeile 53) und "Herstellung von Kalk" (WZ 23.52 ex Energiebilanzzeile 53) aus den amtlichen Statistiken

Nr. 060 und Nr. 067²⁰ unter Anwendung der sogenannten Finnischen Methode²¹ für Berichtsjahre zwischen 2003 bis 2021 gewonnen (die amtlichen Erhebungen zur Energieverwendung für das Berichtsjahr 2022 sind erst im November 2023 erschienen).²² Die Energieverbrauchsdaten für den Sektor "Sonstige Verarbeitung von Steinen und Erden" (WZ 23.6 bis 23.9) ergeben sich rechnerisch als Rest zwischen den Energiebilanzdaten der Zeile 53 (Verarbeitung von Steinen und Erden) und den Energieverbräuchen der Subsektoren Zement und Kalk (WZ 23.5).²³

Zur Aufteilung des Energieverbrauchs im Sektor "Metallerzeugung" (WZ 24.1, Energiebilanzzeile 54) auf einzelne energieintensive Prozessstufen der Stahlerzeugung können die o.g. amtlichen Erhebungen (Statistik Nr. 060 und Nr. 067) hingegen nicht herangezogen werden. Der Grund hierfür ist, dass die amtliche Statistik zwar eine Aufteilung des Energieverbrauchs nach Wirtschaftszweigen vornimmt, eine weitere Aufgliederung des Energieeinsatzes nach Produktionsstufen innerhalb von Branchen erfolgt indessen nicht.

Um den Energieverbrauch im Sektor "Metallerzeugung" nach Produktionsstufen zu bilanzieren, existiert in Deutschland nur eine Datenquelle, nämlich die Erhebungen über die "Brennstoff-, Gas- und Stromwirtschaft der Hochofen-, Stahl- und Walzwerke sowie Schmiede-, Press- und Hammerwerke einschließlich der örtlich verbundenen sonstigen Betriebe (ohne Kokerei)" (BGS-Eh200), die bis zur Einstellung im Berichtsjahr 2009 von der Zweigstelle Bonn des Statistischen Bundesamtes (Eisen- und Stahlstatistik) und ab dem Berichtsjahr 2010 von der Wirtschaftsvereinigung Stahl im Rahmen einer freiwilligen Vereinbarung zur Verfügung gestellt werden. Piese Statistik, die teilweise auch zur Erstellung der Energiebilanz Deutschland herangezogen wird, erfasst den Energieverbrauch der Stahlindustrie differenziert nach Energieträgern und Erzeugungsstufen (u.a. Sinter-, Hochofen- oder Stahlwerksanlagen wie Oxygenstahlkonverter oder Elektro-Lichtbogenofen).

Zur Nutzung der detaillierten BGS-Daten sind allerdings Umrechnungen²⁵, Umbuchungen und teilweise Aggregationen sowie Disaggregationen auf der Ebene von Energieträgern notwendig, um die Konsistenz zur Energiebilanz Deutschland herzustellen und damit verbunden einen zur

²⁰ Vgl. Statistisches Bundesamt (2022a), Jahreserhebung über die Energieverwendung der Betriebe des Verarbeitenden Gewerbes, im Bergbau und der Gewinnung von Steinen und Erden (Statistik Nr. 060, unveröffentlicht), Qualitätsbericht im Internet: https://www.destatis.de/DE/Methoden/Qualitaet/Qualitaetsberichte/Energie/energieverwendung-verarb-gewerbe-bergbausteine-erden-j-060.pdf?_blob=publicationFile (Abrufdatum: 11.4.2024) sowie Statistisches Bundesamt (2022c), Jahreserhebung über die Elektrizitäts- und Wärmeerzeugung im Verarbeitenden Gewerbe, im Bergbau und in der Gewinnung von Steinen und Erden (Statistik Nr. 067, unveröffentlicht), Qualitätsbericht im Internet: https://www.destatis.de/DE/Methoden/Qualitaet/Qualitaetsberichte/Energie/elektrizitaets-waermeerzeugung-verarb-gewerbebergbau-j-067.pdf?_blob=publicationFile (Abrufdatum: 11.4.2024).

²¹ Die Finnische Methode dient im Rahmen der Energiebilanzierung der Brennstoffaufteilung der zur gekoppelten Strom- und Wärmeerzeugung in industriellen KWK-Anlagen aufgewendeten Energieträger. Brennstoffeinsätze zur Erzeugung gekoppelter und ungekoppelter Strommengen in diesen Anlagen werden in der Energiebilanz dem Umwandlungseinsatz (Energiebilanzzeile 12, Industriekraftwerke), Brennstoffeinsatzmengen zur Bereitstellung gekoppelter (Prozess-)Wärme in industriellen KWK-Anlagen hingegen dem Endenergieverbrauch des jeweiligen Wirtschaftszweiges zugeordnet. Einzelheiten zur Funktionsweise der Aufteilungsmethode vgl. AG Energiebilanzen (2020), Energie in Zahlen. Arbeit und Leistungen der AG Energiebilanzen, S. 22, Internet: https://ag-energiebilanzen.de/wp-content/uploads/2019/01/ageb-energie_in_zahlen_2019.pdf (Abrufdatum: 23.1.2023).

²² Auf eine weiter in die Vergangenheit reichende Rückrechnung der detaillierteren Modelldatenbasis in den Sektoren Papiergewerbe und Verarbeitung von Steinen und Erden wurde verzichtet. Der Grund dafür ist, das am 1. Januar 2003 das Energiestatistikgesetz (EnStatG) in Kraft getreten ist, dass u.a. erhebliche Verbesserungen der amtlichen Energieberichterstattung, aber auch Strukturbrüche und methodische Änderungen im Vergleich zum Berichtsjahr 2002 in einigen amtlichen Statistiken zur Folge hatte. Es versteht sich von selbst, dass Inkonsistenzen und Strukturbrüche bei der Erstellung der Datenreihen erhebliche Schätzprobleme nach sich ziehen, die wiederum die Modellergebnisse nachhaltig beeinflussen könnten. Einzelheiten zur Novelle des EnStatG vgl. Bayer, W. (2003), Amtliche Energiestatistik neu geregelt, Wirtschaft und Statistik 1/2003, S.33-40.

²³ Die Papierindustrie (Energiebilanzzeile 48) zerfällt ohne Rest in die beiden Subsektoren WZ 17.1 und WZ 17.2.

²⁴ Vgl. Wirtschaftsvereinigung Stahl (2023a), Brennstoff- Gas- und Stromwirtschaft der Hochofen-, Stahl- und Walzwerke sowie Schmiede-, Preß- und Hammerwerke einschließlich der örtlich verbundenen sonstigen Betriebe (ohne eigene Kokerei), BGS-Eh200 für Berichtsjahre ab 2010.

²⁵ Die Daten der BGS-Erhebungen liegen ausschließlich in physischen Einheiten vor.

Energiebilanz widerspruchsfreien Modellrahmen für das verbesserte bzw. detaillierte formale Gleichungssystem zu erhalten. Konkret musste beispielsweise zur Verwendung der Energieverbrauchsdaten zur Produktion von Roheisen der Einsatz fossiler Brennstoffe und Reduktionsmittel (insbesondere Steinkohlenkoks), der im Hochofenprozess zu Gichtgas umgewandelt wird, aus den BGS-Daten herausgerechnet werden. Der Grund hierfür ist, dass diese Einsatzmengen in der Energiebilanz (und damit auch im Modell) nicht dem industriellen Endenergieverbrauch der Metallerzeugung, sondern dem Umwandlungssektor (Umwandlungseinsatz der Hochöfen, Energiebilanzzeile 17) zugerechnet werden.²⁶

Eine weitere Schwierigkeit bestand schließlich darin, dass die BGS-Erhebung für die einzelnen Verfahren und Prozessstufen der Stahlerzeugung u.a. den Energieträger "Flüssige Brennstoffe" ausweist. Die Energiebilanz differenziert an dieser Stelle zwischen Heizöl, leicht und Heizöl, schwer und weist hier zusätzlich teilweise geringe Mengen an Dieselkraftstoff sowie Flüssiggas aus. Unter Verwendung der amtlichen Aufgliederung dieser Energieträger in der Energiebilanz Deutschland und den Informationen der BGS-Statistik wurde unter Einbeziehung produktionstheoretischer Vorüberlegungen²⁷ eine rechnerische Aufteilung nach einzelnen Produktionsstufen der Metallerzeugung vorgenommen.

Im Ergebnis konnte die Datenbasis des verbesserten Modells zur Erklärung des Energieverbrauchs in der Industrie für den Sektor Metallerzeugung für Zeiträume von 1995 bis 2021 so aufbereitet werden, dass die Energiebilanzzeile 54 (Metallerzeugung) in der Gliederung der Energieträger der Energiebilanz konsistent in folgende Produktionsstufen der Rohstahlbzw. Walzstahlerzeugung zerfällt:

- Frischdampfkesselhaus,
- Sintererzeugung,
- Roheisenerzeugung,
- Oxygenstahlerzeugung.
- ► Elektrostahlerzeugung,
- Walzstahlerzeugung und
- Weiterverarbeitung.

Ende Juni 2023 ist die BGS-Erhebung für das Berichtsjahr 2022 erschienen. Diese Daten wurden bereits aufbereitet, jedoch noch nicht in die Datenbasis des neu konzipierten Modells übernommen. Der Grund hierfür ist, dass dieser aktuelle Datenstand im Zusammenhang mit der Erstellung der Frühschätzung für das Jahr 2022 noch nicht vorlag. Ein Rückgriff auf diese Daten (Einbeziehung in den Stützzeitraum des Modells, konnte demzufolge erst im Rahmen der Frühschätzung für 2023 erfolgen).

²⁶ EEFA/ZSW/DIW (2018), Abbau von Divergenzen zwischen nationaler und internationaler Energiestatistik, Studie im Auftrag des Bundesministeriums für Wirtschaft und Energie., Internet: https://eefa.de/themen/energiestatistik/abbau-von-divergenzen-in-dernationalen-und-internationalen-energiestatistik.html (Abrufdatum: 23.1.2023).

²⁷ Flüssige Brennstoffe und Reduktionsmittel werden in der Reihenfolge ihrer Bedeutung in Hochöfen (2021: 94 %), Walzwerke (2021:1,4 %) und Sonstige Betriebe (2012:4,6 %) eingesetzt. Andere Produktionsstufen wie die Sinter- oder die Rohstahlerzeugung setzten (2021) keine flüssigen Brennstoffe ein. Die Aufgliederungen der flüssigen Brennstoffe auf die o.g. "Flüssigen Brennstoffe" lt. Energiebilanz Deutschland erfolgt unter der Einsatzstruktur lt. BGS-Statistik, die die produktionstheoretischen Einsatzbedingungen für diesen Energieträger widerspiegelt.

Der Stützzeitraum der hier vorgestellten, verbesserten Modellvariante reicht grundsätzlich von 1995 bis 2021²8, für die neu hinzugekommenen Subsektoren in den Bereichen Papiergewerbe und Verarbeitung von Steinen und Erden von 2003 bis 2021, da für diese Bereiche vor 2003 zum Teil keine ausreichenden amtlichen Daten vorliegen.²9 Informationen zur Entwicklung des Energieverbrauchs differenziert nach Produktionsstufen der Metallerzeugung (EBZ 54) liegen im erweiterten Industriemodell aus den BGS-Erhebungen für Zeiträume zwischen 1995 und 2021 vor. Unabhängig von der skizzierten Datenverfügbarkeit kann der Stützzeitraum einzelner Verhaltensgleichungen in den hier genannten Bereichen aus "ökonometrischen" Gründen variieren. Der konkrete verwendete Stützzeitraum wird in den nachfolgenden Abschnitten vor diesem Hintergrund für jede Einzelgleichung genannt.

3.2 Das Gleichungssystem des Modells im Einzelnen

3.2.1 Gleichungen zur Erklärung des sektoralen Brennstoff-/Wärmeeinsatzes

3.2.1.1 Schätzfunktionen für die Brennstoffnachfrage der Energiebilanzsektoren

Die Brennstoff-/Wärmenachfrage ist grundsätzlich eng mit unterschiedlichen Aktivitätsgrößen in den betrachteten Wirtschaftszweigen verbunden. Als wichtigste Aktivitätsgröße in der Industrie ist die Produktion, im Energiemodell zur Erklärung des Energieverbrauchs üblicherweise gemessen als realer Bruttoproduktionswert (in Mio. €), zu nennen. Darüber hinaus hängt der sektorale Brennstoff-/Wärmeeinsatz selbstverständlich vom Brennstoffpreis (Aggregatpreis für den Einsatz fossiler u. erneuerbarer Energieträger sowie Fernwärme), dem technischen Fortschritt und ggf. weiteren sektorspezifischen Variablen ab. Schließlich werden zur Schätzung der Wärmenachfrage fallweise (in Branchen mit höheren Raumwärmeanteilen) witterungsbedingte Einflussgrößen wie etwa die Gradtagzahlen berücksichtigt.

Die Verhaltensgleichungen zur Erklärung des Brennstoff-/Wärmeeinsatzes nehmen allgemein folgende Gestalt an:

1. VEWE_j =f(BPW, VEWE_j(-1), PEWE_j, Trend, Dummy, GTZ, C)

mit:

BPW: Bruttoproduktionswert, real, Mio. €;

VEWE_i: Brennstoff-/Wärmeeinsatz im Sektor j (Energiebilanzzeile);

PEWE_i: Preis für den gesamten Brennstoff-/Wärmeinsatz des Sektors j, in €/GJ;

Trend: Trendvariable;

Dummy: Dummy-Variable, Jahr=1 sonst Null;

C: Absolutglied.

Es liegt auf der Hand, dass die konkrete Übernahme einer Erklärungsgröße in ökonometrische Modelle grundsätzlich an die Bedingung geknüpft ist, dass für die ins Auge gefasste Variable empirisch ein signifikanter Einfluss (gemessen an den p-Werten) auf den Brennstoff-/Wärmeeinsatz im jeweiligen Wirtschaftszweig festgestellt werden kann. Hinzu kommt, dass die geschätzten Koeffizienten der erklärenden Variablen ein plausibles Vorzeichen (und damit

²⁸ Auf der aggregierten Ebene der Energiebilanzsektoren (Bilanzzeile 46 bis 59) liegen ab 1995 konsistente Zeitreihen vor.

²⁹ Zum Zeitpunkt der Erstellung der ersten Pilotstudie zur Frühschätzung der Energiebilanz 2020 umfasste der Stützbereich des Modell-Prototypen noch Zeitbereiche von 1995 bis 2018. Im Rahmen nachfolgender Frühschätzungen auf der Grundlage des hier vorgestellten, erweiterten Modells (Stand: März 2024) ist eine kontinuierliche Erweiterung des Stützzeitraums vorgesehen (Aktualisierung des Modells um die Daten der jeweils endgültigen Energiebilanz Deutschland am aktuellen Rand). Die Aufnahme zusätzlicher Beobachtungen in das Modell impliziert selbstverständlich eine laufende Veränderung der Werte der geschätzten Koeffizienten (innerhalb der zulässigen plausiblen Bereiche). Die angesprochene Aufdatierung des Modells (Verlängerung des Stützzeitraums) stellt keine methodische Veränderung dar, sie kann allerdings einen positiven Beitrag leisten, die Signifikanz der Koeffizientenschätzer zu verbessern.

verbunden die korrekte Wirkungsrichtung auf die zu erklärenden Energienachfragen) aufweisen müssen.

Tabelle 2: Schätzgleichungen zur Erklärung des gesamten Brennstoff-/Wärmeeinsatzes der Industrie (Sektoren der Energiebilanz Deutschland)

Stützzeitraum, wenn nicht anders erwähnt, 1997 bis 2021

Sek- tor ¹	BPW	AR(1)	Energie- preis	Trend	GTZ	Dummy	С	R ²	Adj. R²	DW
46	0,100 (0,78)	0,149 (0,23)	-0,010 (0,93)	-0,192 (0,07)	0,000 (0,22)	0,547 (0,00)	7,94 (0,00)	0,90	0,86	1,49
47*	0,000 (0,48)	0,000 (0,01)	-0,024 (0,23)	0,014 (0,59)	-	0,048 (0,03)	11,149 (0,00)	0,79	0,68	2,04
48										
49	0,481 (0,25)	-	-0,162 (0,31)	0,305 (0,00)	-	-0,267 (0,05)	11,321 (0,00)	0,81	0,74	1,22
50*	-	0,707 (0,00)	-811,466 (0,22)	-	-	33527,48 (0,10)	76200,37 (0,00)	0,82	0,74	1,56
51	0,395 (0,09)	0,331 (0,04)	-0,178 (0,06)	0,015 (0,31)	-	0,212 (0,00)	6,881 (0,00)	0,82	0,71	1,62
52*	0,000 (0,00)	-0,000 (0,92)	-0,091 (0,02)	-0,045 (0,12)	-	-	10,956 (0,00)	0,89	0,87	2,09
53										
54										
55*	0,000 (0,00)	0,000 (0,61)	-0,057 (0,46)	-0,094 (0,13)	-	0,115 (0,11)	10,454 (0,00)	0,64	0,50	2,53
56	-	0,694 (0,01)	-0,016 (0,85)	-0,020 (0,82)	-	0,060 (0,29)	3,446 (0,20)	0,77	0,69	2,44
57	0,353 (0,03)	0,803 (0,00)	-0,081 (0,36)	0,020 (0,214)	0,000 (0,00)	0,229 (0,00)	-2,676 (0,29)	0,91	0,88	1,19
58	0,255 (0,06)	0,000 (0,00)	-0,051 (0,65)	0,057 (0,00)	0,000 (0,05)	0,255 (0,00)	9,507 (0,00)	0,83	0,75	2,07
59**	0,442 (0,22)	0,339 (0,07)	-0,094 (0,41)	0,099 (0,01)	0,000 (0,02)	0,099 (0,16)	6,902 (0,00)	0,80	0,72	2,33

Quelle: Eigene Berechnungen EEFA und ZSW. ¹ Die Sektorenbezeichnung bezieht sich auf die Nummerierung der Wirtschaftszweige in der Gliederung der Energiebilanz Deutschland; eine Zuordnung der Zeilennummer zur WZ-Klassifikation findet sich im Vorwort zu den Energiebilanzen (Stand November 2015), Internet: https://ag-energiebilanzen.de/wp-content/uploads/2021/11/vorwort.pdf (Abrufdatum: 7.5.2021), * Stützzeitraum 1997 bis 2021, ** Stützzeitraum 1998 bis 2021.

Tabelle 2 fasst die Schätzergebnisse für die Gleichungen zur Erklärung des Brennstoff-/ Wärmeverbrauchs für die Wirtschafszweige des aktualisierten und verbesserten Industriemodells (Version 2023) zusammen, die in der Abgrenzung der Wirtschaftszweige nach der Energiebilanz Deutschland erklärt werden (keine Subsektoren). Für jeden Sektor werden neben den geschätzten Regressionskoeffizienten für die einzelnen erklärenden Variablen sowie dem Absolutglied (C) das Bestimmtheitsmaß (R²) und das korrigierte Bestimmtheitsmaß (AR²) als wichtige Gütemaße der Schätzgleichung angegeben. Zusätzlich sind die p-Werte (in Klammern) unterhalb der Koeffizientenschätzer ausgewiesen.

Der Stützzeitraum des aktualisierten Modells reicht bis 2021. Das aktualisierte Modell stützt sich außerdem auf die revidierte Zeitreihe der Energiebilanzdaten von 2003 bis 2021.

Die ausgewiesenen Teststatistiken lassen insbesondere im Hinblick auf die Durbin-Watson-Werte (DW: nahe 2) sowie hohe Bestimmtheitsmaße überwiegend zufriedenstellende Ergebnisse erkennen. Im Zusammenhang mit einzelnen Koeffizientenschätzern in einigen Verhaltensgleichungen ist allerdings auch zu konstatieren, dass insbesondere der Einfluss der Energiepreise statistisch nicht immer signifikant ist (p-Werte). Alternative Spezifikationen dieser Gleichungen haben durchaus höhere Signifikanzniveaus im Zusammenhang mit dem Energiepreiseinfluss hervorgebracht. Allerdings nahmen die geschätzten Preiselastizitäten in diesen Versionen der Verhaltensgleichung vielfach spürbar zu hohe Werte an. Nicht zuletzt auch angesichts der drastischen Energiepreissprünge am aktuellen Rand (Stützzeitraum des Modells bis 2021 mit ersten kräftigen Energiepreisanstiegen gegen Ende des Berichtsjahres, Prognose für 2022 mit historischen Höchstständen der Energiepreise u.a. in Folge des Ukraine-Krieges), wurden diese, allein von der Teststatistik her betrachtet, besseren Regressionsgleichungen im Hinblick auf die Erzielung plausibler Prognoseresultate verworfen.

3.2.1.2 Schätzfunktionen für die Brennstoffnachfrage energieintensiver Subsektoren

Der Brennstoff-/Wärmeverbrauch der Energiebilanzsektoren 48 (Papiergewerbe), 53 (Verarbeitung v. Steinen und Erden) und 54 (Metallerzeugung) wird im verbesserten und aktualisierten Modellierungsansatz, wie in Kapitel 2.3 skizziert, differenziert auf der Ebene energieintensiver Subsektoren bzw. Produktionsstufen geschätzt, wobei das Grundkonzept des Erklärungsansatzes im Vergleich zur Vorgehensweise auf der Ebene aggregierter Energiebilanzsektoren erhalten bleibt. Als Konsequenz aus der vorgenommenen Disaggregation sind spezifischer auf die energieintensive Branche ausgerichtete Erklärungsansätze möglich. Zum einen wurden anstelle realer Produktionswerte (Mio. €) nunmehr physische Produktionsmengen (in Mio. Tonnen für energieintensive Bereiche wie Papier und Pappe, Zement, Kalk, Sinter, Roheisen, Oxygen- und Elektrostahl sowie Walzstahl) implementiert. Zum anderen wurden sektorspezifische Größen zur Erklärung des Wärmeeinsatzes in den energieintensiven Sub-Branchen ergänzend in die Gleichungen aufgenommen.

In die Schätzgleichung zur Erklärung des Brennstoffeinsatzes in der Zementindustrie (VEWE53ZE) beispielsweise wurde neben der Klinkerproduktion (XTKL) und der relativen Veränderung des Brennstoffpreises (PEWE53ZE), der Einsatz von Hüttensand (HOSZ) zur Herstellung von Zementen mit mehreren Hauptbestandteilen (Komposit-Zemente) berücksichtigt. Brennstoffenergie wird bei der Zementherstellung im Wesentlichen zum Brennen des Zementklinkers eingesetzt. Durch die kontrollierte Abkühlung von Hochofenschlacke entsteht granulierter Hüttensand, der im Zementherstellungsprozess (durch Zumahlung) energieintensiv erzeugten Klinker substituiert. In der Vergangenheit investierte die Zementindustrie zum einen in stetige Weiterentwicklung "klinkereffizienter" Zemente, zum anderen wurden erhebliche Anstrengungen unternommen, die Marktgängigkeit (und damit verbunden den Absatz bzw. die Produktion) solcher Zemente mit mehreren Hauptbestandteilen zu erhöhen. Verglichen mit klassischen Portlandzementen (die zu 100 % aus gemahlenem,

³⁰ Vgl. z.B. Verein Deutscher Zementwerke e.V. (2023), Umweltdaten der deutschen Zementindustrie, versch. Jg.; Düsseldorf, S. 16ff., Internet: https://www.vdz-online.de/wissensportal/publikationen/umweltdaten-der-deutschen-zementindustrie-2022 (Abrufdatum: 30.10.2023) sowie Verein Deutscher Zementwerke e.V. (2002), Umweltdaten der deutschen Zementindustrie 2000, Düsseldorf, S. 8f., Internet: https://www.vdz-

brennstoffintensiv erzeugtem Zementklinker bestehen), lässt sich durch die Produktion von Zementen mit Zumahlstoffen wie Hüttensand (aber auch anderen Stoffen wie z.B. Flugasche oder natürliche Puzzolane u.a.) der Brennstoffeinsatz (und CO₂-Ausstoß) spürbar reduzieren.³¹

In der Brennstoffnachfragefunktion der Zementindustrie (Version 1, Gleichung 2) weist der Regressionskoeffizient für den Einsatz von Hüttensand erwartungsgemäß ein negatives Vorzeichen auf, d.h. der vermehrte Einsatz von Hüttensand verringert den Brennstoffbedarf:

2. LOG(VEWE53ZE) = 1,26*LOG(XTKL) - 0,22*LOG(PEWE53ZE/PEWE53ZE(-1)) + 0,25*LOG(@TREND+1) - 0,03*LOG(HOSZ) + 6,66*C

p-Werte: 0,00; 0,19; 0,00; 0,82; 0,00;

R²: 0,84; AR²: 0,79; DW: 1,62; Stützzeitraum: 2005 bis 2021;

mit:

VEWE53ZE: Brennstoffeinsatz in der Zementindustrie, (TJ);

XTKL: Klinkerproduktion, (Mio. t);

PEWE53ZE: Preis für Brennstoffe in der Zementindustrie, (€/GJ);

TREND: Trendvariable:

HOSZ: Einsatz Hochofen-bzw. Hüttensand zur Zementproduktion, (Mio. t);

C: Absolutglied.

Eine zusätzliche Verbesserung der Erklärung des Brennstoffeinsatzes in der Zementindustrie (Gleichung 2) lässt sich erreichen, wenn zusätzlich die Klinkerkapazität je Zementofen in den Erklärungsansatz aufgenommen wird (Version 2, Gleichung 3). Die Konzentration der installierten Ofenkapazität auf wenige, effiziente Anlagen (Skaleneffekte), hier gemessen durch die Klinkerkapazität in Tonne je Tag (TDZE) je Zementofen (OFZE), leistet einen weiteren wichtigen Beitrag zur Reduktion des thermischen Energiebedarfs bei der Klinkererzeugung.

3. LOG(VEWE53ZE) = 1,71*LOG(XTKL) - 0,10*LOG(PEWE53ZE/PEWE53ZE(-1)) + 0,66*LOG(@TREND+1) - 0,33*LOG(HOSZ) - 1,56*LOG(TDZE/OFZE) + 16,46*C

p-Werte: 0,00; 0,43; 0,00; 0,02; 0,01; 0,00;

R²: 0,92; AR²: 0,89; DW: 1,94; Stützzeitraum: 2005 bis 2021;

mit:

VEWE53ZE: Brennstoffeinsatz Zementindustrie, (TI);

XTKL: Klinkerproduktion, (Mio. t);

PEWE53ZE: Preis für Brennstoffe in der Zementindustrie (€/G]);

TREND: Trendvariable;

HOSZ: Einsatz Hochofen-bzw. Hüttensand zur Zementproduktion (Mio. t);

TDZE: Klinkerkapazität (Tonnen je Tag);

OFZE: Zahl der Zementöfen (Anzahl);

C: Absolutglied.

Die Berücksichtigung von Skaleneffekten führt zu einer Erhöhung des Bestimmtheitsmaßes auf 0,92 (vorher 0,84) und der Durbin-Watson-Teststatistik auf 1,94 (vorher 1,63). Allerdings sind Angaben zur Klinkerkapazität und Anzahl der Zementöfen zum Zeitpunkt der Erstellung der

 $online.de/fileadmin/wissensportal/publikationen/umweltschutz/Umweltdaten/VDZ_Umweltdaten_2000.pdf (Abrufdatum: 11.4.2023).$

³¹ Vgl. dazu auch Buttermann, H.-G. (1998), Ein Modell zur Erklärung des Faktoreinsatzes der deutschen Zementindustrie, RWI-Papiere Nr. 48, Essen sowie Buttermann, H.-G. und Hillebrand, B. (2000), Die Klimaschutzerklärung der deutschen Industrie vom März 1996 – eine abschließende Bilanz - CO₂ Monitoring-Bericht 2000, Untersuchungen des Rheinisch-Westfälischen Instituts für Wirtschaftsforschung, Heft 40, S. 33ff., Essen.

Frühschätzung (Anfang Februar 2024) für das Vorjahr 2022 voraussichtlich noch nicht als beobachtete Daten verfügbar bzw. publiziert. Ungeachtet der statistischen Verbesserung der Gleichung würde der Indikator bzw. die Erklärungsvariable angesichts der spezifischen Anforderungen an die laufenden Frühschätzungen der Energiebilanz Deutschland das Schätzproblem und die damit verbundenen Unsicherheiten auf zusätzliche Einflussgrößen verlagern. Vor diesem Hintergrund wird in der vorliegenden Modell-Version zunächst die Version 1 des Schätzansatzes beibehalten.

Aufgrund der unzureichenden Datenlage erwies es sich leider als unmöglich, sektorspezifische Maßnahmen zur Verringerung des Brennstoffverbrauchs in der Kalkindustrie (Brennstoffnachfragefunktion im detaillierten Industriemodell: "VEWE53KA") zu quantifizieren und im Rahmen der Modellierung bzw. der Spezifikation der Schätzgleichung zu berücksichtigen. So liegen z.B. keine im Rahmen empirisch-gestützter Modelle nutzbaren Informationen beispielsweise über die Art, Altersstruktur und Kapazität der in der Kalkindustrie eingesetzten Ofentechnologien für Zeiträume von 1995 bzw. 2003 bis zum aktuellen Rand vor. Es ist jedoch offensichtlich, dass der Brennstoffverbrauch vor allem über Entwicklungen in der Ofentechnologie (trotz des bereits erreichten hohen Wirkungsgrades im Gesamtsektor) durch den Einsatz moderner Brennaggregate wie Gleichstrom-Gegenstrom-Regenerativofen (GGR), die Wirkungsgrade um 85 % erreichen, weiter reduziert werden kann. Nach Angaben der UBA-Datenbank PROBAS werden schätzungsweise 30 % der Produktionsmenge in Schachtöfen, 30 % in Ringschachtöfen, 15 % in Drehrohröfen und 25 % in GGR-Öfen gebrannt.³² Der Brennstoffeinsatz zur Produktion einer Tonne Branntkalk variiert je nach eingesetztem Ofentyp zwischen 3.500 und 4.700 MJ/t Branntkalk.³³

Den geringsten thermischen Verbrauch (in Größenordnungen um 3.500 bis 3.800 MJ/t Branntkalk) weisen GGR-Öfen aus, den mit Abstand höchsten Drehrohröfen. Darüber hinaus hängt der Brennstoffbedarf eines konkreten Standorts bzw. Kalkwerks auch von den spezifischen Eigenschaften der eingesetzten Rohstoffe (Feuchtigkeitsgehalt usw.) ab.

Die Verhaltensgleichung zur Erklärung der Brennstoffnachfrage der Kalkindustrie folgt im detaillierten Industriemodell vor diesem Hintergrund somit weitgehend dem Aussehen des Grundansatzes, hängt also vor allem von der Produktion von Branntkalk (XTKA) sowie dem gewogenen Preis für den gesamten Brennstoffpreis des Subsektors (PEWE53KA) ab. Als zusätzliche Einflussgröße wurde in den Erklärungsansatz eine Variable zur Erfassung der Kapazitätsauslastung³⁴ aufgenommen, von der ein negativer Einfluss auf den Energieverbrauch ausgeht.

In der Papierindustrie (ex Energiebilanzzeile 48, WZ 17.1) trägt die Substitution energieintensiv gewonnener Primärfasern (Zell- und Holzstoff) durch Altpapier einen wesentlichen Beitrag zur Reduzierung des Wärmeverbrauchs (VEWE48HZ) bei. Die Substitutionsmöglichkeiten werden

³² Einzelheiten vgl. UBA-Datenbank (2023), "ProBas Prozessorientierte Basisdaten für Umweltmanagementsysteme", Internet: https://www.probas.umweltbundesamt.de/php/prozessdetails.php?id=%7B86C6457F-ABF7-4F8C-803E-794F6EBCB973%7D (Abrufdatum: 22.09.2023).

³³ Vgl. Szednyj, I. und Brandhuber, D. (2007), Stand der Technik zur Kalk-, Gips und Magnesiaherstellung, Studie im Auftrag des Bundesministeriums für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft (Österreich) im Rahmen der Überarbeitung des EU BAT-Dokuments zur Zement- und Kalkherstellung, Report Nr. 128, Wien 2007, S. 53ff. sowie S. 67, Internet: https://www.umweltbundesamt.at/fileadmin/site/publikationen/rep0128.pdf (Abrufdatum: 11.4.2024).

³⁴ Aufgrund der skizzierten Datenlücken im Zusammenhang mit der Ofenstatistik für die Kalkindustrie wurde der Auslastungsgrad mit Hilfe der sog. "Peak to Peak"-Methode ermittelt. Der Ansatz basiert auf der zentralen Annahme, dass die beobachteten Maximalwerte in der Zeitreihe der Kalkproduktion typischerweise mit einer Vollauslastung der Ofenkapazitäten in diesem Beobachtungszeitpunkt zusammenfallen oder anders formuliert dieser Wert folglich dem theoretischen Produktionspotenzial entspricht. Die vollständige Zeitreihe des Produktionspotenzials ergibt sich durch Interpolation zwischen den lokalen Maxima, wobei die Auslastung (in %) dem Verhältnis zwischen der Kalkproduktion und dem rechnerisch ermittelten Produktionspotenzial entspricht.

weniger von der Produktionstechnik, sondern in hohem Maße durch die Anforderungen an das Endprodukt (Papiersorte) bestimmt. Die Altpapiereinsatzquote (also der Verbrauch an Altpapier je Tonne Endprodukt) variiert deshalb von Papiersorte zur Papiersorte. Die höchste Einsatzquote weisen Papier, Karton und Pappe für Verpackungszwecke auf, die 2021 vollständig aus Altpapier bestanden. Hingegen betrug die Altpapierquote in der Gruppe der Druck-, Presse-, Büro- und Administrationspapiere im Jahr 2021 rund 53 %, bei den Papieren und Pappen für technische Zwecke und Spezialzwecke rund 52 % und bei den Hygienepapieren lediglich 47 %. Bezogen auf die gesamte Produktion von Papier, Karton und Pappe (2021: 23,1 Mio. t) betrug der Einsatz von Altpapier 2021 ca. 79 %. Zum Vergleich: 1995 erreichte die Altpapiereinsatzquote noch ein Niveau von 58 %.

Ein erheblicher Teil des Brennstoffverbrauchs der Papierindustrie (Gleichung 4) wird im Zusammenhang mit dem vermehrten Rückgriff auf Altpapier also durch zwei Effekte geprägt, und zwar durch das unterschiedliche nachfrageinduzierte Wachstum der Produktionssparten/Papiersorten und zugleich durch die seit jeher zu beobachtenden Bemühungen der Papierunternehmen, den Altpapiergehalt einzelner Sortengruppen zu steigern. Die Variable "Altpapiereinsatzquote" (APQ) in der Gleichung zur Erklärung des Brennstoffeinsatzes der Papierindustrie spiegelt also einerseits den intrasektoralen Strukturwandel (Veränderungen in der Produktpalette), andererseits die fortschreitende Substitution von Energie durch Material ("Recycling") wider.35

```
4. LOG(VEWE48HZ) = 1,81*LOG(XTPP) - 0,17*LOG(PEWE48ZE) + 0,30*LOG(@TREND+1) - 1,11*LOG(APQ) + 0,18*D2009 + 0,07*D2010 - 2,14*C
p-Werte: 0,01; 0,18; 0,31; 0,45; 0,01; 0,18; 0,82;
R²: 0,78; AR²: 0,66; DW: 2,49; Stützzeitraum: 2004 bis 2021;
mit:
VEWE48HZ: Brennstoffeinsatz Herst. v. Holzschliff, Zellstoff, Papier u. Pappe (HZPP), (TJ);
XTPP: Produktion v. Papier, Karton und Pappe, (Mio. t);
PEWE48HZ: Preis f. Brennstoffe in HZPP-Industrie, (€/GJ);
TREND: Trendvariable;
APQ: Altpapiereinsatzquote, (in %);
D2009: Dummy-Variable, (2009=1);
D2010: Dummy-Variable, (2010=1);
C: Absolutglied.
```

Die Auswirkungen der globalen Finanz- und Wirtschaftskrise 2007/2008 schlugen sich in den Daten der Papierindustrie erst 2009 spürbar nieder. Die Produktion (und der damit verbundene Energieverbrauch) nahm 2008/2009 um mehr als 1,9 Mio. t (- 8,4 % im Vergleich zum Vorjahr ab). Im Folgejahr konnte der Einbruch wieder ausgeglichen werden. Die Schätzgleichung erfasst die damit verbundenen Verwerfungen über zwei Dummy-Variablen.

Die Hochofenwerke setzen zur Roheisenerzeugung überwiegend feste Energieträger und Reduktionsmittel (Steinkohlenkoks und -grus, Steinkohle) sowie in geringerem Umfang flüssige und gasförmige Brennstoffe ein. Der überwiegende Teil der Einsparerfolge bei der Roheisenerzeugung ging in den vergangenen Jahren auf die kontinuierliche Verbesserung der

³⁵ Die Produktion von Papier aus Altfasern (Altpapier) kann beträchtliche Energieeinsparungen nach sich ziehen, insbesondere, wenn z.B. energieintensiv erzeugter Holzschliff durch Altpapier ersetzt wird. Um gebrauchsfertigen Altpapierstoff aus Sekundärfasern herzustellen, sind nämlich "nur" bis zu 390 kWh/t elektrische Energie und fallweise thermische Energie in gleicher Größenordnung erforderlich. Dagegen verlangt die Produktion von Holzschliff je nach Verfahren einen (elektrisch-thermischen) Energieaufwand zwischen 1 200 und 3 000 kWh/t. Vgl. Merkel, M. (1997), Altpapieraufbereitung und Energieverbrauch, "Wochenblatt für die Papierfabrikation", Heft 5, S. 211ff. sowie Buttermann, H.-G. (1997), Rohstoff- und Energieverbrauch in der Papierindustrie, RWI-Mitteilungen 48, S. 157-180.

Hochofentechnologie zurück. Insbesondere konnte die Erzeugung je Hochofen weiter gesteigert werden. Während 1995 noch 22 Hochöfen 30 Mio. t Roheisen produzierten, waren 2021 noch 13 Hochöfen im Einsatz, die 25,7 Mio. t Roheisen erzeugten. Damit produziert ein Hochofen gegenwärtig fast 2 Mio. Tonnen Roheisen je Jahr, 1995 waren es noch 1,4 Mio. Tonnen. Gleichzeitig wurden die Hochöfen im Rahmen stetig wiederkehrender Neuzustellungen (zwischen den Ofenreisen) in der Regel umfangreichen Modernisierungen etwa der elektronischen Prozesssteuerung sowie Optimierungen der Nebenanlagen (z.B. Winderhitzer u.a.) zur Verbesserung der Energieeffizienz unterzogen.

Diese Substitutionsprozesse zwischen Energie (bzw. Reduktionsmittel) und Kapital wurden in folgendem Gleichungsansatz zu erklären versucht (Gleichung 5). Die besten Ergebnisse (Anpassung) wurden mit einer Gleichung erzielt, die neben der Roheisenproduktion (XTRE), dem Preis für Brennstoff- und Reduktionsmittel (PEWE54HO) und einer Trendvariablen (autonomer technischer Fortschritt) die Roheisenerzeugung je Hochofen (XTRE/OFESBHO) in Mio. Tonnen je Jahr berücksichtigt.

```
5. LOG(VEWE54HO) = 0,72*LOG(XTRE) + 0,90*LOG(VEWE54HO(-1)) - 0,03*LOG*(PEWE54HO) - 0,07*LOG(XTRE/OFESBHO) - 0,11*D2005 - 0,18*D2020 + 5,83*C
p-Werte: 0,00; 0,00; 0,76; 0,78; 0,00; 0,00; 0,02; R²: 0,89; AR²: 0,82; DW: 1,52; Stützzeitraum: 2003 bis 2021; mit:
VEW54HO: Brennstoff- Reduktionsmitteleinsatz Roheisenerz./Hochofen, (TJ); XTRE: Produktion v. Roheisen, (Mio. t); PEWE54HO: Preis f. Brennstoffe Roheisenerz./Hochofen, (€/GJ); OFESBHO: Zahl der betriebenen Hochöfen, (Anzahl); D2005: Dummy-Variable, (2005=1); D2020: Dummy-Variable, (2020=1); C: Absolutglied.
```

Darüber hinaus dürften Verbesserungen des Materialeinsatzes (Einsatz von verbessertem Sinter, Pellets bzw. Möller) zu einem effizienteren Hochofenprozess beigetragen haben. Leider hat sich herausgestellt, dass detaillierte Daten zum Rohstoffeinsatz in den Hochofenwerken (unter Berücksichtigung der für die Sinterproduktion benötigten Einsatzstoffe) lediglich für Zeiträume bis 2002 verfügbar sind, so dass dieser Ansatz aufgrund empirischer Datenlücken nicht weiter analysiert werden konnte.³⁶

Rohstahl kann grundsätzlich über die primäre Verfahrenslinie Roheisen/Rohstahl (Hochofen-Oxygenstahlroute) oder über die sekundäre Elektrostahlroute erzeugt werden, indem Rohstahl in einem zylindrischen Ofengefäß (Lichtbogen- oder Induktionsofen) überwiegend aus Schrott erschmolzen wird. Die Wärme zum Schmelzen des Schrotteinsatzes liefert elektrische Energie. Der Energieverbrauch zur Oxygenstahlproduktion (Primärroute) übertrifft den der schrottbasierten Elektrostahlroute etwa um das Dreifache.³⁷

In den Stahlwerken (Oxygen und Elektrostahl) werden überwiegend gasförmige Brennstoffe (sowie Sauerstoff) verbraucht. Der Einsatz fester Brennstoffe ist von untergeordneter

³⁶ Daten zum Materialeinsatz nach Produktionsstufen wurden bis zum Berichtsjahr 2002 von der Wirtschaftsvereinigung Stahl publiziert, vgl. Wirtschaftsvereinigung Stahl (2023c), Statistisches Jahrbuch der Stahlindustrie, verschiedene Jahre.

³⁷ Einzelheiten, vgl. Wienert, H. (1996), Technischer und wirtschaftlicher Wandel in der Stahlindustrie seit den sechziger Jahren unter besonderer Berücksichtigung Nordrhein-Westfalens, Untersuchungen des Rheinisch-Westfälischen Instituts für Wirtschaftsforschung, Heft 20, Essen, S. 29ff.

Bedeutung. Thermische Energie wird in den Oxygenstahlwerken vor allem durch die Enthalpie des flüssigen Roheisens, welches bei Temperaturen bis 1.250 °C in den Stahlherstellungsprozess eingebracht wird, für den Produktionsprozess bereitgestellt. Neben Roheisen setzten Oxygenstahlwerke auch Schrott (zur Kühlung der Schmelze) ein. Im Oxygenstahlverfahren können bis 20 % Schrott (je Tonne Output) eingesetzt werden, im Elektrostahlkonverter hingegen wird hauptsächlich Schrott eingeschmolzen (der Roheiseneinsatz ist auf maximal 35 % begrenzt).³⁸

Schrott ist vor diesem Hintergrund ein zentraler und zugleich energie- und ressourcenschonender Rohstoff, der auf der Stufe der Stahlerzeugung den Energieverbrauch beeinflusst. Aufgrund der bedeutenden Stellung (sowie als Proxy für den Roheiseneinsatz) wurde der Schrottverbrauch (VMSCOX und VMSCEL) in die Brennstoffnachfragefunktionen der Elektro- und Oxygenstahlwerke aufgenommen.

Grundsätzlich führt der Einsatz von flüssigem Roheisen zu einer Reduktion der Einschmelzzeit und des damit verbundenen (elektrischen) Energieverbrauchs. Der vermehrte Rückgriff auf Schrott hat folglich eine Steigerung des Energieverbrauchs (z.B. zur Vorwärmung von Schrott sowie aufgrund des geringeren Roheiseneinsatzes) zur Folge. Von der Variablen "Schrotteinsatz" geht vor diesem Hintergrund ein positiver Einfluss (verbrauchserhöhender Einfluss) auf den Brennstoff/Wärmebedarf der Elektrostahlwerke aus.

Im Zusammenhang mit der Erklärung des Brennstoffeinsatzes zur Oxygenstahlerzeugung legt die Schätzgleichung hingegen nahe, dass die vermehrte Substitution von flüssigem Roheisen durch Schrott den Energieverbrauch auf dieser Produktionsstufe verringert.

Die Schätzergebnisse aller Brennstoffnachfragefunktionen für die energieintensiven Subsektoren, die neu in das Industriemodell aufgenommen wurden, fasst Tabelle 3 zusammen.

Tabelle 3: Schätzgleichungen zur Erklärung des gesamten Brennstoff-/Wärmeeinsatzes ausgewählter energieintensiver Subsektoren (Industrie)

Stützzeitraum, wenn nicht anders erwähnt, 2003 bis 2021

Sek-tor ¹	Phys. Prod.	AR(1)	Energie -preis	Trend	Dummy	Sonst.	С	R ²	Adj. R²	DW
VEWE4 8HZ*	1,813 (0,01)	-	-0,169 (0,18)	0,304 (0,32)	0,182 (0,01)	-1,115 (0,45)	-2,144 (0,82)	0,78	0,66	2,49
VEWE4 8PP**	0,706 (0,45)	-	-0,086 (0,36)	-0,447 (0,04)	0,542 (0,00)	-	8,948 (0,01)	0,90	0,85	1,09
VEWE5 3ZE**	1,711 (0,00)	-	-0,097 (0,43)	0,658 (0,00)	-	-1,561 (0,01)	16,460 (0,00)	0,92	0,89	1,94
VEWE5 3KA*	0,553 (0,03)	-	-0,176 (0,07)	0,166 (0,01)	0,193 (0,00)		8,694 (0,00)	0,85	0,74	1,38
VEWE5 4SI	0,486 (0,01)	0,696 (0,01)	-0,030 (0,77)	0,145 (1,560)	-0,109 (0,56)	-	10,361 (0,00)	0,77	0,59	1,96

³⁸ Aichinger, M. (2015), Technologievergleich von Elektrostahlerzeugungsverfahren, Eisen- und Stahlmetallurgie, Masterarbeit, Loeben, S. 10 ff., Internet: https://pureadmin.unileoben.ac.at/ws/portalfiles/portal/1896823/AC12251146n01vt.pdf (Abrufdatum: 6.12.2023). sowie Helmus, M. und Randel, A. (2014), Sachstandsbericht zum Stahlrecycling im Bauwesen, Studie im Auftrag von bauforum stahl, S. 7., Internet: https://bauforumstahl.de/wp-content/uploads/2023/12/bfs-sachstandsbericht-recycling-im-bauwesen.pdf (Abrufdatum: 11.4.2023).

Sek-tor ¹	Phys. Prod.	AR(1)	Energie -preis	Trend	Dummy	Sonst.	С	R ²	Adj. R²	DW
VEWE5 4HO	0,724 (0,00)	0,900 (0,00)	-0,026 (0,76)		-0,177 (0,00)	-0,068 (0,78)	5,833 (0,02)	0,89	0,82	1,52
VEWE5 4OX	0,486 (0,00)	0,315 (0,24)	-0,121 (0,13)	0,059 (0,19)	0,103 (0,03)	-0,031 (0,59)	1,027 (0,68)	0,80	0,68	1,67
VEWE5 4EL***	0,230 (0,72)	0,071 (0,59)	-0,041 (0,79)	-0,449 (0,04)	0,631 (0,00)	0,358 (0,43)	3,880 (0,23)	0,99	0,97	2,27
VEWE5 4WZ	1,014 (0,01)	-0,357 (0,07)	-0,140 (0,42)	0,071 (0,42)	0,199 (0,06)	-	3,999 (0,31)	0,65	0,47	0,81

Quelle: Eigene Berechnung EEFA und ZSW. ¹ Die Sektorenbezeichnung bezieht sich auf die Nummerierung der Wirtschaftszweige in der Gliederung der Energiebilanz Deutschland; eine Zuordnung der Zeilennummer zur WZ-Klassifikation findet sich im Vorwort zu den Energiebilanzen (Stand November 2015), Internet: https://ag-energiebilanzen.de/wp-content/uploads/2021/11/vorwort.pdf (Abrufdatum: 7.5.2021), *Stützzeitraum 2004 bis 2021, *** Stützzeitraum 2005 bis 2021, *** Stützzeitraum 2009 bis 2021, *** weitere sektorspezifische Bestimmungsfaktoren, exakte Spezifikation vgl. Text und Gleichung (3).

Neben den geschätzten Regressionskoeffizienten für die einzelnen erklärenden Variablen sowie dem Absolutglied (C) werden das Bestimmtheitsmaß (R²) und das korrigierte Bestimmtheitsmaß (AR²) als wichtige Gütemaße der Schätzgleichungen zur Modellierung der Brennstoffnachfrage angegeben. Zusätzlich sind die p-Werte (in Klammern) unterhalb der Koeffizientenschätzer ausgewiesen. Die Brennstoffnachfragefunktionen für die energieintensiven Subsektoren sind im Großen und Ganzen durch hohe Bestimmtheitsmaße gekennzeichnet (AR²: zwischen 0,5 und knapp 1); die DW-Werte schwanken zwischen 0,8 und 2,5. Wesentlicher noch als die reine Betrachtung und Analyse der statistischen Prüfmaße (t-Werte, p-Werte usw.) für die angestrebte Prognose (Frühschätzung) mit Hilfe des Modells ist die inhaltliche (ökonomische) Interpretation der empirischen Befunde. Die Nachfrage nach Brennstoffen in den energieintensiven Subsektoren erweist sich nach den vorliegenden Schätzergebnissen als unelastisch (die Elastizitätskoeffizienten variieren in Größenordnungen zwischen 0,05 und knapp 0,2). Preissteigerungen bei den fossilen Brennstoffen lassen sich demzufolge höchstens bis 20% durch Verbrauchssenkungen bzw. Brennstoffeinsparungen kompensieren, der übrige Preisimpuls schlägt unmittelbar auf die Kosten und damit verbunden auf die Outputpreise durch.

3.2.1.3 Schätzfunktionen zur Erfassung der Energieträgerstruktur ("Fuel Switch")

Wie bereits in der Prototypvariante des Modells erfolgt auch in der verbesserten Version des Industriemodells (Version 2023, inkl. energieintensive Subsektoren) auf der zweiten Stufe der Modellierung die Aufteilung des Wärmeenergieverbrauchs der Industriesektoren auf einzelne Energieträger, indem

- ► für die wichtigsten Energieträger (für jeden Wirtschaftszweig separat) jeweils die Entwicklung ihrer Anteile am gesamten Wärmeverbrauch der Branche, vor allem in Abhängigkeit von den relativen Energieträgerpreisen, geschätzt werden,
- ► Energieträger, die in vernachlässigbar geringen Mengen (und ggf. nur in einzelnen Berichtsjahren) eingesetzt werden, im zeitlichen Verlauf eine nahezu konstante Entwicklung aufweisen oder erratisch auftretende Strukturbrüche aufweisen, exogen gesetzt werden sowie

► für jeden Wirtschaftszweig jeweils ein Energieträger definitorisch als Restgliedgröße zur Entwicklung des gesamten Brennstoff-/Wärmeverbrauchs errechnet wird.

Insgesamt betrachtet führt nach diesem zweistufigen Konzept also die Steigerung eines Energieträgerpreises zu Preiserhöhungen bei Wärmeenergie insgesamt und in der Folge zu einer Verringerung des Energieverbrauchs auf der ersten Stufe des Modells. Auf der zweiten Stufe (der Ebene einzelner Energieträger) kann der damit verbundene Rückgang eines spezifischen Energieträgers (ausgelöst durch den Einfluss der übergeordneten Entwicklung, VEWE) in Abhängigkeit von der Preiselastizität ganz oder teilweise kompensiert werden.³⁹

Entscheidend für die Anpassungsgüte des Modells zur Erklärung der Energieträgerstruktur ist auf der einen Seite die Güte der Schätzung auf der Ebene des gesamten, sektoralen Brennstoff-/Wärmeverbrauchs, auf der anderen Seite die Genauigkeit der Gleichungen zur Erklärung der Nachfrage nach einzelnen Energieträgern. Fehler bei der Spezifikation der Einzelgleichungen zur Erfassung der Energieträgerstruktur schlagen sich zwangsläufig im geschätzten bzw. prognostizierten Verbrauch des als Rest ermittelten Energieträgers nieder.

Exemplarisch für diese Gruppe von Schätzfunktionen auf der Ebene einzelner Energieträger sei an dieser Stelle aufgrund der bedeutenden Stellung, die Koks im Energieträgermix der Roheisenerzeugung einnimmt, die Nachfrage der Hochofenwerke nach Steinkohlenkoks (EBZ54HO3, Gleichung 6) genannt.

Insbesondere der Einsatz pulverisierter Kohle (**P**ulverized **C**oal **I**njection, PCI) stellt in der Roheisenerzeugung ein weit verbreitetes Verfahren dar, stückigen Steinkohlenkoks als Reduktionsmittel und Wärmlieferant teilweise zu substituieren, indem Kohlenstaub über eine spezielle Einblasanlage in den Hochofen eingedüst wird. Im Jahr 2021 hat die Stahlindustrie im Durchschnitt rund 191 kg Kohlenstaub je kg Roheisen in ihre Hochöfen eingeblasen. Das Einblasen von Kohlenstaub (ggf. auch anderer Ersatzreduktionsmittel, wie Kunststoffabfällen, Schweröl, Tiermehl, Shredder-Leichtfraktionen u.a.)⁴⁰ dient der Erhöhung der wirtschaftlichen und technischen Effizienz des Hochofenprozesses.⁴¹

Der Koksverbrauch der Roheisenerzeugung hängt vor diesem Hintergrund in erster Linie vom gesamten Einsatz an Brennstoffen und Reduktionsmitteln (VEWE54HO, 1. Stufe des Erklärungsansatzes) und vom Preisverhältnis zwischen Koks (PE03) und den übrigen Brennstoff- und Reduktionsmitteln (PEWE54HO) ab.

6. LOG(EBZ54HO3) = 1,48*LOG(VEWE54HO) - 0,06*LOG(PE03(-1)/PEWE54HO) - 0,28*LOG(@TREND+1) + 0,34*D2010 + 0,53*D2009 + 0,81*AR(1) - 6,54*C

³⁹ Das zweistufige Konzept ist gegenüber der Vorgängerstudie unverändert, vgl. EEFA/ZSW (2023), S. 32ff.

⁴⁰ Zur Bedeutung dieser Ersatzreduktionsmittel im Hochofenprozess, vgl. Buttermann, H.-G.; Lechtenböhmer, S.; Nanning, S. und Hillebrand, B. (2006), Einsatz von Sekundärbrennstoffen, UBA-Texte 07/06, S. 43 ff., Internet: https://www.umweltbundesamt.de/sites/default/files/medien/publikation/long/3011.pdf (Abrufdatum: 12.4.2024).

⁴¹ Es liegt auf der Hand, dass die Nutzung von Einblaskohle (PCI) anstelle von Hochofenkoks von der Errichtung entsprechender Einblaseinrichtungen flankiert werden muss. Zu berücksichtigen ist darüber hinaus, dass zum Einblasen anderer Energieträger (z.B. Wasserstoff), die über eine oder über alle Blasformen in den Hochofenprozess eingebracht werden sollen, umfassende technische und bauliche (i.d.R. genehmigungspflichtige) Änderungen an der Einblasanlage vorgenommen werden müssen. Beispielsweise hat Thyssenkrupp Steel Europe als erstes Unternehmen weltweit am 11. November 2019 am Hochofen 9 (Hamborn) über eine Blasform erfolgreich Wasserstoff in den laufenden Hochofen eingeblasen. Vgl. Stahl und Eisen (2023), Internet: https://www.stahleisen.de/2021/02/03/thyssenkrupp-steel-schliesst-erste-wasserstoffversuche-ab/ (Abrufdatum 24.9.2023). Nach erfolgreichem Abschluss der Vorversuche hat Thyssenkrupp Steel Europe die Erweiterung der Anlage zum Einblasen von Wasserstoff auf alle 28 Blasformen beantragt und die Genehmigung zum Umbau der Anlage Anfang Februar 2022 erhalten. Allein die Substitution von Koks bzw. Einblaskohle durch "grünen" Wasserstoff könnte die CO₂-Emissionen innerhalb der klassischen, koksbasierten Route der Roheisenerzeugung im Hochofen, die gegenwärtig die mit Abstand wettbewerbsfähigste Art der Stahlherstellung darstellt, um bis zu 30 % reduzieren. Vgl. Produktion Online (2021), Erster Testlauf: Wasserstoffeinsatz im Hochofen, Zeitschrift Produktion (Technik und Wirtschaft für die deutsche Industrie), Internet: https://www.produktion.de/wirtschaft/erster-testlauf-wasserstoffeinsatz-im-hochofen-207.html (Abrufdatum: 25.1.2024).

```
p-Werte: 0,00; 0,56; 0,51; 0,36; 0,25; 0,00; 0,13; R²: 0,78; AR²: 0,66; DW: 2,49; Stützzeitraum: 1996 bis 2021; mit:

EBZ54HO3: Koksverbrauch Hochofen, (TJ); VEWE54HO: Brennstoff- Reduktionsmitteleinsatz Roheisenerz./Hochofen, (TJ); PE03: Preis Sekundärkohle/Steinkohlenkoks, (€/GJ); PEWE54HO: Preis f. Brennstoffe Hochofen (€/GJ); TREND: Trendvariable<sup>42</sup>; D2009: Dummy-Variable, (2009=1); D2010: Dummy-Variable, (2010=1); C: Absolutglied.
```

Die geschätzten Regressionskoeffizienten sind vor dem Hintergrund der ökonomischen Theorie und den produktionsspezifischen Besonderheiten der Roheisenerzeugung als plausibel einzuordnen. Beispielsweise geht vom gesamten Brennstoff- und Reduktionsmitteleinsatz zur Roheisenerzeugung ein positiver Einfluss auf den Koksverbrauch der Hochöfen aus. Darüber hinaus steht Koks im Hochofen in einem gewissen Substitutionsverhältnis nicht nur zu Steinkohle bzw. Einblaskohle, sondern auch zu Gasen (in Zukunft ggf. Wasserstoff) und flüssigen Brennstoffen und Reduktionsmitteln.

Die Gleichungen zur Abbildung der Energieträgerstruktur folgen in den übrigen energieintensiven Wirtschaftszweigen, die im verbesserten Modellansatz berücksichtigt werden, dem am Beispiel des Koksverbrauchs der Hochöfen skizzierten Beispiel. Sektorspezifische Frühindikatoren zur Verbesserung der Frühschätzung konnten auf dieser Modellierungsebene nicht ermittelt werden.

3.2.2 Gleichungen zur Erklärung des sektoralen Stromeinsatzes

Die allgemeine Form der Funktionen zur Schätzung der Stromnachfrage in den Wirtschaftszweigen des Verarbeitenden Gewerbes (Energiebilanzzeilen 48 bis 59) spiegelt sich grob gesprochen in folgendem Grundansatz (Gleichung 7) wider:

```
7. EBZ<sub>i</sub>S28 = f(XR<sub>i</sub>, EBZ<sub>j</sub>28(-1), PEEL<sub>i</sub>, Trend, Dummy, C)
mit:
EBZ<sub>i</sub>S28: Stromverbrauch des Wirtschaftszweiges i, (in TJ);
XR<sub>i</sub>: Realer Bruttoproduktionswert des Wirtschaftszweiges j, (in Mio. €);
PEEL<sub>i</sub>: Strompreis des Wirtschaftszweiges i, (€/GJ);
Trend: Trendvariable;
Dummy: Dummy-Variable, Jahr x=1, sonst Null;
C: Absolutglied.
```

Tabelle 4 fasst die Schätzergebnisse für die Stromnachfragefunktionen für die Industriesektoren zusammen, die auf der Grundlage aggregierter Daten/Zeitreihen der Energiebilanz Deutschland geschätzt wurden. Die Stromnachfrage der Wirtschaftszweige, die in der Bilanz in den Zeilen 48, 53 und 54 ergibt sich (wie im vorangegangenen Abschnitt auch) aus der Summe der neu in das Industriemodell eingefügten energieintensiven Subsektoren.

⁴² Die Variable "Trend" wird über eine EVIEWS-Funktion (@trend) in der Gleichung berücksichtigt, die standardmäßig bei einem Wert von Null startet. Aufgrund des Logarithmierens muss die Trendvariable bei einem Wert von Eins beginnen.

Tabelle 4: Schätzgleichungen zur Erklärung des Stromverbrauchs der Industrie (Sektoren der Energiebilanz Deutschland)

Stützzeitraum, wenn nicht anders erwähnt, 1996 bis 2021

Sek- tor ¹	BPW	AR(1)	Strom- preis	Trend	Dummy	С	R ²	Adj. R²	DW
46	0,149 (0,50)	0,485 (0,00)	-0,025 (0,75)	-0,012 (0,76)	0,221 (0,00)	4,646 (0,00)	0,67	0,59	2,25
47	-	0,000 (0,00)	-0,048 (0,22)	0,084 (0,01)	-	10,287 (0,00)	0,96	0,95	2,17
48									
49	25041,89 (0,24)	0,235 (0,17)	-12762,58 (0,19)	11160,28 (0,00)	23474,9 (0,00)	67640,7 (0,10)	0,87	0,83	2,31
50	0,040 (0,88)	0,576 (0,00)	-0,138 (0,11)	-0,006 (0,83)	-0,214 (0,00)	4,740 (0,03)	0,79	0,70	1,84
51	0,423 (0,02)	0,500 (0,00)	-0,099 (0,04)	0,030 (0,48)	-	1,032 (0,67)	0,92	0,90	1,67
52	0,000 (0,00)	0,000 (0,60)	-0,032 (0,32)	-0,055 (0,01)	0,077 (0,03)	9,380 (0,00)	0,77	0,70	1,74
53									
54									
55	0,000 (0,07)	0,000 (0,00)	-0,110 (0,05)	-0,007 (0,80)	-0,314 (0,00)	10,538 (0,00)	0,87	0,83	1,72
56	0,642 (0,01)	0,281 (0,10)	-0,015 (0,85)	0,018 (0,73)	0,197 (0,01)	0,430 (0,87)	0,89	0,85	0,95
57	0,562 (0,00)	0,507 (0,00)	-0,083 (0,08)	-0,026 (0,28)	-	-1,136 (0,48)	0,91	0,89	1,59
58	0,000 (0,00)	0,000 (0,00)	-0,179 (0,01)	-0,004 (0,91)	-	10,828 (0,00)	0,83	0,79	1,65
59	0,964 (0,00)	0,756 (0,00)	-0,099 (0,04)	0,022 (0,28)	-0,010 (0,001)	3,068 (0,01)	0,86	0,82	2,32

Quelle: Eigene Berechnungen EEFA und ZSW. ¹ Die Sektorenbezeichnung bezieht sich auf die Nummerierung der Wirtschaftszweige in der Gliederung der Energiebilanz Deutschland; eine Zuordnung der Zeilennummer zur WZ-Klassifikation findet sich im Vorwort zu den Energiebilanzen (Stand November 2015), Internet: https://agenergiebilanzen.de/wp-content/uploads/2021/11/vorwort.pdf (Abrufdatum: 7.5.2021).

Neben den geschätzten Regressionskoeffizienten für die einzelnen erklärenden Variablen sowie dem Absolutglied (C) werden das Bestimmtheitsmaß (R²) und das korrigierte Bestimmtheitsmaß (AR²) als wichtige Gütemaße der Schätzgleichung angegeben. Zusätzlich sind die p-Werte (in Klammern) unterhalb der Koeffizientenschätzer ausgewiesen. Die Gleichungen zur Erklärung des sektoralen Stromverbrauchs wurden im Zuge der Verbesserung des Industriemodells in der Regel über den Stützzeitraum von 1997 bis 2021 (revidierte Energiebilanzdaten) neu geschätzt bzw. aktualisiert.

Insgesamt lassen die Stromnachfragefunktionen für die Bilanzsektoren zufriedenstellende Schätzergebnisse erkennen. Das Bestimmtheitsmaß variiert je nach Gleichung zwischen minimal 0,67 und maximal 0,96; die Durbin-Watson-Teststatistik zwischen 0,95 und 2,32. Die geschätzten Regressionskoeffizienten weisen für die Produktion (positiv) und den Strompreis (negativ) plausible Vorzeichen auf.

Im Jahr 2022 verbrauchte die Zementindustrie zur Produktion einer Tonne Zement rund 113,1 kWh an Strom. Gegenüber dem Jahr 2003 nimmt der spezifische Strombedarf damit um ca. 13,7 % zu. Für die Entwicklung des Stromverbrauchs in der Zementindustrie (EBZ53ZE28, Gleichung 8) ist vor allem der Betrieb der zahlreichen Mahlanlagen (zur Aufbereitung der Rohstoffe in der Klinkerproduktion sowie zur Fertigmahlung des Zementes) verantwortlich. Auf die Mahlanlagen entfallen von der Größenordnung etwa 71 % des Stromverbrauchs, auf den Betrieb der Ofenanlagen 24 % und auf die verbleibenden Verfahrensstufen 5 %. Trotz erheblicher Fortschritte in der Mahltechnik (Einführung von Kugelmühlen im geschlossenen Kreislauf mit Windsichter, moderner Walzenschüsselmühlen und Gutbett-Walzenmühlen)⁴³ ist der Bedarf an elektrischer Energie zur Zementproduktion (spezifisch und absolut) in der Vergangenheit gestiegen. Der Grund hierfür liegt im vermehrten Rückgriff auf Zumahlstoffe (wie Hüttensand) zur Produktion klinkereffizienter Zemente (mit mehreren Hauptbestandteilen) im Rahmen der Bemühungen der Zementwerke ihre energie- und rohstoffbedingten CO₂-Emissionen und den Brennstoffverbrauch zu reduzieren.

Der Einsatz verschiedener Zumahlstoffe zur Substitution von Zementklinker (XTKL) erfordert auf der Stufe der Fertigmahlung absatzfähiger Zemente typischerweise einen erhöhten Mahlaufwand und einen damit verbundenen zusätzlichen elektrischen Energiebedarf.

Um den skizzierten Zusammenhang zu erklären, wurde u.a. der Indikator Einsatz von Hochofensand (HOSZ) als Anteil am Mahlaufwand für Zementklinker (XTKL) zuzüglich des Mahlaufwandes für die Rohstoffaufbereitung (1,6*XTKL) als Indikator in die Analyse einbezogen. Darüber hinaus wurde als weitere "sektorspezifische" Variable ein Indikator zur Erfassung der Produktionsauslastung (XTZE/TDZE*330/10^6) in die Gleichung 8 aufgenommen.⁴⁴ Eine Erhöhung der Auslastung führt beim Betrieb der Ofenanlagen (aufgrund des unveränderten Grundverbrauchs der Anlage in der Regel zu einer Verringerung des spezifischen Energieverbrauchs und vice versa.

Eine Verringerung der Kapazitätsauslastung z.B. infolge einer schlechten Baukonjunktur führt in Anbetracht eines nahezu unveränderten Stromverbrauchs der Zementöfen im Teillastbetrieb zu einer Erhöhung des spezifischen Energiebedarfs. Von der Auslastungsvariablen geht infolgedessen ein negativer Einfluss auf den elektrischen Stromverbrauch der Zementindustrie aus.

```
8. LOG(EBZ53ZE28) = -0,19*LOG(XTZE/(TDZE*330/10^6) + 0,18*LOG(HOSZ/(XTKL*1,6+XTKL)) + 0,77*LOG*(EBZ53ZE28(-1)) - 0,03*LOG(PE13STZE(-1)) + 0,08*LOG(@TREND+1) + 0,07*D2004 + 0,19*D2007 + 2,46*C
```

p-Werte: 0,09; 0,13; 0,01; 0,83; 0,42; 0,11; 0,00; 0,24 R²: 0,83; AR²: 0,70; DW: 2,08; Stützzeitraum: 2004 bis 2021;

mit:

⁴³ Einzelheiten zum Stand der Mahltechnik in der Zementindustrie, vgl. Holzinger, T. und Flachberger, H. (2023), Zementmahlung – Stand der Technik und Trends für die Zukunft, in: Berg- und Hüttenmännische Monatshefte (BHM), Vol. 168 (4), S. 175–183, Springer. https://doi.org/10.1007/s00501-023-01343-6.

 $^{^{44}}$ Da die Zementproduktion im Zähler in Mio. Jahrestonnen angegeben ist, bildet der Faktor 330 die Umrechnung der in Tonnen/Tag angegebenen Klinkerkapazität in Jahrestonnen ab (wobei eine technische Verfügbarkeit der Ofenkapazitäten von ca. 92 % angenommen wird).

EBZ53ZE28: Stromverbrauch Zementindustrie, (TJ);

XTKL: Produktion v. Zementklinker, (Mio. t);

HOSZ: Einsatz Hochofen- bzw. Hüttensand zur Zementproduktion (Mio. t);

PE13STZE: Strompreis Zementindustrie (€/GJ);

TREND: Trendvariable;

D2004: Dummy-Variable, (2004=1); D2007: Dummy-Variable, (2007=1);

C: Absolutglied.

Tabelle 5: Schätzgleichungen zur Erklärung des Stromverbrauchs ausgewählter energieintensiver Subsektoren (Industrie)

Stützzeitraum, wenn nicht anders erwähnt, 2003 bis 2021

Sek- tor ¹	Phys. Prod.	AR(1)	Strom- preis	Trend	Dum- my	Sonst.	С	Adj. R²	AR ²	DW
ebz48 hz28*	0,910 (0,00)	0,007 (0,94)	-0,017 (-0,72)	-0,224 (0,00)	-	-	2,454 (0,07)	0,96	0,94	2,75
ebz48 pp28*	17485,75 (0,29)	-	-1096,73 (0,62)	-4696,05 (0,13)	-686,73 (0,52)	-	- 141400 ,5 (0,35)	0,88	0,81	1,98
ebz53 ze28*	0,181 (0,13)	0,765 (0,01)	-0,028 (0,83)	0,084 (0,42)	0,185 (0,00)	-0,191 (0,09)	2,463 (0,24)	0,83	0,70	2,08
ebz53 ka28	2)	0,765 (0,02)	-18,03 (0,86)	103,63 (0,40)	66,49 (0,01)	-513,82 (0,00)	2458,2 (0,00)	0,89	0,82	1,13
ebz54 si28* *	0,289 (0,10)	0,246 (0,14)	-0,081 (0,49)	0,064 (0,01)	-0,153 (0,02)	-	3,026 (0,13)	0,68	0,58	1,43
ebz54 ho28	0,923 (0,01)	0,056 (0,68)	-0,147 (0,13)	-0,004 (0,97)	0,086 (0,07)	-0,183 (0,47)	0,467 (0,81)	0,88	0,81	1,78
ebz54 ox28* *	0,632 (0,12)	0,598 (0,01)	-0,051 (0,77)	0,248 (0,02)	-0,127 (0,14)	-	-1,318 (0,75)	0,83	0,78	2,00
ebz54 el28	1,104 (0,00)	0,118 (0,51)	-0,070 (0,46)	0,038 (0,31)	-	0,001 (0,99)	-1,633 (0,35)	0,88	0,83	1,42
ebz54 wz28	0,507 (0,00)	0,116 (0,48)	-0,007 (0,94)	-0,212 (0,00)	-	-	3,964 (0,06)	0,92	0,90	1,37

Quelle: Eigene Berechnungen EEFA und ZSW. ¹ Die Sektorenbezeichnung bezieht sich auf die Nummerierung der Wirtschaftszweige in der Gliederung der Energiebilanz Deutschland; eine Zuordnung der Zeilennummer zur WZ-Klassifikation findet sich im Vorwort zu den Energiebilanzen (Stand November 2015), Internet: https://ag-energiebilanzen.de/wp-content/uploads/2021/11/vorwort.pdf (Abrufdatum: 7.5.2021), ² Produktion implizit berücksichtigt, transformierte Gleichung, * Stützzeitraum 2004 bis 2021, **
Stützzeitraum 1997 bis 2021.

Tabelle 5 stellt neben den geschätzten Regressionskoeffizienten für die einzelnen erklärenden Variablen sowie das Absolutglied (C), das Bestimmtheitsmaß (R²) und das korrigierte Bestimmtheitsmaß (AR²) als wichtige Gütemaße der Schätzgleichung dar. Zusätzlich sind die p-Werte (in Klammern) unterhalb der Koeffizientenschätzer ausgewiesen. Die Prüfmaße lassen

insgesamt zufriedenstellende Resultate erkennen. Die korrigierten Bestimmtheitsmaße der dargestellten Schätzgleichungen schwanken zwischen 0,6 und 0,9, die DW-Werte zwischen 1,1 und 2,7. Insbesondere weisen die geschätzten Regressionskoeffizienten plausible Vorzeichen (Strompreiseinfluss negativ und Produktionseinfluss positiv) auf. Hinzu kommt, dass sich für die geschätzten (Eigen-)Preiselastizitäten wie erwartet niedrige Werte ergeben, was eine weitegehend unelastische Stromnachfrage impliziert.⁴⁵

Als ein weiteres Beispiel sei an dieser Stelle der Ansatz zur Erklärung des Stromverbrauchs der Hochöfen hervorgehoben. Der Stromverbrauch der Hochöfen (EBZ54H028) steht, wie in anderen hier betrachteten, energieintensiven Subsektoren/Produktionsstufen auch, in keinem direkten Substitutionsverhältnis zu anderen Energieträgern (er wird deshalb im Industriemodell i.d.R. auch isoliert betrachtet). Seine Entwicklung hängt jedoch auf dieser Produktionsstufe der Stahlerzeugung von der permanenten Steigerung der Leistung der Hochöfen, fortschreitender Prozessautomatisierung und -steuerung sowie gestiegenen Anforderungen an die Belange des Umweltschutzes (Elektrofilter) ab. Diese Entwicklung konnte in der Stromnachfragefunktion der Hochöfen, wie in Gleichung 9 dargestellt, berücksichtigt werden.

```
9. LOG(EBZ54HO28) = 0,92*LOG(XTRE) - 0,18*LOG(XTRE/OFESBHO) +
0,06*LOG(EBZ54HO28(-1)) - 0,15*LOG(PE13ES/PE13ES(-1)) - 0,00*LOG(@TREND+1) -
0,06*D2016 + 0,09*D2019 + 0,47*C

p-Werte: 0,00; 0,47; 0,68; 0,13; 0,97; 0,17; 0,07; 0,81

R²: 0,88; AR²: 0,81; DW: 1,78; Stützzeitraum: 2003 bis 2021;

mit:

EBZ54HO28: Stromverbrauch Roheisenerz./Hochofen, (TJ);

XTRE: Produktion v. Roheisen, (Mio. t);

OFESBHO: Zahl der betriebenen Hochöfen, (Anzahl);

PE13ES: Strompreis Sektor Metallerzeugung, (€/GJ);

TREND: Trendvariable;

D2016: Dummy-Variable, (2016=1);

D2019: Dummy-Variable, (2019=1);

C: Absolutglied.
```

3.2.3 Prognose- und Simulationshilfen – Sub-Modelle Energiepreise und Produktion

Es wurde bereits erwähnt, dass längerfristige Prognosen (außerhalb des Beobachtungszeitraums im Rahmen der Frühschätzungen) oder Simulationen alternativer Szenarien mit Hilfe des hier vorgestellten Modells zur Erklärung des Energieverbrauchs in der Industrie nur durchgeführt werden können, wenn zur konsistenten Erfassung der Entwicklung wichtiger exogener Determinanten ggf. weitere Modellteile in den Erklärungsansatz eingebunden werden.

Beispielsweise stellen die Preise für Energie im hier vorgestellten Grundkonzept des Modells zur Erklärung des Endenergieverbrauchs der Industrie eine der wichtigsten Determinanten der Verbrauchsentwicklung dar. Entsprechend den Anforderungen an die Frühschätzung der Energiebilanz Deutschland (Prognose im Beobachtungszeitraum, jedoch außerhalb des Stützzeitraums des Modells) können die Energiepreise zur Durchführung der Prognose,

⁴⁵ Elektrische Energie lässt sich in den stromintensiven Industrieprozessen in kurz und mittelfristiger Perspektive üblicherweise nur in geringem Umfang einsparen. Hinzu kommt, dass die Einsparungen an den Einsatz von Kapital gebunden sind und in vielen Produktionsprozessen bereits ein hoher Stand der Technik erreicht ist bzw. Einsparpotenziale weitgehend ausgeschöpft sind.

entsprechend den bereits vorliegenden beobachteten Daten, ohne die Setzung zusätzlicher Annahmen zunächst exogen vorgegeben werden. Eine modellendogene Erklärung der Energiepreise, etwa unter Berücksichtigung der wichtigsten Bestimmungsfaktoren, wie Weltmarktpreis, Wechselkurs, Arbeits-, Vorleistungs- oder Kapitalkosten (für Sekundärenergieträger) bis hin zu Steuersätzen (Energie- und Ökosteuer, CO₂-Abgaben, Mehrwertsteuer u.a.) war zur Frühschätzung der Energiebilanz Deutschland vor diesem Hintergrund weder vorgesehen noch erforderlich.

Obwohl eine modellendogene Erklärung der Energiepreise für Belange der Frühschätzung nicht notwendig ist, hat es sich als sinnvoll erwiesen, etwa zur Durchführung von Simulationen mit dem Ziel der Überprüfung bzw. Evaluierung der Reaktionsweisen des detaillierteren Industriemodells, ein vereinfachtes Preis-Submodell zu entwickeln bzw. einzusetzen, das in der Lage ist die Entwicklung der sektoralen Energiepreise (vor allem der fossilen Energieträger) ausgehend von den Weltmarkt- bzw. Importpreisen (Rohöl, Mineralölprodukte, Erdgas und Steinkohle) über die Wechselkurse sowie Energiesteuern und Abgaben bis hin zu Endverbraucherpreisen zu erklären.

Um allerdings zu einer möglichst realitätsnahen Modellierung der sektoralen Energienachfrage (im Industriemodell) zu gelangen, müssen die Energiepreise dazu nach Abnehmerbereichen differenziert werden, weil sich u.a. Strom- und Gaspreise je nach Abnahmefall (Großabnehmer, Tarifkunde usw.) teilweise deutlich unterscheiden. Das vereinfachte Energiepreis-Submodell bildet vor diesem Hintergrund, unter Einbeziehung exogener Weltmarktpreise, Wechselkurse, inländischer Erzeugungs- bzw. Herstellungskosten (z.B. für die Braunkohle) sowie Steuern und Abgaben, in erster Linie die

- ► Energiepreise der Industrie nach Energieträgern, u.a. für Strom, Gas und Fernwärme aufgegliedert nach Branchen sowie
- die sektoralen Aggregatpreise (z.B. zur Erfassung des Preises für den gesamten Brennstoffbzw. Wärmeeinsatz der Wirtschaftszweige bzw. der neu modellierten energieintensiven Subsektoren)

ab.

Um die Auswirkungen einer Veränderung des Rohölpreises (in US-\$/barrel) auf das Energiepreissystem und damit verbundene Verschiebungen der industriellen Energienachfrage zu simulieren, wären ohne das hier skizzierte Energiepreis-Submodell eine Vielzahl von Preisvariablen "konsistent" exogen zu setzen. Über die im vorliegenden Preismodell relativ einfach spezifizierten Schätzansätze werden die erforderlichen Zusammenhänge zwischen Weltmarkt, Erzeugerpreisen und sektoral differenzierten Energiepreisen hergestellt, so dass Simulationsexperimente auf der Grundlage von Preismanipulationen ohne größeren Aufwand durchführbar sind.

Als weitere Simulationshilfe wurden vereinfachte Schätzgleichungen zur Erfassung der sektoralen Produktionsentwicklung (in der Gliederung der Energiebilanz Deutschland sowie für die neuen energieintensiven Subsektoren) genutzt. Die Gleichungen dieses ebenfalls vereinfachten Produktions-Submodells (Hilfsgleichungen) hängen in erster Linie vom Bruttoinlandsprodukt, Auftragseingängen und Energiepreisen ab.

Die Gleichungen der beiden Submodelle zur "endogenen" Erklärung der Energiepreise und der Produktionsentwicklung werden in dieser Studie nicht näher beschrieben, insbesondere werden die Schätzergebnisse/Regressionsgleichungen nicht ausgewiesen.

Vielmehr dienen die beiden Module - wie bereits erwähnt - lediglich der technischen Durchführung von Simulationsexperimenten im Zusammenhang mit der Darstellung und Überprüfung der Wirkungsweise/Plausibilisierung des weiterentwickelten Modells zur Erklärung des Energieverbrauchs der Industrie.

3.3 Modellvalidierung

In den nachfolgenden Abschnitten werden ausgewählte Aspekte des neu konzipierten und verfeinerten Modells zur Erklärung des Energieverbrauchs der Industrie diversen Tests und Verfahren zur Plausibilisierung der Modellergebnisse unterzogen.

3.3.1 Ramsey RESET

Mit Hilfe des Ramsey RESET (englisch: Ramsey **R**egression **E**quation **S**pecification **E**rror **T**est) wurden die wichtigsten Schätzgleichungen des aktualisierten Industriemodells im Hinblick auf das Auftreten von Spezifikationsfehlern (im Sinne der Wahl einer falschen Funktionsform) geprüft. Der Test prüft vereinfacht formuliert, ob nichtlineare Potenzen der zu erklärenden Variablen (Prognose) einen zusätzlichen Einfluss auf das spezifizierte Modell bzw. den Erklärungsansatz ausüben. Dazu wird eine zweite Gleichung unter Aufnahme dieser Größe geschätzt. Unter Verwendung der F-Statistik wird anschließend die Nullhypothese geprüft, dass alle geschätzten Koeffizienten dieser Potenzen in der zweiten Gleichung nicht signifikant sind bzw. den Wert Null aufweisen. Ist dies der Fall, kann die Nullhypothese nicht verworfen werden und es liegt kein Hinweis vor, dass die funktionale Form der verwendeten Variablen im ursprünglichen Schätzansatz falsch gewählt wurde. 46 Wird die Nullhypothese hingegen verworfen, besteht die Gefahr, dass im Rahmen des Modells eine falsche Funktionsform zur Aufstellung der Schätzgleichung herangezogen wurde. 47 Ungeachtet dessen ist im Zusammenhang mit der praktischen Anwendung der Testresultate zu beachten, dass der Ramsey RESET keine konkreten Hinweise dahingehend hervorbringt, welche Bestimmungsfaktoren des Energieverbrauchs ggf. in der geprüften Schätzgleichung nicht berücksichtigt wurden.

Die nachfolgenden Tabellen 6 und 7 fassen die Resultate des Ramsey RESET (p-Werte der Teststatistiken) für die wichtigsten Regressionsgleichungen des Industriemodells (bei einem Signifikanzniveau von 5 %) getrennt für die Brennstoff- und Stromnachfragefunktionen (jeweils inkl. energieintensive Subsektoren) zusammen. Die Auswertung zeigt, dass der Ramsey RESET für einen Großteil der Gleichungen keine Hinweise auf Spezifikationsfehler liefert. Darüber hinaus existieren aber auch Fälle bzw. Gleichungen, für die der Test einen Spezifikationsfehler bzw. die Nicht-Berücksichtigung wichtiger Erklärungsgrößen identifiziert.

Problematisch im Hinblick auf die Resultate des Ramsey RESET stellen sich zum einen die aktualisierten Brennstoffnachfragegleichungen für die Energiebilanzsektoren 46 und 49 ("Gewinnung von Steinen und Erden, sonst. Bergbau" sowie "Sonstige chemische Industrie") sowie im Segment der neu in das Modell aufgenommenen, energieintensiven Subsektoren die Nachfragefunktion zur Erklärung des Brennstoffeinsatzes der Walzwerke im Sektor Metallerzeugung (VEWE54WZ) dar.

Eine Überprüfung alternativer Funktionsformen (linear sowie erste Differenzen anstelle des hier gewählten logarithmischen Ansatzes) hat keine Verbesserung des Testergebnisses hervorgebracht. Das Gegenteil ist der Fall: Schätzt man z.B. die Gleichung auf der Basis der

⁴⁶ Zur Kritik und Grenzen der Aussagefähigkeit des Ramsey RESET-Tests vgl. Wooldridge, J. M. (2012), S. 307.

⁴⁷ Vgl. Auer, B. und Rottmann, H. (2020), Statistik und Ökonometrie für Wirtschaftswissenschaftler: Eine anwendungsorientierte Einführung, S. 483ff. https://doi.org/10.1007/978-3-658-30137-8.

ersten Differenzen ergeben sich für einzelne Koeffizienten zusätzlich unplausible Vorzeichen. Vor diesem Hintergrund ließe sich vermutlich ein verbessertes "ökonometrisches" Ergebnis für diese Nachfragegleichung nur erzielen, indem zusätzliche sektorspezifische Variablen in den Erklärungsansatz aufgenommen werden. Auf der Ebene der Walzwerke spielt vor allem die Technologie des "endabmessungsnahen Gießens"⁴⁸ eine erhebliche Rolle für die Entwicklung des Energieverbrauchs. Aufgrund von Einschränkungen in der Datenlage erwies es sich als unmöglich, eine Variable zu quantifizieren, die den Übergang zu immer endabmessungsnäheren Gießformen auf der Ebene der Walzwerke als Zeitreihe abbildet und als Erklärungsgröße in den Schätzansatz aufgenommen werden könnte.⁴⁹

Verwendet man zur Erklärung des Brennstoff-/Wärmeverbrauchs im Sektor "Gewinnung von Steinen und Erden, sonst. Bergbau" eine lineare Funktionsgleichung, erhöht sich der p-Wert der F-Statistik im Rahmen des Ramsey RESET auf 0,69. Bei einem Signifikanzniveau von 5 % kann die Nullhypothese nicht abgelehnt werden und es liegt kein Hinweis vor, dass die funktionale Form der verwendeten Variablen im ursprünglichen Schätzansatz falsch gewählt wurde. In den Prognosen zur Frühschätzung der Energiebilanz wird der lineare Ansatz verwendet.

Für die Verhaltensgleichung zur Erklärung des Brennstoffeinsatzes im Sektor "Sonstige Chemie" (VEWE49) konnte kein alternativer Erklärungsansatz (Funktionsform, zusätzliche Erklärungsgrößen) gefunden werden. Der Sektor zeichnet sich durch eine heterogene Produktpalette aus. Hinzu kommt, dass hier eine Vielzahl heterogener chemischer Produktionsverfahren anzutreffen sind. Die Konstruktion einer (oder mehrerer) zusätzlicher Erklärungsvariablen, die diese heterogenen Produktionsbedingungen adäquat abbilden könnte, wird zusätzlich dadurch erschwert, dass kaum empirisch fassbare Zusatzinformationen zu diesen einzelnen Produktionsprozessen (und dem damit verbundenen Energieverbrauch) verfügbar sind. Die Gleichung wird vor diesem Hintergrund trotz der skizzierten Einschränkungen bis auf weiteres beibehalten.

Tabelle 6: Ergebnisse des Ramsey RESET für Brennstoffnachfragefunktionen

Modell zur Erklärung des Energieverbrauchs der Industrie (Industriemodell, Version 2023)

Variable	p-Werte der F-Statistik
VEWE46	0,00
VEWE47	0,64
VEWE48	im erweiterten Modell Sub-Sektoren, siehe diese Tabelle unten
VEWE49	0,00
VEWE50	0,12
VEWE51	0,08
VEWE52	0,33

⁴⁸ Die Grundidee beim sog. "endabmessungsnahen Gießens" besteht darin, dass sich bereits der Stahlguss an der angestrebten Form des Endproduktes orientiert, so dass sich der Aufwand für weitere Umformschritte im Walzwerk und der damit verbundene Energieverbrauch auf ein Minimum reduzieren lässt.

⁴⁹ Inwiefern ein solcher Indikator zum Zeitpunkt der Frühschätzung (15. Februar) für Berichtsjahre von t-1 als beobachtete Größe (und nicht als Schätzung) vorläge, um die Prognose tatsächlich zu verbessern, muss an dieser Stelle ebenfalls als Frage offenbleiben.

⁵⁰ Zur Verbesserung des Schätzansatzes wäre eine Detaillierung des Energieverbrauchs bzw. eine Erklärung der Verbrauchsentwicklung differenziert nach chemischen Produktionsverfahren hilfreich, die in dieser Studie nicht vorgehsehen bzw. angestrebt ist.

Variable	p-Werte der F-Statistik
VEWE53	im erweiterten Modell Sub-Sektoren, siehe diese Tabelle unten
VEWE54	im erweiterten Modell Sub-Sektoren, siehe diese Tabelle unten
VEWE55	0,81
VEWE56	0,94
VEWE57	0,29
VEWE58	0,94
VEWE59	0,24
VEWE48HZ	0,11
VEWE48PP	0,40
VEWE53ZE	0,49
VEWE53KA	0,66
VEWE54SI	0,33
VEWE54HO	0,32
VEWE54OX	0,34
VEWE54EL	0,14
VEWE54WZ	0,01

Quelle: Eigene Berechnungen EEFA und ZSW.

Die Funktionen zur Schätzung der Stromnachfrage wurden im Lichte der Ergebnisse des Ramsey RESET ebenfalls einer kritischen Überprüfung unterzogen. Diese ergab, dass die Erklärungsansätze zur Erfassung der Stromnachfrage in den Sektoren "Gummi- u. Kunststoffwaren" (EBZ51S28), "Metallbearbeitung" (EBZ56S28) sowie in den Subsektoren "Herstellung von Waren aus Papier, Karton und Pappe" (EBZ48PP28, ex EBZ 48, WZ 17.2) und "Oxygenstahlstahlerzeugung" (EBZ54OX28, ex EBZ 54) durch Veränderung der Funktionsform keine besseren Resultate im Zusammenhang mit dem Ramsey RESET erzielte. Weitere Erklärungsgrößen, die zudem zum Zeitpunkt der Frühschätzung idealerweise bereits als beobachtete Variablen vorliegen, konnten für diese Schätzgleichungen zum gegenwärtigen Zeitpunkt nicht ermittelt werden.

Tabelle 7: Ergebnisse des Ramsey RESET für Stromnachfragefunktionen

Modell zur Erklärung des Energieverbrauchs der Industrie (Industriemodell, Version 2023)

Variable	p-Werte der F-Statistik
EBZ46S28	0,93
EBZ47S28	0,06
EBZ48S28	im erweiterten Modell Sub-Sektoren, siehe diese Tabelle unten
EBZ49S28	0,11

Variable	p-Werte der F-Statistik
EBZ50S28	0,95
EBZ51S28	0,00
EBZ52S28	0,73
EBZ53S28	im erweiterten Modell Sub-Sektoren, siehe diese Tabelle unten
EBZ54S28	im erweiterten Modell Sub-Sektoren, siehe diese Tabelle unten
EBZ55S28	0,67
EBZ56S28	0,02
EBZ57S28	0,95
EBZ58S28	0,34
EBZ59S28	0,49
EBZ48HZ28	0,55
EBZ48PP28	0,01
EBZ53ZE28	0,52
EBZ53KA28	0,15
EBZ54SI28	0,15
EBZ54HO28	0,07
EBZ54OX28	0,01
EBZ54EL28	0,59
EBZ54WZ28	0,81

Quelle: Eigene Berechnungen EEFA und ZSW.

3.3.2 Ex-post-Prognose innerhalb des Stützzeitraums des Modells – Auswertung aggregierter Fehlermaße (2012 bis 2021)

Mit Hilfe einer dynamischen Ex-post-Prognose im Stützzeitraum des Modells zur Erklärung der Energienachfrage der Industrie, die für den Zeitraum 2012 bis 2021 durchgeführt wurde, kann ein Eindruck von der Validität des gesamten Systems gewonnen bzw. das Anpassungsverhalten des Gesamtmodells innerhalb des Stützzeitraums analysiert werden. Dabei werden die exogenen Variablen entsprechend ihren beobachteten Werten gesetzt, sodass Abweichungen der endogenen Größen ausschließlich auf die Anpassungseigenschaften der stochastischen Gleichungen zurückzuführen sind.

Zur Überprüfung der Qualität empirischer Modelle kann auf verschiedene statistische Prüfmaße zurückgegriffen werden. Zur Beschreibung des Anpassungsverhaltens des verbesserten Industriemodells wurden in dieser Studie folgende statistische Prüfmaße ausgewählt⁵¹:

⁵¹ Eine genauere Beschreibung und Interpretation der genannten Prüfmaße findet sich u.a. in der Vorgängerstudie EEFA/ZSW (2023), Kapitel 4, S. 63ff.

- mittlerer absoluter prozentualer Fehler (MAPE),
- mittlerer Fehler (MEAN),
- mittlerer absoluter Fehler (MAE) sowie
- die Wurzel aus dem mittleren quadratischen Fehler (RMSE).

Bewertet man nun anhand der dargestellten Prüfmaße die Resultate der Ex-post-Prognose (2012 bis 2021) für das Industriemodell, so zeigt sich, dass die geschätzten Werte der Zielgröße (gesamter Endenergieverbrauch der Industrie, EBZ60S33) die beobachteten Daten recht gut widerspiegeln: Hier liegt der MAPE bei 1,08 %. In den einzelnen Energiebilanzsektoren (Energiebilanzzeilen 46 bis 59) variieren die MAPE zwischen 0,84 % und maximal 4,18 %.

Für weitere zentrale Kopfgrößen (Brennstoff- bzw. Wärmeeinsatz des Modells nach Wirtschaftszweigen) liegt der Gesamtfehler (MAPE für den Zeitraum von 2012 bis 2021) mit 1,61 % geringfügig höher. Der MAPE schwankt zwischen 1,04 % (VEWE47, Ernährung und Tabak) und 7,7 % (VEWE57, Maschinenbau).

Die Gleichungen zur Erklärung des sektoralen Stromverbrauchs weisen MAPE in der Größenordnung zwischen 1,04 % (EBZ48S28, Papiergewerbe) und 7,12 % (EBZ56S28, Metallbearbeitung) auf. Bezogen auf den industriellen Stromverbrauch insgesamt resultiert daraus eine mittlere, absolute, prozentuale Abweichung zwischen der beobachteten und der prognostizierten Entwicklung in Höhe von 1,12 % (für den Ex-post-Zeitraum von 2012 bis 2021).

Tabelle 8 fasst die Fehlermaße der Ex-post-Prognose für die wichtigsten Kopfgrößen der aktuellen, verbesserten Modellversion (EBZ_iS33=Energieverbrauch des Sektors/Energiebilanzzeile insgesamt; VEWE_i=Brennstoffeinsatz des Sektors/Energiebilanzzeile insgesamt sowie schließlich EBZ_iS28=Stromverbrauch des Sektors/Energiebilanzzeile insgesamt) zusammen.

Tabelle 8: Fehleranalyse des Industriemodells nach Sektoren (Kopfgrößen)

Ergebnisse einer dynamischen Ex-post-Prognose von 2012 bis 2021, Energie-, Brennstoff- und Stromverbrauch

Variable	МАРЕ	MEAN	MAE	RMSE
EBZ46S33	3,64	-284,14	554,38	698,12
EBZ47S33	0,84	305,35	1.786,77	2.259,28
EBZ48S33	1,82	-859,05	3.963,78	4.821,39
EBZ49S33	2,68	13.309,28	14.090,32	19.933,66
EBZ50S33	3,87	-2.249,52	3.465,11	4.049,87
EBZ51S33	2,11	-1.606,97	1.647,85	2.122,53
EBZ52S33	1,79	-267,69	1.498,36	1.802,16
EBZ53S33	1,38	-328,18	2.743,54	3.293,41
EBZ54S33	3,96	21.185,37	21.185,37	23.205,75
EBZ55S33	2,40	-1.875,58	2.734,57	4.031,66
EBZ56S33	3,79	-1.967,40	4.056,27	4.892,51

Variable	МАРЕ	MEAN	MAE	RMSE
EBZ57S33	4,18	-2.319,77	2.999,20	3.276,28
EBZ58S33	2,53	562,18	3.095,64	3.787,99
EBZ59S33	2,24	-844,39	4.352,61	4.985,36
EBZ60S33	1,08	22.759,50	28.077,90	38.367,88
VEWE46	6,08	-165,63	504,86	638,87
VEWE47	1,04	872,91	1.522,44	1.734,73
VEWE48	2,59	-556,48	3.880,71	4.658,56
VEWE49	3,54	12.215,64	12.781,43	19.184,13
VEWE50	4,76	-1.741,04	3.065,14	3.521,84
VEWE51	2,70	-290,64	823,37	1.082,19
VEWE52	1,99	-195,25	1.319,81	1.595,35
VEWE53	1,47	-234,02	2.520,25	3.048,27
VEWE54	1,12	1.422,67	5.205,57	5.942,90
VEWE55	2,46	-905,22	1.284,18	1.732,09
VEWE56	2,94	-1.170,88	1.547,71	2.220,46
VEWE57	7,70	-2.029,01	2.516,73	2.961,74
VEWE58	4,22	2.450,02	2.529,92	3.086,45
VEWE59	2,35	-41,98	2.742,58	3.740,70
VEWE60	1,61	28.914,10	28.914,10	38.478,14
EBZ46S28	2,09	-118,51	132,04	152,19
EBZ47S28	1,32	-567,58	875,43	1.290,29
EBZ48S28	1,04	-302,57	701,93	785,96
EBZ49S28	0,94	1.093,65	1.574,22	1.924,07
EBZ50S28	2,13	-508,49	534,87	657,37
EBZ51S28	3,08	-1.316,33	1.506,64	1.967,13
EBZ52S28	1,74	-72,44	302,26	366,58
EBZ53S28	1,13	-94,16	310,35	367,72
EBZ54S28	1,12	479,79	806,53	1.036,03
EBZ55S28	4,10	-970,36	2.632,80	3.288,94
EBZ56S28	7,12	-796,52	3.919,72	4.426,17
EBZ57S28	2,99	-290,75	1.131,41	1.368,89
EBZ58S28	4,46	-1.887,83	2.722,49	3.220,29

Variable	МАРЕ	MEAN	MAE	RMSE
EBZ59S28	2,05	-802,42	1.610,02	1.947,64
EBZ60S28	1,17	-6.154,53	9.173,29	12.081,85

Quelle: Eigene Berechnungen EFFA und ZSW.

Bei der Interpretation der Fehlermaße ist zu beachten, dass sich Abweichungen zwischen beobachteter und geschätzter Entwicklung für die drei Wirtschaftszweige Papiergewerbe (EBZ 48), Verarbeitung von Steinen und Erden (EBZ 53) und Metallerzeugung (EBZ 54) aus dem Zusammenspiel der neu in das Modell aufgenommenen Subsektoren ergeben.

Vor diesem Hintergrund sind hier auch die Fehlermaße der Ex-post-Prognose für die einzelnen, im Modell berücksichtigten, energieintensiven Subsektoren dargestellt (vgl. Tabelle 9). In einzelnen Subsektoren, wie z.B. bei der Erklärung des Energie- bzw. Brennstoffverbrauchs der Frischdampfkesselhäuser als Subsektor der Metallerzeugung (EBZ 54, ex WZ 24.1) fällt die Anpassung an die Ex-post-Entwicklung (MAPE: 12,07 %) etwas schlechter aus. Im Hinblick auf das Gesamtergebnis ist der Energieverbrauch des Subsektors allerdings von untergeordneter Bedeutung (2021 entfiel auf die Frischdampfkesselhäuser ein Anteil von ca. 4 % gemessen am gesamten Energieverbrauch der Stahlindustrie).

Tabelle 9: Fehleranalyse des Industriemodells (energieintensive Subsektoren EBZ 48, 53 u. 54)

Ergebnisse einer dynamischen Ex-post-Prognose von 2012 bis 2021; Energie-, Brennstoff- u. Stromverbrauch

Variable	МАРЕ	MEAN	MAE	RMSE
EBZ48HZ33	2,24	-611,26	3.949,18	4.418,89
EBZ48PP33	3,87	-247,78	1.514,17	1.737,94
EBZ53ZE33	2,14	-178,51	2.202,77	2.593,59
EBZ53KA33	1,37	-64,00	396,97	471,76
EBZ53UE33	1,21	-85,68	764,28	1.010,52
EBZ54DA33	12,07	-977,30	2.249,20	2.740,32
EBZ54SI33	2,99	-111,95	1.538,57	1.774,56
EBZ54HO33	2,18	1.732,13	6.910,51	8.952,01
EBZ54EL33	2,38	-122,78	738,27	994,36
EBZ54OX33	4,72	413,96	454,95	489,65
EBZ54WZ33	3,35	507,99	2.517,77	2.969,21
EBZ54WV33	3,43	256,79	1.161,59	2.135,72
VEWE48HZ	3,31	-578,71	4.043,77	4.491,08
VEWE48PP	4,32	22,24	1.087,29	1.418,96
VEWE53ZE	2,52	-80,89	2.248,10	2.624,89
VEWE53KA	1,34	-3,78	358,20	438,04
VEWE53UE	1,50	-149,34	775,65	975,23

Variable	МАРЕ	MEAN	MAE	RMSE
VEWE54DA	12,17	-970,73	2.242,84	2.730,44
VEWE54SI	3,10	-153,84	1.483,94	1.740,00
VEWE54HO	2,22	1.718,56	6.852,84	8.918,18
VEWE54EL	5,07	21,59	273,21	359,13
VEWE54OX	2,42	24,02	91,61	119,33
VEWE54WZ	4,18	623,13	2.411,78	2.746,92
VEWE54WV	3,88	159,98	813,62	1.639,58
EBZ48HZ28	0,59	-32,55	314,11	372,20
EBZ48PP28	3,63	-270,02	501,31	571,94
EBZ53ZE28	0,98	-97,61	129,67	169,10
EBZ53KA28	3,90	-60,22	92,48	110,65
EBZ53UE28	2,81	63,67	323,29	363,84
EBZ54DA28	6,77	-6,57	13,50	17,19
EBZ54SI28	2,81	41,89	101,27	127,46
EBZ54HO28	1,68	13,56	133,28	191,85
EBZ54EL28	2,65	-144,37	662,05	815,93
EBZ54OX28	7,26	389,94	422,80	450,10
EBZ54WZ28	2,85	-115,14	482,70	574,11
EBZ54WV28	4,61	96,81	557,58	756,51

Quelle: Eigene Berechnungen EEFA und ZSW.

Abschließend zeigt Tabelle 10 die Ex-post-Anpassung des Modells für die Industrie (Energiebilanzzeile 60) auf der Ebene einzelner Energieträger. Die größte Abweichung von den beobachteten Daten im Ex-post-Zeitraum von 2012 bis 2021 ist bei den erneuerbaren Energieträgern und Mineralölen mit jeweils ca. 8 % (bezogen auf den MAPE) festzustellen. Für die übrigen Energieträger variiert die Ex-post-Abweichung zwischen 1,2 und 5,4 %.

Außerdem ist darauf hinzuweisen, dass im Rahmen der vorliegenden Ex-post-Prognose für den Zeitraum von 2012 bis 2021 endogene Preise oder die sektorale Produktionsentwicklung nicht berücksichtigt sind. Der Grund hierfür ist, dass im Zusammenhang mit der Frühschätzung der Energiebilanz Deutschland für diese Variablen in der Regel auf beobachtete Größen zurückgegriffen wird. Die Frühschätzung der Energiebilanz stellt also formal eine Prognose außerhalb des Stützzeitraums des Modells, jedoch innerhalb des Beobachtungszeitraum der exogenen Variablen dar.

⁵² Bei der Interpretation ist zu berücksichtigten, dass die Schätzung der erneuerbaren Energieträger im Modell lediglich aus Konsistenzgründen erfolgt. Im Zusammenhang mit der Frühschätzung der Energiebilanz Deutschland werden Daten zur Entwicklung der erneuerbaren Energien aus Schätzungen der AGEE-Stat übernommen.

Tabelle 10: Fehleranalyse des Industriemodells ("fuel switch", EBZ 60)

Ergebnisse einer dynamischen Ex-post-Prognose von 2012 bis 2021; Energieverbrauch der Industrie nach Energieträgern

Variable	МАРЕ	MEAN	MAE	RMSE
EBZ60SK	1,86	1.048,11	6.507,51	7.680,62
EBZ60BK	4,71	812,96	3.383,78	4.626,07
EBZ60MO	8,08	-7.971,77	8.214,20	9.043,78
EBZ60GA	4,05	36.557,51	36.557,51	38.588,98
EBZ60EE	8,05	-9.102,03	9.102,03	9.403,57
EBZ60S27	5,44	-801,85	3.892,08	4.687,91
EBZ60S28	1,17	-6.154,53	9.173,29	12.081,85
EBZ60S29	0,00	0,00	0,00	0,00
EBZ60S30	4,91	8.371,08	8.937,72	10.362,39

Quelle: Eigene Berechnungen EEFA und ZSW. EBZ60=Endenergieverbrauch Industrie, insgesamt; SK=Steinkohle, BK=Braunkohle, MO=Mineralöl, GA=Gase, EE=Erneuerbare Energien, S27=Sonstige Energieträger, S28=Strom, S29=Kernenergie, S30=Fernwärme.

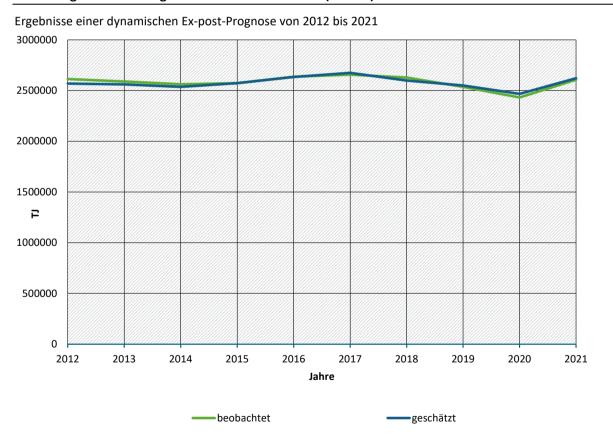
Es liegt auf der Hand, dass zur Erstellung längerfristiger Prognosen (für Zeiträume außerhalb des Beobachtungszeitraums, gegenwärtig also ab dem Prognosejahr 2023) die im Modell genutzten exogenen Variablen über eigene Modellteile erklärt bzw. endogenisiert werden müssen⁵³.

Ähnliches gilt, wenn mit Hilfe des Modells Simulationen alternativer Entwicklungspfade durchgeführt werden sollen. Die Endogenisierung zusätzlicher Modellteile führt dazu, dass sich die Anpassungsgüte des Modells (und die damit verbundenen Prognoseresultate) verändern.

Im hier vorliegenden konkreten Fall erhöht sich der mittlere prozentuale Fehler bezogen auf den gesamten Endenergieverbrauch des Verarbeitenden Gewerbes und der Gewinnung von Steinen und Erden (ermittelt aus einer Ex-post-Prognose für die Jahre 2012 bis 2021) von ca. 1,1 % (s.o.) auf 2,6 %, sofern das Modell anstelle der beobachteten Energiepreisentwicklung im Ex-post-Zeitraum auf die Prognoseergebnisse eines Energiepreismodells (ohne Strom) zurückgreift und für die Entwicklung der Produktion nach Branchen ökonometrische Schätzgleichungen verwendet werden.

⁵³ Zur sachgerechten Ableitung makroökonomischer und sektoraler Entwicklungen müsste auf ein integriertes Energie- und InputOutput-Modell zurückgegriffen werden, welches die Interdependenzen zwischen der Energiepreisentwicklung und damit
verbundenen sektoralen Energiekosten- und Preisimpulsen einschließlich makroökonomischer Veränderungen
(Bruttoinlandsprodukt, Produktionswerte nach Wirtschaftszweigen usw.) erfassen bzw. unter Vorgabe verschiedener Prämissen
konsistent prognostizieren kann. Es versteht sich von selbst, dass aus Platz- und Zeitgründen eine vollständige Darstellung dieser
umfassenden Modelle an dieser Stelle nicht möglich ist. Einzelheiten dazu vgl. Hillebrand, B.; Kiy, M. und Neuhaus, R. (1989), Das
RWI-Strukturmodell: Konzeption Hypothesen und Wirkungsanalysen, RWI-Papiere, Nr. 19, Rheinisch-Westfälisches Institut für
Wirtschaftsforschung, Essen.; Oberstraß, M. (1999), Ein makroökonometrisches Modell zur Abbildung des Zusammenhangs von
Strukturwandel und Umweltbelastung dargestellt am Beispiel der Simulation der Einführung einer kompensierten
Primärenergiesteuer, Verlag für Wissenschaft und Forschung, Berlin sowie Rheinisch-Westfälisches Institut für
Wirtschaftsforschung (1987).

3.3.3 Ex-post-Prognose innerhalb des Stützzeitraums des Modells – Grafische Darstellung ausgewählter Bereiche (2012 bis 2021)


Die nachfolgenden Abbildungen bieten zusätzlich zu den aggregierten Fehlermaßen eine grafische Auswertung der mit dem verbesserten Modell zur Erklärung des Energieverbrauchs in der Industrie im Rahmen der dynamischen Ex-post-Prognose gewonnenen Resultate bzw. Schätzergebnisse.

Die Schaubilder zeigen die Abweichungen (für jedes Berichtsjahr) im Zeitraum von 2012 bis 2021. Dargestellt werden die Schätzergebnisse für die Industrie als Ganzes, nach Energieträgern und nach Sektoren (vgl. die Abbildungen 3 bis 6).

Die Abbildungen 7 und 8 veranschaulichen die Ex-post-Anpassungen in den Subsektoren des Papiergewerbes (EBZ 48) und Verarbeitung von Steinen und Erden (EBZ 53), jeweils differenziert nach Energieverbrauch, Brennstoff- und Wärmeverbrauch sowie Verbrauch an elektrischem Strom.

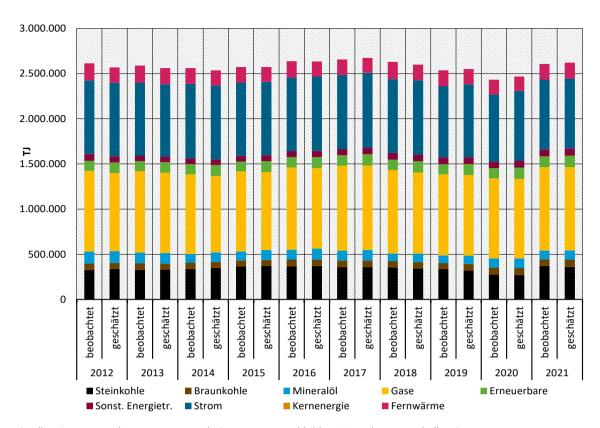

Die Schätzergebnisse der Ex-post-Prognose zur Entwicklung des Energieverbrauchs und des Brennstoffeinsatzes im Sektor "Metallerzeugung" nach Produktionsstufen werden in den Abbildungen 9 und 10 der beobachteten Entwicklung in den Jahren 2012 bis 2021 gegenübergestellt. Auf eine Darstellung der Schätzergebnisse des Stromverbrauchs der Metallerzeugung nach Produktionsstufen wurde verzichtet.

Abbildung 3: Endenergieverbrauch der Industrie (EBZ 60)

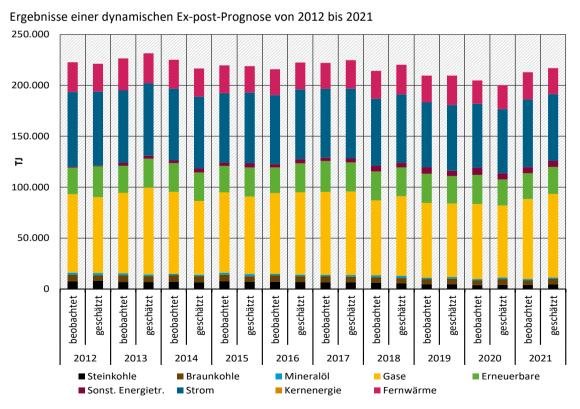
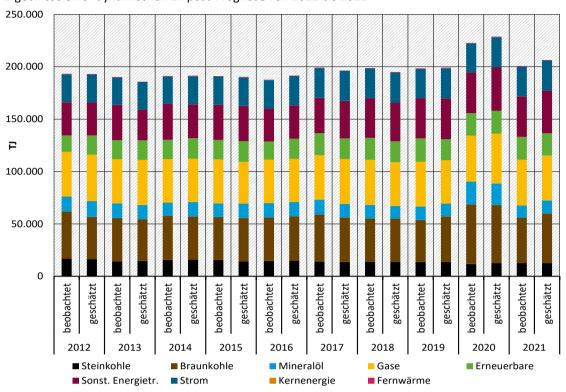
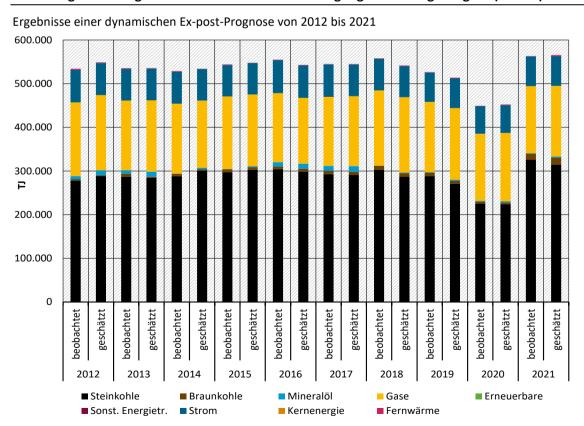

 $\label{thm:continuous} \textbf{Quelle: Eigene Berechnungen EEFA und ZSW. Daten zur Abbildung im Anhang B, Tabelle B1.}$

Abbildung 4: Endenergieverbrauch der Industrie nach Energieträgern (EBZ 60)

Quelle: Eigene Berechnungen EEFA und ZSW. Daten zur Abbildung im Anhang B, Tabelle B2.

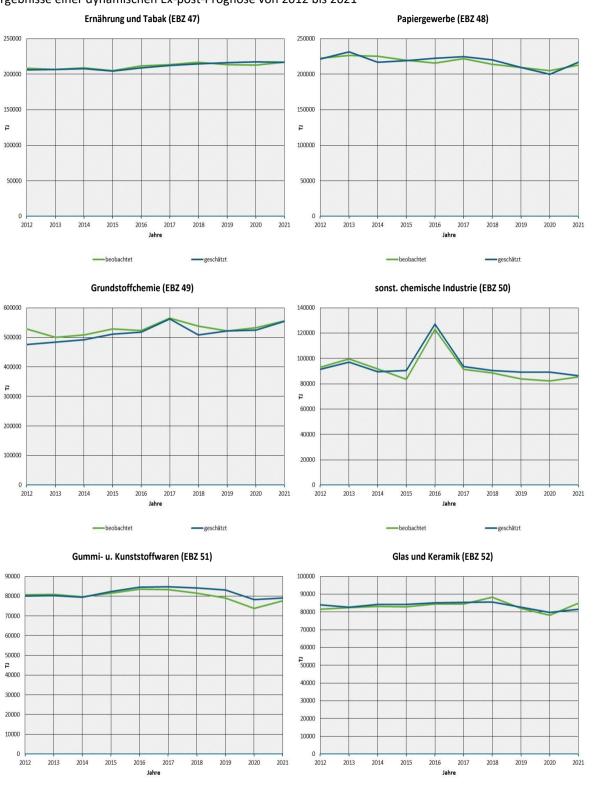

Abbildung 5: Energieverbrauch Sektor Papiergewerbe nach Energieträgern (EBZ 48)

Quelle: Eigene Berechnungen EEFA und ZSW. Daten zur Abbildung im Anhang B, Tabelle B3.


Abbildung 6: Energieverbrauch Sektor Ver. v. Steinen u. Erden nach Energieträgern (EBZ 53)

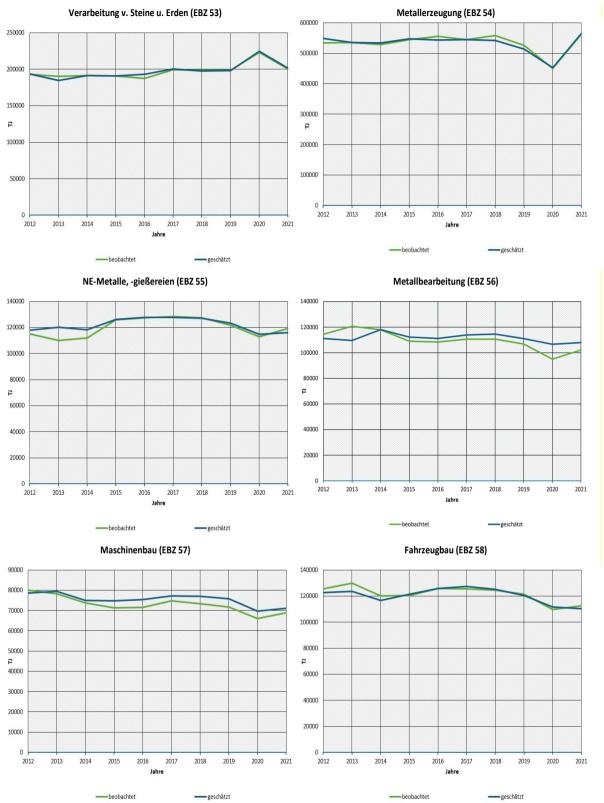
Ergebnisse einer dynamischen Ex-post-Prognose von 2012 bis 2021

Quelle: Eigene Berechnungen EEFA und ZSW. Daten zur Abbildung im Anhang B, Tabelle B4.


Abbildung 7: Energieverbrauch Sektor Metallerzeugung nach Energieträgern (EBZ 54)

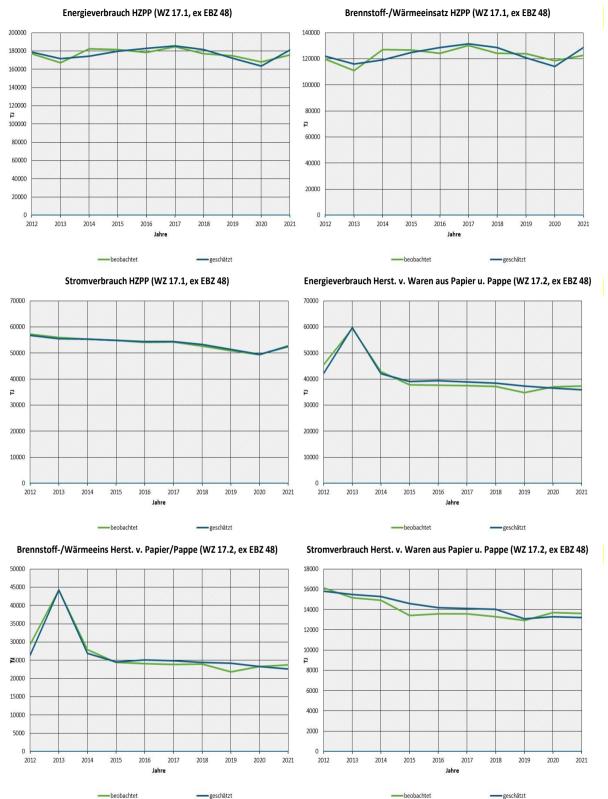
Quelle: Eigene Berechnungen EEFA und ZSW. Daten zur Abbildung im Anhang B, Tabelle B5.

Abbildung 8: Endenergieverbrauch ausgewählter Industriesektoren (1)


Ergebnisse einer dynamischen Ex-post-Prognose von 2012 bis 2021

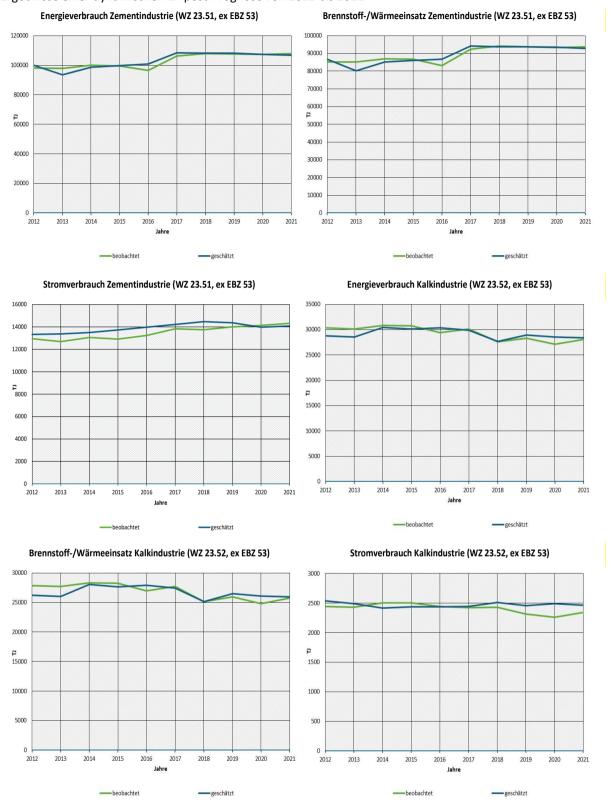
Quelle: Eigene Berechnungen EEFA und ZSW. Daten zur Abbildung im Anhang B, Tabelle B6.

Abbildung 9: Endenergieverbrauch ausgewählter Industriesektoren (2)


Ergebnisse einer dynamischen Ex-post-Prognose von 2012 bis 2021

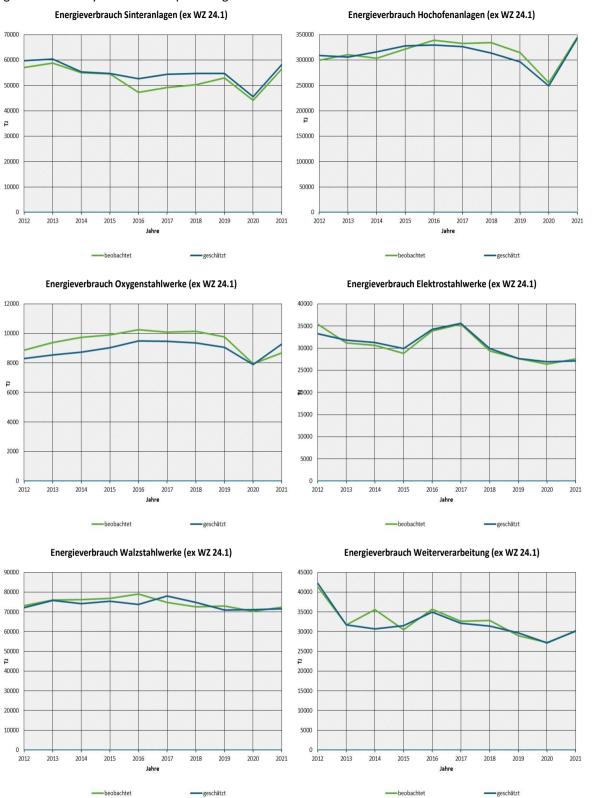
Quelle: Eigene Berechnungen EEFA und ZSW. Daten zur Abbildung im Anhang B, Tabelle B7.

Abbildung 10: Endenergieverbrauch Subsektoren Papiergewerbe (ex EBZ 48)


Ergebnisse einer dynamischen Ex-post-Prognose von 2012 bis 2021

Quelle: Eigene Berechnungen EEFA und ZSW. Daten zur Abbildung im Anhang B, Tabelle B8.

Abbildung 11: Endenergieverbrauch Subsektoren Verarb. v. Steinen u. Erden (ex EBZ 53)


Ergebnisse einer dynamischen Ex-post-Prognose von 2012 bis 2021

Quelle: Eigene Berechnungen EEFA und ZSW. Daten zur Abbildung im Anhang B, Tabelle B9.

Abbildung 12: Endenergieverbrauch Sektor Metallerzeugung nach Produktionsstufen (ex EBZ 54)

Ergebnisse einer dynamischen Ex-post-Prognose von 2012 bis 2021

Quelle: Eigene Berechnungen EEFA und ZSW. Daten zur Abbildung im Anhang B, Tabelle B10.

Abbildung 13: Brennstoffeinsatz Sektor Metallerzeugung nach Produktionsstufen (ex EBZ 54)

Ergebnisse einer dynamischen Ex-post-Prognose von 2012 bis 2021 Brennstoff-/Wärmeeinsatz Sinteranlagen (ex WZ 24.1) Brennstoff-/Reduktionsmitteleinsatz Hochofenanlagen (ex WZ 24.1) Brennstoff-/Wärmeeinsatz Oxygenstahlwerke (ex WZ 24.1) Brennstoff-/Wärmeeinsatz Elektrostahlwerke (ex WZ 24.1) beobachtet -geschätzt - geschätzt Brennstoff-/Wärmeeinsatz Walzstahlwerke (ex WZ 24.1) Brennstoff-/Wärmeeinsatz Weiterverarbeitung (ex WZ 24.1)

Quelle: Eigene Berechnungen EEFA und ZSW. Daten zur Abbildung im Anhang B, Tabelle B11.

-geschätzt

-beobachtet

Schließlich stellen die Abbildungen 11 bis 13 die geschätzte Entwicklung des Energieverbrauchs differenziert nach Energieträgern, für die in der vorliegenden Modellversion 2023 nach

eeschätzt

Subsektoren untergliederten, energieintensiven Wirtschaftszweige Papiergewerbe (EBZ 48), Verarbeitung von Steinen und Erden (EBZ 53) sowie Metallerzeugung (EBZ 54) dar bzw. vergleichen die Resultate der dynamischen Ex-post-Prognose ebenfalls mit den Entwicklungen.

Zur abschließenden, besseren Einordnung der hier vorgestellten Ex-Post-Prognoseergebnisse (für Zeiträume von 2012 bis 2021) mit dem erweiterten Modell zur Erklärung des Energieverbrauchs der Industrie im Zusammenhang mit den spezifischen Anforderungen im Rahmen der Frühschätzung bzw. Prognose der Energiebilanz Deutschland, sei an dieser explizit daran erinnert, dass die dynamische Ex-Post-Prognose ausschließlich für den Startwert der Simulation auf die beobachteten Daten der endgültigen (revidierten) Energiebilanz (hier konkret das Jahr 2010) zurückgreift. Für die Folgejahre (2012 bis 2021) werden bei einer dynamischen Ex-Post-Prognose im Gegensatz zu einer statischen für Bezugspunkte von t-1 stets die Modellergebnisse (Schätzwerte der laufenden Simulation) herangezogen. Die dynamische Ex-Post-Prognose zeigt vor diesem Hintergrund, dass das neue Modell auch über einen längeren Prognosezeitraum (ohne Rückgriff auf die beobachteten Daten der Energiebilanz Deutschland) stabil läuft (und deshalb auch für weiter in Zukunft reichende Prognosen eingesetzt werden könnte).

Die Frühschätzung der Energiebilanz Deutschland bzw. des industriellen Endenergieverbrauchs differenziert nach Wirtschaftszweigen und Energieträgern beschränkt sich hingegen auf Prognosezeiträume von t+1, wobei die Schätzung für das jeweilige Vorjahr (t) bereits auf die beobachteten Daten der endgültigen Energiebilanz Deutschland für dieses Jahr zurückgreift. Sie gleicht also letztendlich eher einer statischen Prognose, die im konkreten Fall der hier vorliegenden Studie ausgehend von der endgültigen Energiebilanz Deutschland 2021 die Daten für Bilanz 2022 schätzt. Verzerrungen, die im Zusammenhang mit einer dynamischen Modell-Prognose über längere Zeiträume (10 oder 20 Jahre) theoretisch auftreten könnten, spielen für diese kurzfristige Perspektive also eher eine untergeordnete Rolle.

3.3.4 Simulation im Ex-post-Zeitraum

Schätzungen bzw. Fortschreibungen mit Hilfe des hier vorgestellten Modellrahmens sind grundsätzlich als bedingte Prognosen zu verstehen, die die zukünftige Entwicklung der Energienachfrage bei Vorgabe wichtiger exogener Faktoren beschreiben. Da eine Voraussage dieser exogenen Variablen in der Regel selbst mit erheblichen Unsicherheiten behaftet ist, werden im folgenden einzelne Größen variiert und ihre Auswirkungen auf die Energienachfrage der Industrie als Ganzes sowie in den wichtigsten Wirtschaftsbereichen dargestellt.

Grundsätzlich sind die hier vorgestellten Simulationen nicht als "echte" Szenarienrechnung zu verstehen, sondern als Setzungen, die die Sensitivität bzw. realistische Bandbreite der Reaktionen auf veränderte exogene Randbedingungen verdeutlichen. Insofern dienen die Simulationsergebnisse als weiterer Baustein zu Plausibilisierung bzw. Überprüfung der Modellstabilität und -validität.

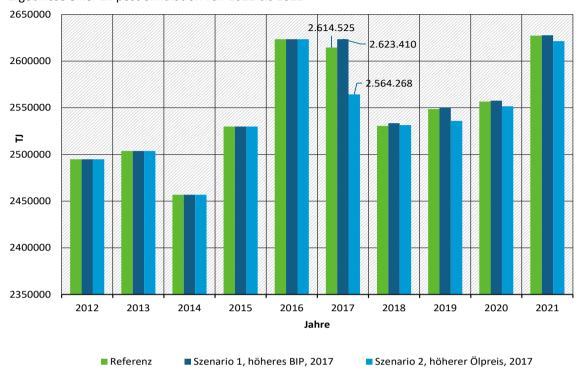
Vor diesem Hintergrund wurden zwei Szenarien gebildet, ein Szenario "höheres Wirtschaftswachstum" und ein Szenario "hoher Ölpreis / Ölpreisschock". Die konkreten Annahmen bzw. Setzungen sind wie folgt:

Szenario 1: Das Bruttoinlandsprodukt (real) ist im Jahr 2017 höher ausgefallen als beobachtet. Die deutsche Wirtschaft ist unter diesen Rahmenbedingungen nicht wie beobachtet um rund 2,7 % gegenüber dem Vorjahr (auf eine Wirtschaftsleistung von 3.176 Mrd. €), sondern um 4 % auf 3.217 Mrd. € im Jahr 2017 gewachsen. Die Zunahme des Wirtschaftswachstums gegenüber dem Referenzfall (z.B. aufgrund höherer Impulse aus dem Welthandel) überträgt sich (sektoral differenziert) auf die Produktionsentwicklung und den Energieverbrauch der Branchen.

➤ Szenario 2: Der Rohölpreis (in US-Dollar je Barrel)⁵⁴, der sich 2017 gegenüber dem Vorjahr von rund 43 US-\$/bbl auf 55 US-\$/bbl bzw. 27 % erhöhte, nimmt unter den in Szenario 2 herrschenden Bedingungen gegenüber dem Vorjahr um 84 % zu und erreicht 2017 ein Niveau von 80 US-\$/bbl. Verglichen mit dem Referenzfall liegt der Rohölpreis je Barrel im Jahr 2017 folglich um 55,4 % höher.

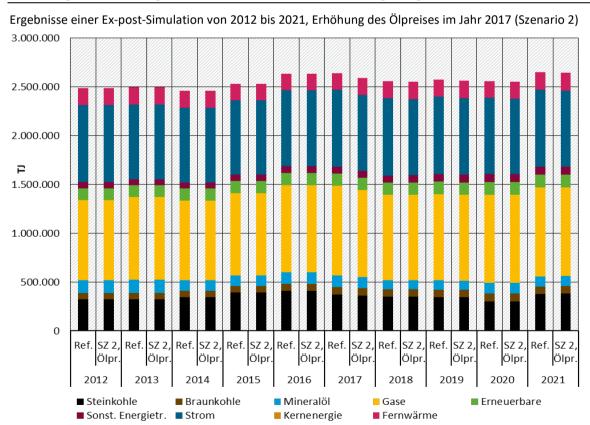
Unter den genannten Prämissen verändert sich der Endenergieverbrauch der Industrie im Vergleich zum Referenzszenario, welches die Entwicklung ohne die abweichenden Setzungen der ökonomischen Rahmenbedingungen abbildet. Das erhöhte Wirtschaftswachstum (Szenario 1) hat einen Anstieg des Endenergieverbrauchs im Jahr 2017 um 0,34 % gegenüber dem Referenzszenario zur Folge. Offensichtlich können energieextensivere Branchen von zusätzlichen Wachstumsimpulsen (Szenario 1) stärker profitieren als energieintensive Wirtschaftszweige. Die "totalanalytisch", also im Wege der skizzierten Simulation mit dem Industriemodell ermittelte BIP- bzw. Produktionselastizität des industriellen Endenergieverbrauchs55, liegt nach diesen Berechnungen bei 0,28 (vgl. Abbildung 14).

Die singuläre Erhöhung des Rohölpreises im Jahr 2017 (Szenario 2, vgl. Abbildung 15) hat größere Auswirkungen auf die Entwicklung des Endenergieverbrauchs in der Industrie. Der Grund hierfür ist, dass (extreme) Preisausschläge nicht auf die Erdöl- bzw. Rohölmärkte beschränkt bleiben, sondern das gesamte Energiepreissystem beeinflussen. Ein produktionsbedingter, direkter Zusammenhang besteht zwischen den Rohölpreisen und den aus Roh- bzw. Erdöl gewonnenen Mineralölprodukten. Je nach Marksituation (Substitutionskonkurrenz) sind über die Kosten- und Preisimpulse bei Mineralölerzeugnissen in diesem Szenario auch Preissteigerungen bei anderen Importenergien (Erdgas, Steinkohle) zu erwarten, die i.d.R. zeitlich verzögert und typischerweise auch weniger ausgeprägt auftreten.


Die Preisimpulse auf den Energiemärkten können (auch bei entsprechenden Anpassungsreaktionen in der Energieerzeugung und Wirtschaft) nicht vollständig neutralisiert werden und belasten die Industrie bzw. produzierende Wirtschaft. Die zusätzliche Belastung hängt in diesem Szenario je nach Wirtschaftszweig vom Niveau und von der Struktur des Energieverbrauchs einerseits sowie von den preisinduzierten Energieeinsparungen und Substitutionen andererseits ab. Die Erhöhung des Rohölpreises (im Jahr 2017) führt unter den skizzierten Randbedingungen verglichen mit dem Referenzszenario zu einer Verringerung des industriellen Endenergieverbrauchs um 1,9 %. Der Rückgang des Energieverbrauchs ist sowohl auf kosten- bzw. preisinduzierte Produktions- bzw. Wachstumsverluste als auch auf Energieeinsparungen zurückzuführen. Im Rahmen der hier unterstellten singulären Rohölpreissteigerung (nur im Jahr 2017) werden negative Wachstumseffekte in den darauffolgenden Jahren weitgehend wieder abgebaut. Für den Fall einer dauerhaften Störung der Rohölmärkte bzw. nachhaltigen Ölpreissteigerung dürften die Produktionseinschränkungen und damit verbundenen Verringerungen des industriellen Energieverbrauchs gravierender ausfallen. Die hier betrachteten Simulationsrechnungen lassen erkennen, dass das Modell zur Erklärung des Energieverbrauchs (differenziert nach Sektoren und Energieträgern) insgesamt plausibel auf Veränderungen der exogenen Einflussgrößen reagiert und auch unter veränderten Randbedingungen stabil läuft.

⁵⁴ Ein Barrel entspricht 159 Liter.

⁵⁵ Also das Verhältnis von relativer Änderung des Endenergieverbrauchs der Industrie zu relativer Änderung des Wirtschaftswachstums (BIP).


Abbildung 14: Endenergieverbrauch der Industrie (EBZ 60) nach Szenarien

Ergebnisse einer Ex-post-Simulation von 2012 bis 2021

Quelle: Eigene Berechnungen EEFA und ZSW.

Abbildung 15: Endenergieverbrauch der Industrie nach Energieträgern in Szenario 2 (EBZ 60)

Quelle: Eigene Berechnungen EEFA und ZSW.

Eine präzisere Einschätzung der Auswirkungen beispielsweise von Ölpreissteigerungen auf den Energieverbrauch und Wirtschaftswachstum (gegenüber dem Referenzpfad) kann letztlich nur im Zusammenwirken des Modellbausteins (Energieverbrauch der Industrie) mit einem gesamtwirtschaftlichen Struktur- bzw. Input-Output-Modell sowie einem Stromangebotsmodell analysiert werden. Für die Belange der laufenden Frühschätzung der Energiebilanz Deutschland (für Berichtsjahre t+1, ausgehend von der endgültigen Energiebilanz des Vorjahres) sind diese Wirkungszusammenhänge von untergeordneter Bedeutung, weil insbesondere Informationen zur Entwicklung der Energiepreise, aber auch zur sektoralen Produktion, im Wesentlichen für diesen Anwendungsfall bereits als beobachtete Daten vorliegen bzw. in die Kurzfristprognose einfließen.

3.3.5 Ex-ante-Prognose für das Berichtsjahr 2022

Im Folgenden wird der Energieverbrauch der Industrie unter Verwendung des aktuellen, sektoral feiner aufgegliederten Modells⁵⁶ für das Berichtsjahr 2022 differenziert nach Wirtschaftszweigen und Energieträgern prognostiziert. Diese Prognose dient einerseits der Überprüfung der Modellstabilität und -plausibilität, andererseits zu einem späteren Zeitpunkt dem Vergleich mit der älteren Frühschätzung für 2022 (Datenstand: 15. Februar 2023).

3.3.5.1 Exogene Randbedingungen der Ex-ante-Prognose (außerhalb des Stützzeitraums, innerhalb des Beobachtungszeitraums)

Die exogenen Rahmenbedingungen der Prognose wurden gegenüber der Frühschätzung der Energiebilanz Deutschland 2022 (Datenstand 15. Februar 2023) nicht verändert. Insbesondere blieb die Entwicklung der (realen) Produktionswerte, die bereits als beobachtete Werte bis Dezember 2022 eingeflossen sind, aber auch die Vorgaben/Daten zur Entwicklung der Energiepreise unangetastet.

Veränderungen der Prognose sind folglich in erster Linie auf die Aktualisierung des Modells, die Aufnahme zusätzlicher energieintensiver Wirtschaftszweige in den Erklärungsrahmen und schließlich die Verwendung der neuen Datenbasis (revidierte Energiebilanzen 2003 bis 2021) zurückzuführen.

Zur besseren Einordnung der Prognoseergebnisse fasst Tabelle 11 die Wirtschaftsentwicklung im Jahr 2022 zusammen.

Tabelle 11: Produktionsindex im Verarbeitenden Gewerbe nach Sektoren 2021 und 2022

Veränderung zum Vorjahr, in %

	2020/21	2021/22
Gewinnung von Steinen und Erden, sonstiger Bergbau	3,25	-2,94
Herstellung von Papier, Pappe und Waren daraus	5,12	-5,53
Herstellung von chemischen Erzeugnissen	5,51	-11,83
Herstellung von Gummi- und Kunststoffwaren	5,13	-3,86
H. v. Glas, -waren, Keramik, Verarbeitung von Steinen und Erden	4,91	-1,93
Metallerzeugung und -bearbeitung	8,15	-4,22

⁵⁶ Stützzeitraum des Modells je nach Sektor 1995 bzw. 2003 bis 2012, die Datengrundlage bilden die revidierten Energiebilanzen Deutschland für Zeiträume von 2003 bis 2021 (Datenstand: März 2023).

	2020/21	2021/22
H.v. DV-Geräten, elektronischen und optischen Erzeugnissen	10,67	6,17
Herstellung von elektrischen Ausrüstungen	10,15	3,47
Maschinenbau	6,57	0,33
Herstellung von Kraftwagen und Kraftwagenteilen	-2,05	2,45
Sonstiger Fahrzeugbau	2,26	7,57
Verarbeitendes Gewerbe	4,49	-0,52
Produzierendes Gewerbe	3,51	-0,85
Bruttoinlandsprodukt	2,63	1,89

Quelle: Eigene Berechnungen EEFA und ZSW, nach destatis.

Insgesamt ist die Produktion im Produzierenden Gewerbe im Jahr 2022 um rund 0,8 % geschrumpft (2021: + 3,5 %). Im verarbeitenden Gewerbe nahm die Produktion (ebenfalls gemessen am Produktionsindex) vor allem aufgrund von hohen Energiepreisen und Lieferproblemen bei wichtigen Vorleistungen bzw. Vorprodukten 2022 um 0,5 % ab (nachdem sie im Jahr zuvor noch um 4,5 % zugenommen hatte).⁵⁷ Die energieintensiven Wirtschaftszweige waren naturgemäß von den Energiepreissteigerungen besonders betroffen; deren Produktion nahm als Ganzes gegenüber dem Jahr 2021 um rund 7 % ab.

3.3.5.2 Ergebnisse der Prognose für 2022

Ausgehend von den skizzierten exogenen Randbedingungen liefert die aktuelle Fassung des Modells zur Erklärung des Energieverbrauchs der Industrie folgende Ergebnisse: Der industrielle Endenergieverbrauch insgesamt nimmt vor allem aufgrund der beobachteten Produktionsentwicklung in den verschiedenen Branchen (Wirtschaftswachstum), aber auch aufgrund von Substitutionen infolge der hohen Energiepreise im Jahr 2022 ab.

Nach der vorliegenden Prognoserechnung verringert sich der Endenergieverbrauch der Industrie von 2.621 PJ (2021) auf 2.359 PJ (2022), wie in Abbildung 16 dargestellt; dies entspricht einem Rückgang um 9,9 %. Bezogen auf den beobachteten Endenergieverbrauch der Industrie 2021 in Höhe von 2.607 PJ folgt daraus ein (korrigierter) Schätzwert von 2.346 PJ für das Jahr 2022.⁵⁸

⁵⁷ Weitere Einzelheiten zu den makroökonomischen und sektoralen Rahmenbedingungen im Jahr 2022, wie beispielsweise zur Energiepreisentwicklung, demografischen oder witterungsbedingten Einflussgrößen, vgl. AG Energiebilanzen (2023a), Energieverbrauch in Deutschland im Jahr 2022, Internet: https://ag-energiebilanzen.de/wp-content/uploads/2023/06/AGEB_Jahresbericht2022_20230615_dt.pdf (Abrufdatum 6.10.2023).

⁵⁸ Eine belastbare Prognose ist gegenwärtig mit besonderen Schwierigkeiten verbunden, da der Energieverbrauch am aktuellen Rand erheblichen, teilweise strukturbruchartigen Schwankungen unterliegt. So nahm bespielweise der Energieverbrauch der Industrie nach weitgehender Überwindung der Auswirkungen der Corona-Krise im Jahr 2021 gegenüber dem Vorjahr um rund 7,2 % zu, 2020 hingegen ist er mehr als 4 % gegenüber dem Vorjahr gesunken.

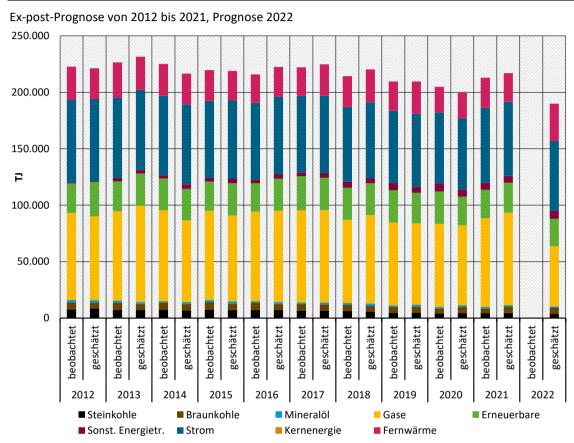
Zum Vergleich: Nach den empirischen Befunden der Energiebilanz Deutschland 2022 (Datenstand 16.9.2023) errechnet sich für 2022 ein Schätzwert von 2.403 PJ.⁵⁹ ⁶⁰ Die inzwischen vorliegende endgültige Energiebilanz Deutschland für das Berichtsjahr 2022 (Datenstand: 31.1.2024) errechnet auf der Basis amtlicher Statistikwerte einen Endenergieverbrauch der Industrie in Höhe von 2.392 PJ.

Abbildung 16 fasst die prognostizierte Entwicklung des Energieverbrauchs der Industrie, insgesamt (EBZ 60), differenziert nach Energieträgern zusammen. Überdurchschnittlich hohe Rückgänge im Jahr 2022 verzeichnet der Einsatz von Gasen (-17,5 %, -162 PJ).

Ex-post-Prognose von 2012 bis 2021, Prognose 2022 3.000.000 2.500.000 2.000.000 1.500.000 1.000.000 500.000 geschätzt geschätzt geschätzt geschätzt beobachtet geschätzt geschätzt beobachtet geschätzt beobachtet beobachtet beobachtet peobachtet geschätzt beobachtet geschätzt **seobachtet** geschätzt peobachtet geschätzt 2013 2015 2016 2017 2019 2020 2021 ■ Braunkohle Mineralöl ■ Steinkohle Gase ■ Erneuerbare ■ Sonst. Energietr. ■ Strom Kernenergie **■** Fernwärme

Abbildung 16: Prognose Energieverbrauch der Industrie nach Energieträgern (EBZ 60)

Quelle: Eigene Berechnungen EEFA und ZSW. Daten zur Abbildung im Anhang B, Tabelle B2.

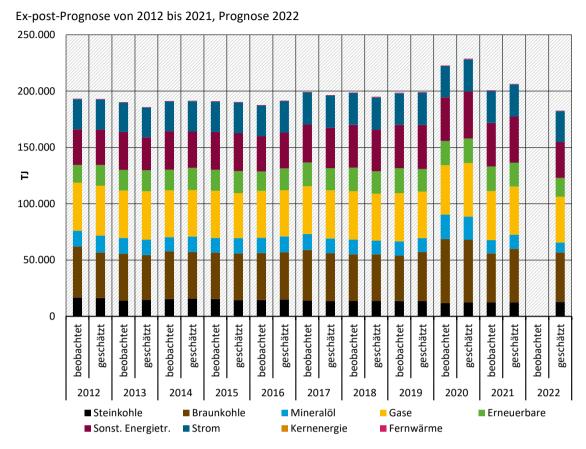

Der Verbrauch von Steinkohle und Braunkohle verringert sich um 13,8 bzw. 11 %., der Einsatz "Sonstiger Energieträger" vermindert sich um -10,9 % bzw. 8 PJ. Der Stromverbrauch sinkt 2022 nach dieser Prognose um 6,5 % (bzw. -51 PJ), während der Verbrauch an Fernwärme um +13,6 % bzw. 24 PJ zunimmt. Zusammengefasst verlieren vor allem die Gase (sowie "Sonstige

⁵⁹ Ein abschließender Vergleich der Prognose war erst nach der Publikation der Energiebilanz Deutschland 2022 mit den endgültigen amtlichen Daten möglich. Der vertiefende Vergleich (der vorliegenden Prognoseergebnisse) im Zusammenhang mit einer aktualisierten Fassung der Frühschätzung für das Berichtsjahr 2022 mit den Befunden der endgültigen Energiebilanz 2022 ist vor diesem Hintergrund in Kapitel 6 durchgeführt worden.

⁶⁰ Bei der Interpretation dieses Vergleichs ist außerdem zu berücksichtigen, dass die vorl. Ergebnisse der Energiebilanz Deutschland 2022 (Stand: September 2023) auf der Grundlage amtlicher Schätzungen relevanter Energiestatistiken errechnet wurden. Das zur Schätzung der amtlichen Erhebungen eingesetzte Imputationsverfahren stützt sich u.a. auf Korrelationsrechnungen mit den beobachteten Vorjahreswerten der betrachteten Energiestatistiken sowie alternativ (z.B. für den Fall, dass Vorjahreswerte nicht vorliegen) auf ausgewählte Indikator-Datensätze (Beschäftigte, Umsatz usw.) aus der Unternehmensstrukturstatistik. Die beiden Verfahren (Prognose des Energieverbrauchs der Industrie mit Hilfe ökonometrischer, energiepreisabhängiger Strukturmodelle sowie Imputationsverfahren auf der Ebene von Rohdaten/amtlichen Statistiken mit Hilfe von Korrelationsrechnungen) sind nicht vergleichbar.

Energieträger") im schrumpfenden Markt Anteile, wohingegen Stein- und Braunkohle Ihren Marktanteil in etwa halten. Fernwärme, elektrischer Strom und auch Mineralöle können ihren relativen Beitrag zur Deckung der industriellen Endenergienachfrage leicht ausweiten.

Abbildung 17: Prognose Energieverbrauch des Sektors Papiergewerbe nach Energieträgern (EBZ 48)


Quelle: Eigene Berechnungen EEFA und ZSW. Daten zur Abbildung im Anhang B, Tabelle B3.

Für die Sektoren, deren Energieverbrauch im aktuellen Modellansatz "bottom-up" aus Daten für die einzelnen Subsektoren errechnet wird, werden die Prognoseergebnisse für 2022 in den nachfolgenden Schaubildern separat näher beleuchtet.

Im Sektor Papiergewerbe (EBZ 48) ist für das Berichtsjahr 2022 mit einem Rückgang des Endenergieverbrauchs um 12,5 % auf rund 190 PJ zu rechnen. Allein im Bereich der energieintensiven Produktion von Holzschliff, Zellstoff-, Papier und Pappe (WZ 17.1, ex EBZ 48) dürfte der Energieverbrauch 2022 insgesamt um 13,8 % sinken, vgl. Abbildung 17. Hingegen nimmt der Endenergieverbrauch zur Produktion von Waren aus Papier, Karton und Pappe (WZ 17.2, ex EBZ 48) voraussichtlich nur um 5,7 % auf rund 34 PJ ab.

Vor dem Hintergrund des intrasektoralen Strukturwandels (die Produktion von Papier und Pappe nimmt 2022 mit 4,4 % stärker ab als die Herstellung von Waren aus Papier, Karton und Pappe) sowie aufgrund energiepreisinduzierter Substitutionsprozesse sind im Energiemix des Papiergewerbes weitere Verschiebungen im Energiemix zu erwarten. Insbesondere der Verbrauch von gasförmigen Brennstoffen nimmt 2022 um 29 PJ (34,8 %) gegenüber dem Vorjahr ab. Der Einsatz von Stein- und Braunkohle, die im Energieträgermix des Papiergewerbes von untergeordneter Bedeutung sind, verringert sich im gleichen Zeitraum um 18 bzw. 0,4 %. Der Einsatz von Fernwärme nimmt um rund 8 PJ auf 33 PJ (+30 %) zu.

Abbildung 18: Prognose Energieverbrauch des Sektors Verarbeitung von Steinen und Erden (EBZ 53) nach Energieträgern

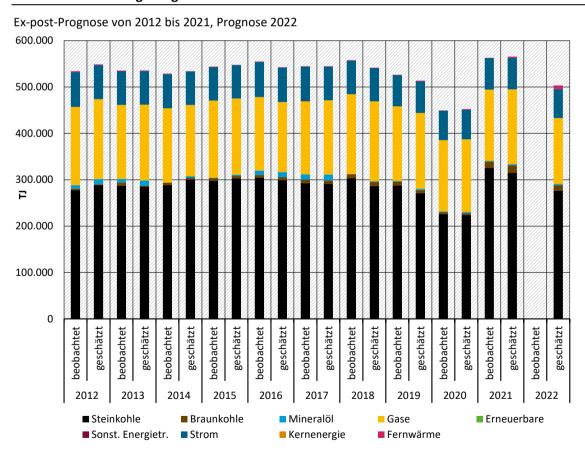
Quelle: Eigene Berechnungen EEFA und ZSW. Daten zur Abbildung im Anhang B, Tabelle B4.

Im Sektor "Verarbeitung von Steinen und Erden" (EBZ 53) wird für das Berichtsjahr 2022 ein Rückgang des gesamten Endenergieverbrauchs um 11,6 % auf etwa 183 PJ prognostiziert (vgl. Abbildung 18). Dieser Verbrauchsrückgang ist einerseits auf die erlahmende Baukonjunktur und die damit verbundene geringere Nachfrage nach mineralischen Baustoffen, andererseits auf die kräftig gestiegenen Energiepreise zurückzuführen. In tieferer Gliederung nach Produktionssparten zeigt sich, dass der Rückgang des Energieverbrauchs vor allem in der Zementindustrie zu beobachten ist.

Hier vermindert sich der Einsatz an Brennstoffen und elektrischem Strom im Jahr 2022 nach der vorliegenden Schätzung um 15,6 %. Hingegen nimmt der gesamte Energieverbrauch der Kalkindustrie im gleichen Zeitraum nur um 0,6 % ab.

Tabelle 12: Prognose des Energieverbrauchs im Sektor Metallerzeugung nach Produktionsstufen

2022/2021, Veränderung in %


	Brennstoffe / Reduktionsmittel	Strom	Endenergie
Sinter	-10,20	-4,47	-9,85
Roheisen	-11,99	-5,59	-11,85
Oxygenstahl	-4,6	-6,03	-5,45

	Brennstoffe / Reduktionsmittel	Strom	Endenergie
Elektrostahl	-10,21	-11,39	-11,91
Walzstahl	-5,74	-4,53	-5,47
Weiterverarbeitung	-7,92	-10,26	-8,87
Insgesamt	-11,43	-8,08	-11,03

Quelle: Eigene Berechnungen EEFA und ZSW.

Der gesamte Endenergiebedarf zur Erzeugung von Roheisen und Rohstahl (EBZ 54; WZ 24.1) nimmt 2022 verglichen mit dem Jahr zuvor um rund 11 % ab (vgl. Abbildung 19). Bezogen auf den Endenergieverbrauch des Sektors "Metallerzeugung" nach der endgültigen Energiebilanz Deutschland 2021 in Höhe von 563 PJ, folgt daraus eine (korrigierte) absolute Verbrauchsminderung von 62 PJ. Während der Einsatz von Brennstoffen und Reduktionsmitteln 2022 gegenüber 2021 um ca. 11,4 % (57 PJ) sinkt, reduziert sich der Verbrauch an elektrischem Strom nach unserer Prognose im Jahr 2022 um rund 5,5 PJ und damit um etwa 8,1 % gegenüber dem Vorjahr.

Abbildung 19: Prognose Energieverbrauch des Sektors Metallerzeugung (EBZ 54) nach Energieträgern

Quelle: Eigene Berechnungen EEFA und ZSW. Daten zur Abbildung im Anhang B, Tabelle B5.

Die Verbrauchsentwicklung im Gesamtsektor folgt damit in etwa der beobachteten Produktionsentwicklung. Die Produktion von Walzstahl nahm 2022 verglichen mit dem Vorjahr um 2,7 Mio. t bzw. 7,9 % ab.

Auf der Ebene einzelner Produktionsstufen prognostiziert das Modell unterschiedliche Entwicklungen. Der kräftigste Rückgang des Energieverbrauchs wird für die Elektrostahlerzeugung geschätzt. Hier nimmt der Energieverbrauch insgesamt um fast 12 % ab, während für die Oxygenstahlerzeugung im Jahr 2022 ein Verbrauchsrückgang von 5,5 % erwartet wird (vgl. Tabelle 12).⁶¹ Für die übrigen Prozessstufen der Stahlerzeugung ermittelt das Modell Verbrauchsrückgänge zwischen 5,5 % und maximal 11,9 %.

Eine erste Gegenüberstellung der prognostizierten Entwicklung für den Sektor "Metallerzeugung" mit den bereits vorliegenden Daten der BGS-Statistik ergibt folgendes (vorläufige) Bild: Der Energieverbrauch zur Roheisen- und Rohstahlerzeugung nahm nach der Statistik 2022 gegenüber 2021 um 10,2 % (lt. Modell: -11,0 %) ab. Insgesamt repliziert das Modell die statistisch beobachtete Entwicklung also recht gut. Hinzu kommt, dass in vielen Fällen für alle im Modell betrachteten Produktionsstufen im Sektor Metallerzeugung ein (vom Vorzeichen her) gleichgerichteter Zusammenhang zwischen dem Prognoseergebnis für das Berichtsjahr 2022 und der BGS-Statistik vorliegt.

Die vorliegende Modellversion 2023 prognostiziert für alle Produktionsstufen von der Sinterüber die Roheisen-, Rohstahl- und Walzstahlerzeugung bis zur ersten Weiterverarbeitung
sowohl für den gesamten Brennstoff-, als auch für den Stromeinsatz im Jahr 2022 eine
rückläufige Entwicklung gegenüber dem Vorjahr. Die BGS-Statistik 2022 weist für die
Oxygenstahlerzeugung (trotz Abnahme der Oxygenstahlerzeugung und höherem
Industriestrompreis) hingegen eine Zunahme des Stromverbrauchs (um 1,4 %) aus. Eine
kritische Überprüfung der Stromnachfragegleichung für den Subsektor "Oxygenstahlerzeugung"
hat ergeben, dass aufgrund der Datenlage derzeit keine Erklärungsgrößen (oder
sektorspezifischen Erkenntnisse) vorliegen, die eine Erhöhung des Stromverbrauchs auf dieser
Prozessstufe der Rohstahlerzeugung plausibel erklären könnten (und sich deshalb in die
vorliegende Regressionsgleichung übernehmen ließen).

Ein tiefergehender Vergleich der Prognoseergebnisse wird an dieser Stelle nicht durchgeführt. Vergleiche zwischen der Frühschätzung der Energiebilanz 2022, die auf der Grundlage der verbesserten Modellinfrastruktur (und unter Verwendung der revidierten Energiebilanzdaten) erstellt wurde, sind erst nach der Publikation der endgültigen Energiebilanz 2022 durchführbar.

⁶¹ Zur besseren Einordnung: Die Erzeugung der Elektrostahlwerke nahm 2022 (vor allem als Folge der hohen Strompreise) im Vergleich zum Vorjahr um 9,1 % (bzw. rund 1,1 Mio. t) ab, der Output der Oxygenstahlwerke verringerte sich im gleichen Zeitraum um 7,6 % (dies entspricht einem Minus in der Größenordnung von 2,1 Mio. t gegenüber 2021). Insgesamt nahm die Rohstahlerzeugung 2022 bezogen auf das Vorjahr um rund 8 % ab.

4 Verbesserung des Verfahrens zur Prognose des Energieverbrauchs in den Umwandlungssektoren

4.1 Energieverbrauch im Umwandlungsbereich nach Energieträgern (Energiebilanzzeilen 33 bis 39)

4.1.1 Konzeption

Zusätzliche Potenziale zur Weiterentwicklung des Modellverfahrens und damit ggf. eine weitere Verbesserung der Prognose der Energiebilanz Deutschland wurden aus den Erfahrungen der bisherigen Frühschätzungen sowie der Pilotstudie in den Sektoren "Energieverbrauch im Umwandlungsbereich" (Energiebilanzzeilen 33 bis 39) identifiziert.

Das bisherige Verfahren zur Frühschätzung des Energieverbrauchs in den Umwandlungssektoren stützte sich auf eine einfache, monokausale Fortschreibung mit Hilfe von Indikatoren. 62 Dieser monokausale Erklärungsansatz lässt sich über den Rückgriff bzw. den Einsatz klassischer Regressionsverfahren spürbar verbessern, indem in die Erklärung der Verbrauchsentwicklung (zumindest im Prinzip) mehrere exogene Variablen einbezogen werden können und auf diese Weise grundsätzlich eine höhere empirische Evidenz sowie letztlich eine spürbare Steigerung der Anpassungsgüte erreicht werden kann.

Der Sektor "Energieverbrauch im Umwandlungsbereich" insgesamt (Energiebilanzzeile 40) umfasst konkret die folgenden Energiebilanzsektoren, die im verbesserten Modellteil abgebildet werden:

- ► Energieverbrauch im Umwandlungsbereich "Kokereien" (Energiebilanzzeile 33),
- ► Energieverbrauch im Umwandlungsbereich "Steinkohlenzechen und -brikettfabriken" (Energiebilanzzeile 34),
- Energieverbrauch im Umwandlungsbereich "Braunkohlengruben und -brikettfabriken" (Energiebilanzzeile 35),
- Energieverbrauch im Umwandlungsbereich "Kraftwerke" (Energiebilanzzeile 36),
- Energieverbrauch im Umwandlungsbereich "Erdöl- und Erdgasgewinnung" (Energiebilanzzeile 37),
- ► Energieverbrauch im Umwandlungsbereich "Mineralölverarbeitung" (Energiebilanzzeile 38) und
- ► Energieverbrauch im Umwandlungsbereich "Sonstige Energieerzeuger" (Energiebilanzzeile 39).

Das weiterentwickelte, ökonometrische Modell schätzt den Energieverbrauch der o.g. Sektoren vollständig und differenziert nach einzelnen Energieträgern und bildet deshalb den gesamten Energieverbrauch im Umwandlungsbereich weiterhin konsistent bzw. widerspruchsfrei zur Energiebilanz Deutschland ab.

Der Aufbau des Modellteils zur Erklärung des Energieverbrauchs der Umwandlungssektoren folgt weitestgehend der Konzeption, die bereits im Zusammenhang mit der Neukonzeption bzw.

 $^{^{62}}$ Zur ursprünglichen Methodik zur Erstellung der Frühschätzung vgl. EEFA/ZSW (2023).

Weiterentwicklung des Industriemodells genauer erläutert wurde (Einzelheiten vgl. Kapitel 3.1 dieser Studie): Der gesamte Energieverbrauch für jeden Umwandlungssektor wird auf der ersten Stufe zunächst in Strom und Brennstoffe aufgeteilt, die beiden Aggregate anschließend über die Bildung geeigneter Regressionsgleichungen erklärt. Auf der zweiten Stufe erfolgt, in der Regel unter Einbeziehung des zuvor erklärten gesamten Brennstoffeinsatzes des jeweils betrachteten Energieumwandlungsbereichs, für jeden einzelnen fossilen Energieträger die ökonometrische Erklärung in Form von Einzelgleichungen, wobei jeweils ein Energieträger aus Konsistenzgründen als Restgliedgröße zum gesamten Brennstoffeinsatz ermittelt wird (vgl. Abbildung 20).

Ökonometrische Gleichung: Verbrauch Strom und Stromverbrauch Brennstoffverbrauch **Energieverbrauch nach Branchen** Brennstoff = f(Produktion, u.a.) Steinkohle Ökonometrische Gleichung: Verbrauch ••• Energieträger = f(Produktion, u.a.) Fernwärme Ein Energieträger als Rest ermittelt

Abbildung 20: Formaler Aufbau des verbesserten Modells zur Erklärung des Energieverbrauchs im Umwandlungsbereich (EBZ 33 bis 39)

Quelle: Eigene Darstellung EEFA und ZSW.

Das Grundmuster des soeben skizzierten Verfahrens lässt sich allerdings zur Erklärung des Energieverbrauchs der Umwandlungssektoren nicht uneingeschränkt für alle dort anzutreffenden Sektoren bzw. Energieträger anwenden. Abweichende bzw. alternative Modellierungen wurden insbesondere bei Auftreten von drei Ausnahmefällen eingesetzt. Hierzu gehören:

- ▶ Beobachtete Zeitreihen, die am aktuellen Rand dauerhaft den Wert Null annehmen; diese Zeitreihen werden im Rahmen der Modellierung als exogene Größe berücksichtigt oder in Form einer Gleichung mit Hilfe von Dummy-Variablen erklärt,
- ▶ Datenreihen, für die die Frühschätzung unter Hinzuziehung bereits vorliegender Monatsdaten für das Gesamt- bzw. Prognosejahr erfolgt. Zu dieser Kategorie zählen beispielsweise,
 - der Stromverbrauch im Sektor "Kraftwerke" (Energiebilanzzeile 36), diese Informationen liegen mit der amtlichen Monatserhebung Nr. 066 relativ zeitnah vor, so dass der Sektor nicht neu (auf der Ebene von Jahresdaten der Energiebilanz) modelliert wird (andere Energieträger als Strom werden hier nicht eingesetzt),

- der Erdgas- sowie Stromverbrauch des Sektors "Sonstige Energieerzeuger" (Energiebilanzzeile 39) wird ebenfalls exogen vorgegeben, da zu diesen Bilanzfeldern amtliche Monatserhebungen (Statistik Nr. 066 und Nr. 068) vorliegen.
- ▶ Datenreihen, die sich nicht zur Schätzung im Rahmen von Regressionsanalysen eignen. Zu dieser Gruppe zählen Zeitreihen, die einerseits durch starke Schwankungen bzw. Strukturbrüche charakterisiert sind, andererseits geringe Verbrauchsmengen aufweisen und deshalb für die Erklärungsgüte/Prognose insgesamt lediglich von untergeordneter Bedeutung sind. Es liegt zudem auf der Hand, dass Zeitreihen, die nur wenige Datenpunkte am aktuellen Rand enthalten bzw. zu kurz sind und deshalb keinen ausreichend langen Beobachtungszeitraum umfassen, nicht ökonometrisch geschätzt werden können. Derartige Zeitreihen werden im weiterentwickelten Modell zur Erklärung des Energieverbrauchs in den Umwandlungssektoren weiter mit dem alten Verfahren fortgeschrieben (unter Zuhilfenahme einfacher Indikatoren, Einzelheiten dazu, vgl. Kapitel 4. Gleichungen).

4.1.2 Formaler Aufbau und Datenbasis

Das weiterentwickelte Modell zur Erklärung des Energieverbrauchs im Umwandlungsbereich besteht aus insgesamt 253 Gleichungen, darunter 27 Verhaltensgleichungen. Die Definitionsgleichungen bilden den definitorischen Rahmen zur Erfassung der Zusammenhänge in der Energiebilanz Deutschland ab (insgesamt 43 Gleichungen). Die übrigen 183 Definitionsgleichungen erfassen – wie im vorangegangenen Abschnitt bereits erwähnt – Bilanzfelder, die aufgrund besonderer Entwicklungen der Zeitreihe (Null am aktuellen Rand, Strukturbrüche, hohe, unplausible Volatilität, zu kurzer Beobachtungszeitraum usw.) nicht geschätzt werden konnten. Schließlich erfolgt die Ermittlung des Restgliedfeldes bei ausgewählten fossilen Energieträgern über die Aufnahme entsprechender definitorischer Zusammenhänge in das Modell.

Insgesamt enthält das Modell zur Erklärung des Energieverbrauchs im Umwandlungssektor derzeit 295 Variablen, darunter 253 endogene sowie 42 exogene Größen.

Die exogenen Variablen, die für das Modell verwendet werden, stammen bis auf wenige Ausnahmen aus der Energiebilanz Deutschland selbst. Der Grund hierfür ist, dass die wichtigsten Einflussgrößen des Energieverbrauchs in einem Umwandlungssektor typischerweise der Umwandlungsausstoß bzw. die physische Erzeugungsmenge (Sekundärenergieträger wie Koks, Mineralölprodukte, Strom, Fernwärme u.a.) ist. Konkret nutzt das Modell im Einzelnen folgende Indikatoren, die direkt der Energiebilanz Deutschland entnommen werden können:

- den Umwandlungsausstoß der Kokereien (EBZ21S3) als Produktionsindikator des Sektors Kokereien (Energiebilanzzeile 33),
- die Gewinnung von Grubengas im Inland (EBZ1S23) für den Sektor Steinkohlengruben und brikettfabriken (Energiebilanzzeile 34),
- den Umwandlungsausstoß der Braunkohlenbrikettfabriken (EBZ22S33) sowie die Gewinnung von Rohbraunkohle im Inland (EBZ1S5) als Produktionsindikator des Sektors Braunkohlenzechen und - brikettfabriken (Energiebilanzzeile 35),
- ▶ die Gewinnung von Erdöl und Erdgas (EBZ1S9 und EBZ1S22) als Produktionsindikator des Sektors Gewinnung von Erdöl und Erdgas (Energiebilanzzeile 37),

▶ den Umwandlungsausstoß der Mineralölverarbeitung (EBZ30S33) als Produktionsindikator des Sektors Mineralölverarbeitung (Energiebilanzzeile 38) und schließlich

Vor diesem Hintergrund können diese exogenen Einflussgrößen als quasi-endogen eingestuft werden, da sie dem Modell zur Erklärung des Energieverbrauchs im Umwandlungssektor nur im Zusammenhang mit isolierten Modellberechnungen exogen vorgegeben werden, im Zusammenhang mit der Frühschätzungen jedoch aus anderen Prognosemodulen in die Schätzung einfließen (sogenannter "soft-link").

In Einzelfällen werden in diesem Modellteil darüber hinaus zwei weitere exogene Variablen verwendet: der Strompreis (PE13EX) sowie die Produktion von Roheisen (XTRE). Die genannten Indikatoren stammen zum Großteil aus Monatsdaten, die zum Zeitpunkt der Frühschätzung nahezu vollständig vorliegen. Bei den übrigen exogenen Variablen handelt es sich im Wesentlichen um Dummy-Variablen.

Der Stützzeitraum des Modells zur Erklärung des Energieverbrauchs im Umwandlungsbereich schließt Zeiträume von 2003 bis 2021 ein. Als Datenbasis für die Schätzung wurde, wie im weiterentwickelten Industriemodell, auf die revidierte Zeitreihe der Energiebilanz Deutschland von 2003 bis 2021 (Datenstand: 31. März 2023) zurückgegriffen.

4.1.3 Die Gleichungen des Modells im Einzelnen

Zur Schätzung des Strom- und Brennstoffverbrauchs in den Sektoren des "Energieverbrauchs im Umwandlungsbereich" wird im Allgemeinen folgende Grundgleichung (10) verwendet:

```
10. EBZ_iS_i = f(XR_j, EBZ_jS_i(-1), PE, Trend, Dummy, C)
mit:
EBZ_iS_i : Energieverbrauch von Energieträger i des Wirtschaftszweiges j, (TJ);
XR_j : Produktion des Wirtschaftszweiges j, (in 1000 t);
PE: Strompreis industrielle Abnehmer, (  (GJ);
Trend: Trendvariable;
```

Dummy: Dummy-Variable, Jahr x=1, sonst Null;

C: Absolutglied.

Der Industriestrompreis dient in Schätzgleichungen zur Ermittlung des Stromverbrauchs der Umwandlungssektoren als eine zusätzliche Erklärungsgröße, in den Schätzgleichungen zur Erklärung des Brennstoffeinsatzes konnte kein signifikanter Einfluss der Energiepreise festgestellt werden.

Die Gleichung zur Schätzung des Stromverbrauchs für die Erdöl- und Erdgasgewinnung (Gleichung 11) nimmt im weiterentwickelten Modell z.B. die folgende Gestalt an:

```
11. LOG(EBZ37S28) = 0,72*LOG(EBZ37S28(-1)) + 0,27*LOG(EBZ1S22/EBZ1S22(-1)) - 0,15*
LOG(EBZ1S9/EBZ1S9(-1)) - 0,18*LOG(PE13EX/PE13EX(-1)) - 0,07*DAB2018 + 0,15*d2005
- 0,31*D2006 + 2,21*C
```

```
p-Werte: 0,00; 0,29; 0,67; 0,17; 0,06; 0,04; 0,00; 0,08; R²: 0,90; AR²: 0,83; DW: 1,49; Stützzeitraum: 2004 bis 2021; mit:

EBZ37S28: Stromverbrauch Erdöl-, Erdgasgewinnung, (TJ); EBZ1S22: Inländische Gewinnung Erdgas (TJ); EBZ1S9: Inländische Gewinnung Erdöl, (TJ); PE13EX: Strompreis energieextensive Sektoren, (€/GJ);
```

DAB2018: Dummy-Variable ab 2018=1; D2005: Dummy-Variable, (2005=1); D2006: Dummy-Variable, (2006=1);

C: Absolutglied.

Tabelle 13 fasst die Ergebnisse aller Schätzgleichungen zur Erklärung des Stromverbrauchs in den Umwandlungssektoren übersichtlich zusammen. Ausgewiesen werden jeweils die geschätzten Regressionskoeffizienten, wobei in Klammern unter den Koeffizienten zusätzlich die p-Werte der Regressionskoeffizienten angegeben sind.

Das Bestimmtheitsmaß (R²) variiert je nach Gleichung zwischen minimal 0,83 und maximal 0,94, die Durbin-Watson-Teststatistik (DW) zwischen 0,74 und 2,09. Die geschätzten Regressionskoeffizienten weisen für die Produktion positive und den Strompreis negative und damit plausible Vorzeichen auf.

Tabelle 13: Schätzgleichungen zur Erklärung des Stromverbrauchs der Umwandlungssektoren (EBZ 33 bis EBZ 38)

Stützzeitraum, wenn nicht anders erwähnt, 2005 bis 2021

Sektor	XR	PE	AR(1)	Trend	Dummy	С	R ²	AR ²	DW
ebz33s28	0,064 (0,667)		0,89 (0,003)		-0,155 (0,095)	6,097 (0,001)	0,83	0,65	0,74
ebz35s28	0,402 (0,001)		-0,388 (0,438)			-1,741 (0,560)	0,89	0,86	2,09
ebz37s28*	0,266 (0,299)	-0,177 (0,169)			-0,071 (0,055)	2,206 (0,080)	0,90	0,83	1,49
ebz38s28*	0,147 (0,497)	-0,004 (0,963)		-0,007 (0,286)	0,109 (0,013)	9,47 (0,033)	0,91	0,84	2,05

Quelle: Eigene Berechnungen EEFA und ZSW. * Stützzeitraum von 2004 bis 2021.

Die Ergebnisse der Schätzgleichungen für den Brennstoffverbrauch in den betrachteten Umwandlungssektoren fassen die Tabellen 14 bis 17 zusammen.⁶³ Aus den Tabellen ist zugleich ersichtlich, welche Energiebilanzzeitreihen in den Umwandlungssektoren konkret im Rahmen von Regressionsanalysen geschätzt, definitorisch als Restgröße ermittelt oder mit Hilfe monokausaler Kennziffern fortgeschrieben wurden, weil eine belastbare Schätzung aufgrund empirischer Datenlücken nicht möglich war. Der gesamte Brennstoffverbrauch für jeden Umwandlungssektor (VEWE_j), der auf der ersten Stufe des Modells geschätzt wird, ist jeweils in der ersten Zeile der Übersichtstabellen ausgewiesen, gefolgt von den Schätzergebnissen für die einzelnen (fossilen) Energieträger (zweite Stufe der Modellierung).

Der gesamte Brennstoffeinsatz im Umwandlungssektor "Kokereien" (EBZ 33 – Energiebilanzzeile 33) hängt in erster Linie von der Höhe der Kokserzeugung (Umwandlungsausstoß Steinkohlenkoks, EBZ21S3, in der Tabelle als XR bezeichnet) ab. Darüber hinaus werden die Verbräuche von Kokereigas (EBZ33S20) sowie Erdgas (EBZ33S22) in Abhängigkeit von der Kokserzeugung und der beobachteten Vergangenheitsentwicklung (AR(1)) geschätzt. Hingegen wird der Verbrauch von Gichtgas (EBZ33S21), der mit einem Anteil

⁶³ Die Energiebilanzsektoren 34, 36 und 39 fehlen in dieser Auflistung, da für diese Segmente keine verbesserten Schätzgleichungen identifiziert werden konnten. Sie werden weiterhin exogen vorgegeben, anhand einfacher Indikatoren fortgeschrieben bzw. in Form von Definitionsgleichung in das Modell aufgenommen. Zudem werden die Schätzgleichungen, die weiterhin anhand einfacher Indikatoren fortgeschrieben werden an dieser Stelle nicht dargestellt.

von ca. 59 % im Jahr 2021 den mit Abstand größten Beitrag zur Deckung der Brennstoffnachfrage in diesem Umwandlungssektor beisteuert, als Restgröße zum gesamten Brennstoffeinsatz ermittelt.

Tabelle 14: Schätzgleichungen zur Erklärung des Brennstoffverbrauchs im Umwandlungssektor Kokereien (EBZ 33)

Stützzeitraum, wenn nicht anders erwähnt, 2005 bis 2021

Variable	XR	AR(1)	Dummy	С	R ²	AR ²	DW
VEWE33	0,478 (0,007)		-0,046 (0,190)	-0,791 (0,583)	0,90	0,84	2,55
ebz33s21	Restgröße						
ebz33s20	0,029 (0,571)	0,063 (0,863)	-2986,893 (0,750)	6831,352 (0,117)	0,96	0,93	1,88
ebz33s22	0,001 (3,071)	-0,736 (0,016)	35,238 (0,674)	-56,276 (0,066)	0,86	0,74	2,12

Quelle: Eigene Berechnungen EEFA und ZSW.

Tabelle 15: Schätzgleichungen zur Erklärung des Brennstoffverbrauchs im Sektor Braunkohlenzechen- und Brikettfabriken (EBZ 35)

Stützzeitraum, wenn nicht anders erwähnt, 2004 bis 2021

Sektor	XR	AR(1)	Trend	Dummy	С	R ²	AR ²	DW
VEWE35	0,366 (0,353)	0,406 (0,250)		0,127 (0,608)	-2,834 (0,220)	0,88	0,75	1,41
ebz35s05	0,205 (0,578)	-0,519 (0,205)		0,192 (0,098)	-2,533 (0,592)	0,96	0,82	1,82
ebz35s06	0,001 (0,008)	-0,883 (0,002)		-93,300 (0,000)	-2,533 (0,002)	0,96	0,92	1,82
ebz35s07	0,008 (0,001)	0,823 (0,999)		-2,138 (0,358)	3,771 (0,956)	0,85	0,76	1,70
ebz35s13	0,001 (0,952)	0,837 (0,023)		-1,768 (0,000)	451,196 (0,000)	0,99	0,99	1,45
ebz35s14	0,001 (0,678)	0,786 (0,473)		57,156 (0,478)	35,888 (0,519)	0,97	0,94	1,42
ebz35s30	Restgröße							

Quelle: Eigene Berechnungen EEFA und ZSW.

Tabelle 16: Schätzgleichungen zur Erklärung des Brennstoffverbrauchs im Sektor Erdöl- und Erdgasgewinnung (EBZ 37)

Stützzeitraum, wenn nicht anders erwähnt, 2005 bis 2021

Sektor	XR	AR(1)	Trend	Dummy	С	R ²	AR ²	DW
VEWE37	0,283 (0,456)			-0,497 (0,001)	4,501 (0,053)	0,90	0,82	1,85

Sektor	XR	AR(1)	Trend	Dummy	С	R ²	AR ²	DW
ebz37s14	0,488 (0,923)	0,815 (0,003)		12,831 (0,350)	6,333 (0,292)	0,91	0,83	1,36
ebz37s22	Restgröße							

Quelle: Eigene Berechnungen EEFA und ZSW.

Tabelle 17: Schätzgleichungen zur Erklärung des Brennstoffverbrauchs im Sektor Mineralölverarbeitung (EBZ 38)

Stützzeitraum, wenn nicht anders erwähnt, 2004 bis 2021

Sektor	XR	AR(1)	Trend	Dummy	С	R ²	AR ²	DW
VEWE38	0,422 (0,000)			-0,099 (0,001)	5,237 (0,001)	0,90	0,86	1,53
ebz38s13	0,001 (0,959)		-4,058 (0,151)	104,311 (0,002)	77,311 (0,645)	0,73	0,62	1,86
ebz38s14	0,001 (0,072)		104,748 (0,248)	-569,513 (0,250)	-6620,297 (0,119)	0,92	0,89	2,17
ebz38s15	0,017 (0,007)		-423,748 (0,487)	7581,276 (0,193)	-48655,550 (0,072)	0,95	0,93	1,89
ebz38s16	0,005 (0,001)		185,135 (0,021)	-1915,642 (0,017)	-3061,946 (0,543)	0,90	0,86	1,92
ebz38s17	0,006 (0,003)		135,867 (0,394)	-1291,848 (0,396)	-26804,02 (0,010)	0,95	0,93	2,01
ebz38s18	Restgröße							
ebz38s19	0,001 (0,449)		256,369 (0,339)	-2486,84 (0,062)	-7385,945 (0,468)	0,98	0,97	2,70
ebz38s20	0,003 (0,000)			2931,137 (0,001)	-14550,92 (0,000)	0,96	0,95	1,76
ebz38s22	0,001 (0,961)			-238,789 (0,965	540,426 0,994)	0,96	0,94	1,32
ebz38s30	0,009 (0,977)			0,557 (0,000)	7,547 (0,134)	0,96	0,94	2,36

Quelle: Eigene Berechnungen EEFA und ZSW.

Für alle übrigen Energieträger hat sich gezeigt, dass eine Schätzung im Rahmen von regressionsanalytischen Verfahren nicht möglich ist, da die beobachteten Zeitreihen in diesen Fällen zu wenige Beobachtungen aufweisen, bzw. erst ab dem Berichtsjahr 2018 in der Energiebilanz Deutschland dargestellt werden, also nur vier Datenpunkte umfassen.

Insgesamt lassen die Ergebnisse der Schätzungen zur Erklärung der Brennstoffeinsätze in den Umwandlungssektoren ein variierendes Bestimmtheitsmaß in den Größenordnungen zwischen minimal 0,73 und maximal 0,99 erkennen; die Durbin-Watson-Teststatistik erreicht Werte zwischen 1,32 und 2,70. Die geschätzten Regressionskoeffizienten weisen für die Produktion bzw. den Umwandlungsausstoß des jeweiligen Sektors positive und damit plausible Vorzeichen auf. Bei der Beurteilung der Ergebnisse ist abschließend zweierlei zu berücksichtigen:

Zum einen ergibt sich durch den (partiellen) Umstieg auf regressionsanalytische Verfahren und die damit verbundene Abkehr von monokausalen Erklärungsansätzen per se eine verbesserte Ex-post-Anpassung auf der Ebene der Einzelgleichungen⁶⁴. Zum anderen muss kritisch eingeräumt werden, dass zusätzliche (empirisch verfügbare) Erklärungsgrößen bzw. Bestimmungsfaktoren des Energieverbrauchs, die die Produktionsverhältnisse der betrachteten Umwandlungssektoren besser beschreiben, nicht identifiziert werden konnten.

Abschließend ist an dieser Stelle darauf hinzuweisen, dass nicht alle Bilanzfelder, die im hier vorgestellten Modellierungsansatz aus der Vergangenheitsentwicklung jährlicher Energiebilanzdaten bzw. -zeitreihen ökonometrisch erklärt werden, auch tatsächlich zur Herleitung/Prognose der jeweiligen Frühschätzung der Energiebilanz Deutschland herangezogen werden (müssen). Beispielsweise werden die Energieverbräuche im Umwandlungsbereich Mineralölverarbeitung, sofern sie den Einsatz von Mineralölprodukten (Dieselkraftstoff, Heizöl leicht u. schwer, Petrolkoks, Flüssiggas, Raffineriegas sowie Andere Mineralölprodukte) betreffen, nach dem zur Ermittlung der Frühschätzung favorisierten Hybridansatz⁶⁵, weiterhin aus den Monatsdaten der amtlichen Mineralölstatistik (ergänzt um Schätzungen für die jeweils fehlenden Berichtsmonate) ermittelt. Des Weiteren ist in diesem Zusammenhang zu beachten, dass Brennstoffeinsätze bzw. Mineralölprodukte, die im Sektor Mineralölverarbeitung bzw. Raffinerien zur industriellen Stromerzeugung eingesetzt werden, von den Daten der amtlichen Mineralölstatistik abgezogen werden müssen.

4.1.4 Modellvalidierung

4.1.4.1 Ex-post-Prognose innerhalb des Stützzeitraums des Modells – Auswertung aggregierter Fehlermaße (2012 bis 2021)

Analog zum Vorgehen in Kapitel 3.3 wurde die Validität des weiterentwickelten Modells mit Hilfe einer Ex-post-Prognose im Stützzeitraum validiert. Die Fehlermaße MAPE, MEAN, MAE und RMSE werden für alle Aggregate (Energieverbrauch insgesamt und Brennstoffverbrauch) sowie den Stromverbrauch ausgewiesen.

Die Ex-post-Prognose wurde für den Zeitraum von 2012 bis 2021 durchgeführt. Die Ergebnisse der Fehlermaße für alle Kopfgrößen sind in Tabelle 18 zusammenfassend dargestellt. Für den Sektor Energieverbrauch im Umwandlungsbereich insgesamt, also die Summe über alle Energieträger und Sektoren (EBZ40_33), zeigt sich eine recht gute Anpassung an die beobachtete Vergangenheitsentwicklung mit einem mittleren absoluten prozentualen Fehler (MAPE) in Höhe von 0,74 %.

Tabelle 18: Fehleranalyse für den Sektor Energieverbrauch im Umwandlungsbereich (Energiebilanzzeile 40)

Ergebnisse ei	ner dynamischen	Ex-post-Prognose von	2012 bis 2021
---------------	-----------------	----------------------	---------------

Variable	МАРЕ	MEAN	MAE	RMSE
ebz40s33	0,74	-2432,75	3932,78	5253,24
ebz33s33	2,08	-266,91	565,16	769,67
ebz35s33	2,53	-758,35	852,73	1185,85

⁶⁴ Bereits die Aufnahme endogen verzögerter Variablen bzw. von Erklärungsgrößen sowie der Rückgriff auf Dummy- oder Trendvariablen zur Erklärung des Energieverbrauchs verbessert die Anpassungsqualität der Gleichungen (im Gegensatz zum einfachen Indikator-Ansatz) im Ex-post-Zeitraum spürbar.

⁶⁵ Vgl. EEFA/ZSW (2023), Kapitel 3 S. 52ff.

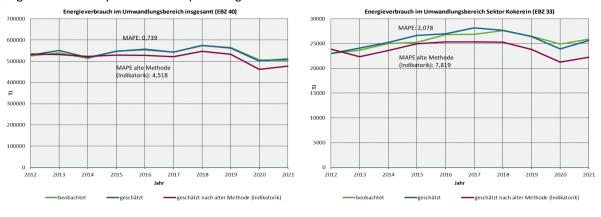
Variable	МАРЕ	MEAN	MAE	RMSE
ebz37s33	4,54	132,81	447,73	530,88
ebz38s33	1,19	1855,18	3428,00	4442,79
ebz33s28	5,91	-33,08	68,10	73,16
ebz35s28	2,91	70,15	501,33	636,58
ebz37s28	2,96	-52,02	64,43	71,79
ebz38s28	1,79	100,96	398,32	536,78
VEWE33	1,91	-233,84	497,06	712,62
VEWE35	4,90	-828,51	828,51	986,62
VEWE37	6,30	184,83	486,87	557,28
VEWE38	1,23	1754,22	3267,80	4469,41

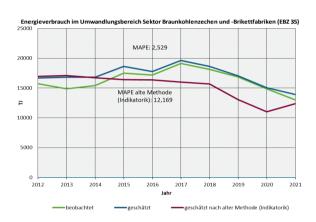
Quelle: Eigene Berechnungen EEFA und ZSW.

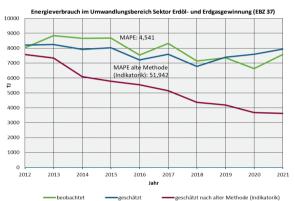
In den einzelnen Sektoren (EBZ_jS33 mit j für die jeweiligen Wirtschaftszweige und 33 als Summe aller Energieträger) schwankt der MAPE in einer Bandbreite zwischen 1,19 % und 4,54 %. Blickt man auf die Ergebnisse für die Ex-post-Prognose des Stromverbrauchs (EBZ_jS28) und des Brennstoffverbrauchs (VEWE_j), variiert der MAPE im hier gewählten Ex-post-Zeitraum von 2012 bis 2021 zwischen 1,23 % und maximal 6,30 %.

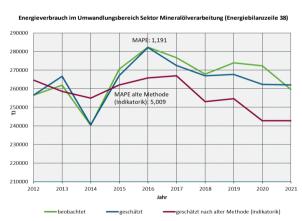
4.1.4.2 Vergleich der Ergebnisse aus der Ex-post-Prognose (weiterentwickeltes Modell) mit den Resultaten des monokausalen Fortschreibungsverfahrens (Pilotstudie)

Als weitere Methode zur Beurteilung der mit Hilfe des weiterentwickelten Modells zur Schätzung des Energieverbrauchs im Umwandlungsbereich gewonnenen Schätzergebnisse bietet sich zusätzlich selbstverständlich die Möglichkeit, die neuen Schätzergebnisse zugleich den empirischen Befunden gegenüberzustellen, die auf der Grundlage des bisherigen indikatorgestützten Fortschreibungsverfahren gewonnen wurden (Methode nach Pilotstudie, die auch in bislang vorgelegten Frühschätzungen angewendet wurde). Der Vergleich mit den Befunden nach dem alten Modell erfolgt, wie der Vergleich mit den beobachteten Daten (vgl. Kapitel 4.1.4.1) ebenfalls im Ex-post-Zeitraum von 2012 bis 2021.

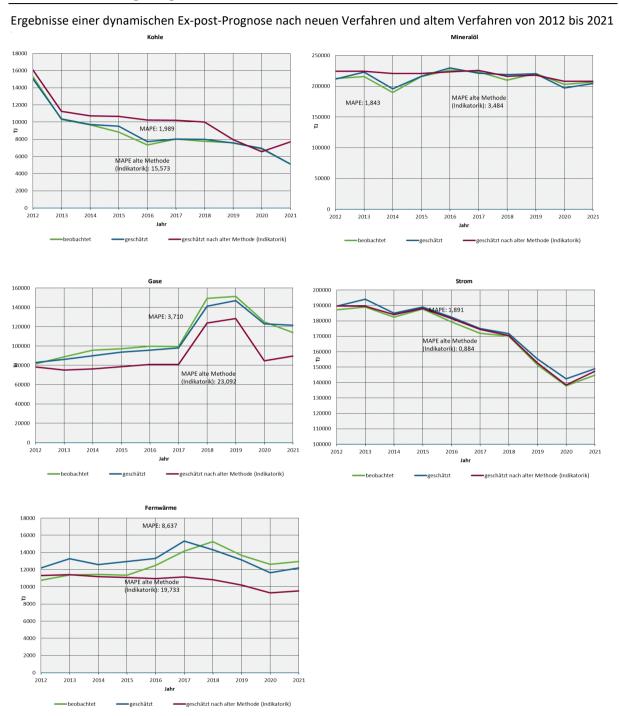

Die bislang eingesetzte Prognosemethode basiert, wie bereits mehrfach erwähnt, auf der Fortschreibung mittels monokausaler Kennziffern (Produktion des jeweiligen Sektors). Auf der Grundlage dieser definitorischen Vorgehensweise wurde eine alternative dynamische Ex-post-Prognose berechnet, um einen direkten Vergleich der Schätzfehler des alten Verfahrens mit dem neuen Verfahren durchführen zu können.


Auf diese Weise kann bereits zu diesem Zeitpunkt beurteilt werden, inwieweit das weiterentwickelte Modell und die damit verbundenen Schätzergebnisse voraussichtlich einen substanziellen Beitrag zur Verbesserung der Frühschätzung der Energiebilanz Deutschland leisten werden.


⁶⁶ Ansonsten könnte eine Beurteilung der Ergebnisse erst im Rahmen der späteren Vergleiche z.B. mit der ersten Fassung der Frühschätzung für das Berichtsjahr 2022 oder der endgültigen Energiebilanz Deutschland erfolgen.


Abbildung 21: Energieverbrauch der Umwandlungssektoren: Ergebnisvergleich nach Sektoren

Quelle: Eigene Darstellung EEFA und ZSW. Daten zur Abbildung im Anhang B, Tabelle B12.


Die Ergebnisse dieser Gegenüberstellung fasst Abbildung 21 grafisch zusammen. Dargestellt wird also die Entwicklung des Energieverbrauchs im Umwandlungssektor insgesamt (Energiebilanzzeile 40) sowie in den Einzelsektoren (Energiebilanzzeilen 33, 35, 37 und 38), nach der alten Methode, dem weiterentwickelten Modell und den beobachteten Befunden der Energiebilanz Deutschland.⁶⁷

In der Summe über alle Energieträger und Sektoren des Umwandlungssektors (Energiebilanzzeile 40) zeigt sich, dass beide Verfahren im Ex-post-Zeitraum ein relativ gutes Anpassungsverhalten aufweisen. Allerdings liegt der MAPE nach der neuen, weiterentwickelten

⁶⁷ Auf die Darstellung der Sektoren, in denen keine neue Methode angewendet wird, wurde verzichtet.

Schätzmethode mit 0,74 % spürbar unter dem Fehler bzw. der Abweichung, die sich nach dem alten Verfahren (MAPE: 4,5 %) ergeben würde.

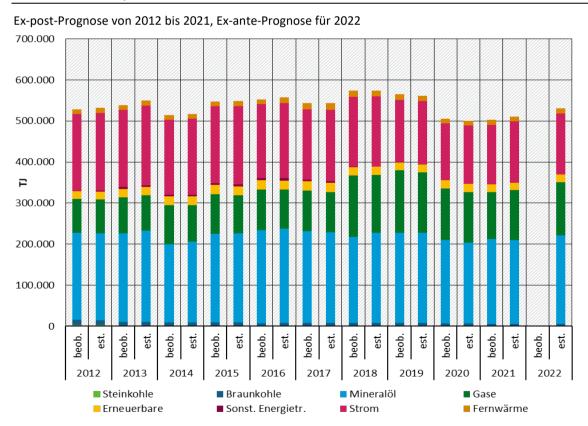
Abbildung 22: Energieverbrauch der Umwandlungssektoren: Ergebnisvergleich nach Energieträgern

Quelle: Eigene Darstellung EEFA und ZSW. Daten zur Abbildung im Anhang B, Tabelle B13.

Im Hinblick auf einzelne Umwandlungssektoren treten ebenfalls größere Differenzen zwischen den beiden hier betrachteten Schätzverfahren auf. Im Sektor "Kokereien" (Energiebilanzzeile 33) beispielsweise liegt der MAPE nach dem weiterentwickelten Modell mit 2,1 % deutlich unter dem Niveau, welches sich nach dem Indikatoren-Ansatz (MAPE: 7,8 %) einstellen würde. Noch

deutlicher sehen die Diskrepanzen in Bezug auf das Fehlermaß MAPE in den drei übrigen Umwandlungssektoren aus, wie der Abbildung 21 zu entnehmen ist.

Der skizzierte Vergleich wurde zusätzlich für die wichtigsten Energieträgergruppen wie Kohle, Mineralöle, Gase, Strom und Fernwärme, die der Umwandlungssektor (EBZ 40) insgesamt einsetzt, durchgeführt.⁶⁸ Dabei zeigt sich, dass das weiterentwickelte Modell im Vergleich zum bisherigen Verfahren auch auf der Ebene einzelner Energieträger überwiegend die besseren Expost-Anpassungen aufweist (vgl. Abbildung 22).


Eine Ausnahme bildet der Energieträger Strom, der nach den Befunden des weiterentwickelten Prognoseverfahrens im Ex-post-Vergleich zu den beobachteten Werten zwar ein gutes Anpassungsverhalten zeigt, allerdings bezogen auf den MAPE mit 1,9 % die größere absolute prozentuale Abweichung im Zeitraum von 2012 bis 2021 mit sich bringt, als dies noch nach dem alten Verfahren (MAPE: 0,9 %) der Fall gewesen ist.

Als Gesamtergebnis lässt sich festhalten, dass sich die Schätzergebnisse unter Zuhilfenahme des neuen, weiterentwickelten Modellteils deutlich gegenüber dem alten Verfahren verbessern.

4.1.4.3 Ex-ante-Prognose für 2022

Um die Stabilität des weiterentwickelten Modells zu prüfen, wird abschließend der Energieverbrauch des Umwandlungssektors differenziert nach Sektoren und Energieträgern für das Berichtsjahr 2022 prognostiziert.

Abbildung 23: Prognose des Energieverbrauchs im Umwandlungsbereich nach Energieträgern (EBZ 40)

Quelle: eigene Berechnungen EEFA und ZSW. Daten zur Abbildung im Anhang B, Tabelle B14.

⁶⁸ Auf die Darstellung der erneuerbaren Energien und der sonstigen Energieträger wurde verzichtet, da diese entweder exogen vorgegeben werden oder mit dem definitorischen Ansatz fortgeschrieben werden.

Die Prognose kann dabei auf exogene Größen zurückgreifen, die bereits als endgültig beobachtete Daten vorliegen. Dies ist zum Zeitpunkt der Frühschätzung selbstverständlich noch nicht der Fall, hier liegt der Großteil der exogenen Variablen nur teilweise als beobachtete, statistische Information vor; für den Fall der Nutzung von Monatsdaten muss der Dezemberwert und teilweise allerdings auch der Novemberwert durch Schätzung ergänzt werden.

Das Ergebnis der Ex-ante-Prognose innerhalb des Beobachtungszeitraums veranschaulicht Abbildung 23; es zeigt den Energieverbrauch im Umwandlungsbereich insgesamt (EBZ 40), aufgegliedert nach einzelnen Energieträgern. Nach den nunmehr vorliegenden Prognoseergebnissen nimmt der Energieverbrauch im Umwandlungsbereich im Jahr 2022 insgesamt um 5,3 % gegenüber dem beobachteten Energieverbrauch für das Jahr 2021 zu.

Zum Vergleich: Die derzeit aktuellste Schätzenergiebilanz für das Jahr 2022 (basierend auf den "early-estimates"-Daten des Statistischen Bundesamtes, Stand September 2023) geht von einem Anstieg des "Energieverbrauch im Umwandlungsbereich" im Jahr 2022 gegenüber dem Vorjahr um 8,3 % aus.

4.2 Umwandlungseinsatz in Heizwerken (Energiebilanzzeile 16)

Der Brennstoffeinsatz zur ungekoppelten Erzeugung von Fernwärme wird in der Energiebilanz Deutschland in Zeile 16 als Teil des Umwandlungseinsatzes erfasst. Im Detail umfasst diese Bilanzzeile die Summe aus den folgenden statistischen Positionen:

- ▶ Energie- bzw. Brennstoffeinsatz zur ungekoppelten Wärmeerzeugung in Heizkraftwerken mit einer elektrischen Leistung größer als 1 MW: dieser Teil der Bilanzzeile ist empirisch, auch im Rahmen der Frühschätzung, gut abgesichert; er liegt in Form von Monatsdaten, die im Rahmen der Statistik 066 (Monatserhebung über die Elektrizitäts- und Wärmeerzeugung) erhoben werden, laufend und mit Ausnahme des Dezembers bis zum aktuellen Rand vor.⁶⁹
- ▶ Energie- bzw. Brennstoffeinsatz zur ungekoppelten Wärmeerzeugung in reinen Heizwerken ab einer thermischen Leistung von 1 MW: die Befragung der Betreiber von Heizwerken erfolgt nur einmal jährlich im Rahmen der Statistik 064 (Jahreserhebung über Erzeugung und Verwendung von Wärme sowie über den Betrieb von Wärmenetzen). Die Ergebnisse dieser Jahreserhebung liegen mit einer erheblichen Verzögerung von ca. 10 Monaten vor und sind dementsprechend für die Frühschätzung nicht direkt nutzbar.⁷⁰

4.2.1 Schätzung des Umwandlungseinsatzes in reinen Heizwerken: bisheriges Vorgehen

Zur Prognose des Brennstoffeinsatzes der Heizwerke muss vor diesem Hintergrund im Rahmen der Frühschätzung ein Verfahren zur Fortschreibung dieser Daten eingesetzt werden, welches sich allein auf die Entwicklung in den vergangenen Jahren unter Hinzuziehung geeigneter exogener Erklärungsgrößen stützt, um letztlich im Rahmen des abgestimmten Zeitplans jeweils bis zum 5. Februar (trotz fehlender amtlicher Monatserhebungen, die als Frühindikator dienen

⁶⁹ Vgl. Statistisches Bundesamt (2023a), Monatserhebung über die Elektrizitäts- und Wärmeerzeugung zur allgemeinen Versorgung (Statistik Nr. 066, unveröffentlicht), Qualitätsbericht im Internet:

https://www.destatis.de/DE/Methoden/Qualitaet/Qualitaetsberichte/Energie/elektrizitaets-waermeerzeugung-versorgung-m-066k.pdf?_blob=publicationFile (Abrufdatum: 13.4.2024).

⁷⁰ Vgl. Statistisches Bundesamt (2022b), Jahreserhebung über Erzeugung und Verwendung von Wärme sowie über den Betrieb von Wärmenetzen (Statistik Nr. 064, unveröffentlicht), Qualitätsbericht im Internet: https://www.destatis.de/DE/Methoden/Qualitaet/Qualitaetsberichte/Energie/erzeugung-verwendung-waermenetze-j-064.pdf?_blob=publicationFile (Abrufdatum: 11.4.2024).

bzw. fortgeschrieben werden könnten) belastbare (Schätz-)Daten für das Vorjahr gewinnen zu können.

Bisher wurde der Brennstoffeinsatz der Heizwerke, differenziert nach Energieträgern, im Zusammenhang mit der Erstellung der Frühschätzung monokausal, d.h. konkret ausschließlich auf Basis der Veränderung der Gradtagzahlen für Deutschland zum Vorjahr fortgeschrieben.

Die Vorteile dieser Methode liegen auf der Hand: Das Verfahren ist hinsichtlich des mit der praktischen Umsetzung verbundenen zeitlichen Aufwandes überschaubar; hinzu kommt aufgrund der Einfachheit eine hohe Transparenz sowie schließlich eine Fortschreibung der Daten, die sich direkt an die Struktur und Abgrenzung der amtlichen Statistik 064 orientiert. Als größter Nachteil des Verfahrens ist demgegenüber zu benennen, dass wichtige Einflussgrößen der Nachfrage nach Fernwärme und des damit verbundenen Brennstoffeinsatz nicht in das Modell einfließen. Naturgemäß wird Fernwärme, wie sich bereits in der Absatzstruktur nach der Energiebilanz Deutschland erkennen lässt, nicht ausschließlich zur Beheizung von Wohn- und Gewerberäumen und damit in witterungsabhängigen Bereichen eingesetzt, sondern darüber hinaus auch zu Produktionszwecken. Auf das Verarbeitende Gewerbe entfiel im Jahr 2021 rund 40 % des gesamten Fernwärmeverbrauchs in Deutschland, wobei in der Industrie nahezu 90 % der Fernwärme als (temperaturunabhängige) Prozesswärme und nur rund 10 % zur Beheizung gewerblich genutzter Räume sowie zur Bereitstellung von Warmwasser eingesetzt wurde.

Tabelle 19: Vergleich Fernwärmeerzeugung nach amtlicher Statistik mit Hilfe von verschiedenen Fortschreibungsvarianten, hier: Steinkohlen

nach Erzeugungsart Steinkohlen

in GWh	Endgültige amtliche Daten (destatis)	Fortschreibung mit GTZ auf Bundesebene	Fortschreibung mit GTZ auf Bundeslandebene	Fortschreibung mit GTZ & Produktion auf Bundesebene
2019	733	970	965	942
2020	648	711	711	691
2021	629	728	734	713
2022	596	561	558	584

Quelle: Eigene Berechnungen EEFA und ZSW, nach destatis.

Tabelle 20: Vergleich Fernwärmeerzeugung nach amtlicher Statistik mit Hilfe von verschiedenen Fortschreibungsvarianten, hier: Mineralöle

nach Erzeugungsart Mineralöl und -produkte

in GWh	Endgültige amtliche Daten (destatis)	Fortschreibung mit GTZ auf Bundesebene	Fortschreibung mit GTZ auf Bundeslandebene	Fortschreibung mit GTZ & Produktion auf Bundesebene
2019	984	923	924	897
2020	939	954	940	928
2021	1.165	1.054	1.064	1.031
2022	1.415	1.040	1.021	1.082

Quelle: Eigene Berechnungen EEFA und ZSW, nach destatis.

Tabelle 21: Vergleich Fernwärmeerzeugung nach amtlicher Statistik mit Hilfe von verschiedenen Fortschreibungsvarianten, hier: Gase (inkl. Erdgas)

nach Erzeugungsart Gase, einschließlich Erdgas und Erdölgas

in GWh	Endgültige amtliche Daten (destatis)	Fortschreibung mit GTZ auf Bundesebene	Fortschreibung mit GTZ auf Bundeslandebene	Fortschreibung mit GTZ & Produktion auf Bundesebene
2019	11.201	12.746	12.727	12.386
2020	10.294	10.858	10.846	10.560
2021	11.838	11.565	11.573	11.313
2022	10.059	10.566	10.520	10.986

Quelle: Eigene Berechnungen EEFA und ZSW, nach destatis.

Tabelle 22: Vergleich Fernwärmeerzeugung nach amtlicher Statistik mit Hilfe von verschiedenen Fortschreibungsvarianten, hier: Sonstige Energieträger

nach Erzeugungsart Sonstige Energieträger (ohne Erneuerbare Energien)

in GWh	Endgültige amtliche Daten (destatis)	Fortschreibung mit GTZ auf Bundesebene	Fortschreibung mit GTZ auf Bundeslandebene	Fortschreibung mit GTZ & Produktion auf Bundesebene
2019	3.797	4.095	4.052	3.979
2020	3.649	3.681	3.708	3.580
2021	3.889	4.100	4.122	4.010
2022	3.810	3.471	3.479	3.609

Quelle: Eigene Berechnungen EEFA und ZSW, nach destatis.

Die monokausale Bindung der Prognose an die Witterungsverhältnisse (Gradtagzahlen⁷¹) ohne Berücksichtigung zusätzlicher ökonomischer Kennziffern (wie z.B. der Produktionsentwicklung ausgewählter Wirtschaftszweige) ist deshalb für sich genommen wenig sachgerecht.

Die Tabellen 19 bis 22 stellen vor diesem Hintergrund u.a. die beobachtete Fernwärmeerzeugung nach der amtlichen Statistik 064 (nach Energieträgerhauptgruppen) für die Berichtsjahre 2019 bis 2022 den Werten entgegen, die man erhält, wenn die Erzeugungsstruktur ausgehend von 2018 mit Hilfe der Gradtagzahlen, der Produktion oder der Kombination aus beiden Indikatoren fortgeschrieben wird.

Die Schätzergebnisse zeigen, wie erwartet, bei den einzelnen Energieträgern/Erzeugungsarten (und hier insbesondere beim Erdgas) teilweise deutliche Abweichungen zwischen den beobachteten und den fortgeschriebenen Werten. Auffällig ist zudem, z.B. bei der Fernwärmeerzeugung aus Steinkohle im Jahr 2021, dass die Fortschreibung anhand der Gradtagzahlen einen Anstieg der Fernwärmeerzeugung in der Größenordnung zwischen 2,4 und 3,2 % bezogen auch das Vorjahr suggerieren würde. Tatsächlich ist die Produktion von Fernwärme aus Steinkohle hingegen 2021 gegenüber 2020 um 19 GWh bzw. 2,9 % gesunken.

⁷¹ Berechnung von Gradtagzahlen vgl. EEFA/ZSW (2020), Ausgewählte Möglichkeiten zur Bereinigung des Energieverbrauchs um Temperaturschwankungen bzw. Witterungseffekte – eine empirische Analyse, Forschungsvorhaben im Auftrag der AG Energiebilanzen e.V. (unveröffentlicht, erscheint in Kürze).

Zusammenfassend bleibt festzuhalten, dass vor dem Hintergrund der skizzierten Befunde/Vergleiche eine kritische Überprüfung des verwendeten monokausalen Schätzverfahrens zur Fortschreibung der Fernwärmerzeugung laut Statistik 064 und des damit verbundenen Brennstoffeinsatzes angezeigt ist.

4.2.2 Schätzung des Umwandlungseinsatzes in reinen Heizwerken: geografische Disaggregierung

Um dieses Ziel zu erreichen, wurde im ersten Schritt geprüft, ob eine regionale Aufgliederung sowohl der Fernwärmeerzeugung als auch der Gradtagzahlen nach Bundesländern⁷² und eine Fortschreibung auf dieser Ebene ggf. eine Verbesserung der Prognosegüte mit sich bringt.

Allerdings zeigten sich bei Anwendung dieses Verfahrens, wie aus Tabelle 19 bis 22 (dritte Spalte) ebenfalls ablesbar, nur vernachlässigbar geringe Auswirkungen auf das Prognoseergebnis. Zwar ist bei der Fernwärmeerzeugung auf Basis von Erdgas, nach diesem Schätzverfahren, eine geringfügige Verbesserung der Resultate hin zu den beobachteten, endgültigen Werten der amtlichen Statistik erkennbar, insgesamt stellt sich dieser Trend jedoch nicht über alle Erzeugungsarten ein, der Effekt ist folglich nur von geringer Tragweite. Eine nachhaltige Verbesserung der Prognosegüte durch die Fortschreibung in regionaler Gliederung ist nicht feststellbar.

In der Gesamtbetrachtung bestätigen die hier vorgestellten Befunde, die eingangs geäußerte Vermutung, dass größere Teile der Nachfrage nach Fernwärme und die damit verbundene Wärmeerzeugung sowie der Brennstoffverbrauch nicht ausschließlich von der Entwicklung der Außentemperatur abhängig sind, sondern insgesamt betrachtet noch weitere Einflussgrößen bzw. Indikatoren eine maßgebliche Rolle spielen.

4.2.3 Schätzung des Umwandlungseinsatzes in reinen Heizwerken: Trennung temperaturabhängiger und -unabhängiger Teile

Nachfolgend soll die Auswirkung einer rechnerischen Aufsplittung der Fernwärmerzeugung in eine temperaturabhängige und -unabhängige Komponente in Kombination mit einer sich anschließenden (weiterhin definitorischen) separaten Fortschreibung beider Komponenten mittels geeigneter Kennziffern analysiert werden.

Die Aufgliederung der Fernwärmeerzeugung in die beiden o.g. Komponenten erfolgt unter der Prämisse, dass die aus den Anwendungsbilanzen der AG Energiebilanzen bekannten sektoralen Raumwärmeanteile für den Endenergieverbrauch an Fernwärme näherungsweise auch auf die Fernwärmeerzeugung übertragbar sind. Nach den Daten der Anwendungsbilanzen entfiel der Endenergieverbrauch von Fernwärme im Jahr 2018 noch zu 45,3 % auf den (temperaturunabhängigen) Anwendungszweck "Prozesswärme", wobei sich dieser Anteil bis 2022 auf etwa 36,5 % verringerte.⁷³ Aufgrund der mit dieser Entwicklung verbundenen Erhöhung des Raumwärmeanteils hat die Witterungsabhängigkeit des Endenergieverbrauchs von Fernwärme (in unserem Zusammenhang also auch der Fernwärmeerzeugung) im Zeitverlauf also zugenommen.

Zur Fortschreibung der Komponenten wurde folgende Vorgehensweise gewählt:

⁷² Vgl. EEFA/ZSW (2020).

⁷³ Vgl. AG Energiebilanzen (2022), Anwendungsbilanzen zur Energiebilanz Deutschland, Endenergieverbrauch nach Energieträgern und Anwendungszwecken, Internet: https://ag-energiebilanzen.de/wp-content/uploads/2023/01/AGEB_21p2_V3_20221222.pdf (Abrufdatum 25.10.2023).

- der temperaturabhängige Teil der Wärmeerzeugung wird, ausgehend vom jeweiligen Vorjahr, mit Hilfe der Veränderung der Gradtagzahlen fortgeschrieben und
- der temperaturunabhängige Teil der Wärmeerzeugung wird mit Hilfe der Veränderung des Produktionswertes im Verarbeitenden Gewerbe insgesamt fortgeschrieben

Eine Bewertung dieser Modellanpassung im Hinblick auf das Berechnungsergebnis lässt zunächst erkennen, dass die Auswirkungen spürbar kräftiger ausfallen, als dies z.B. beim Übergang auf das nach Regionen differenzierte Fortschreibungsverfahren der Fall gewesen ist. Auf den zweiten Blick wird allerdings deutlich, dass sich die Prognose (gemessen an den originären Statistikdaten) keineswegs in allen Jahren des Beobachtungszeitraums verbessert. Das Gegenteil ist der Fall: Für die Berichtsjahre 2021 und 2022 bewirkt das modifizierte Verfahren eine Verschlechterung des Prognoseergebnisses im Vergleich zu den endgültigen Daten der amtlichen Erhebung, wie ebenfalls aus Tabellen 19 bis 22 (siehe vierte Spalte) hervorgeht.

4.2.4 Schätzung des Umwandlungseinsatzes in reinen Heizwerken: Ökonometrie

Die vorangegangenen Berechnungen haben gezeigt, dass definitorische, monokausale Ansätze zur Frühschätzung des Brennstoff- bzw. Energieverbrauchs der Heizwerke eher ungeeignet erscheinen bzw. methodische Schwächen aufweisen. Problematisch erwiesen sich in diesem Zusammenhang nicht nur die skizzierten Abweichungen der kennzifferbasierten Schätzverfahren im Vergleich zu den beobachten Statistikdaten, sondern zusätzlich auch das Auftreten unterschiedlicher Vorzeichen bei der Veränderungsrate im direkten Vergleich zwischen Schätzung und Statistik bei einzelnen Energieträgern.

Aus diesem Grund kommt im Rahmen der Frühschätzung der Energiebilanz schließlich noch ein vierter Ansatz in Frage: die Erklärung des Brennstoffeinsatzes zur Fernwärmeerzeugung mit Hilfe multipler Regressionsanalysen.

Zu diesem Zweck wird im ersten Schritt die gesamte Fernwärmeerzeugung in Deutschland laut amtlicher Statistik 064 ökonometrisch geschätzt. Anschließend erfolgt auf der zweiten Ebene des Modells die Aufteilung der Wärmeerzeugung nach Energieträgern. Sowohl die Aufteilung der Fernwärmeerzeugung nach Energieträgern, als auch die Berechnung der daraus abgeleiteten Brennstoffmengen erfolgt in diesem Ansatz vereinfachend bzw. näherungsweise unter Verwendung entsprechender, beobachteter Kennziffern (Wirkungsgrad, Anteil des Energieträgers am Gesamtverbrauch) aus dem Vorjahr. Wichtigste exogene Vorgaben zur Erklärung der Fernwärmeerzeugung sind, wie in den vorangegangenen Abschnitten erläutert, die Witterungsverhältnisse in Deutschland (gemessen an den Gradtagzahlen) sowie die Entwicklung der realen Bruttoproduktion (in Mio. Euro) in der Industrie. Speziell zur Erklärung der Fernwärmenachfrage im hier angesprochenen Zusammenhang wird nur die Produktionsentwicklung der vier fernwärmeintensivsten Wirtschaftszweige, nämlich der der Nahrungsmittelindustrie (EBZ 47), des Papiergewerbes (EBZ 48), der Grundstoffindustrie (EBZ 49) sowie der Sonstigen chemischen Industrie (EBZ 50), die 2021 knapp 80 % des industriellen Verbrauchs an Fernwärme auf sich vereinten, ausgewählt. Die Verhaltensgleichung 12 zur Erklärung des Brennstoff-/Wärmeeinsatzes nimmt folgende Gestalt an:

```
12. \ \ LOG(HWWE) = 0.63*LOG(GTZ) + 0.84*LOG(PROD) + 0.46*AR(1) - 0.02*(@TREND) - 4.53*C
```

p-Werte: 0,00; 0,03; 0,11; 0,00; 0,54;

R²: 0,94; AR²: 0,91; DW: 1,35; Stützzeitraum: 2004 bis 2021;

mit:

HWWE: Fernwärmeerzeugung in Heizwerken, in MWh;

GTZ: Gradtagzahlen für Deutschland, Kelvin;

PROD: realer Bruttoproduktionswert (EBZ47-50) in Mio. €;

AR: Auto Regressiver Operator;

TREND: Trendvariable;

C: Absolutglied.

Schätzt man den Brennstoffeinsatz zur Fernwärmeerzeugung abschließend unter Zugrundelegung des beschriebenen weiterentwickelten Verfahrens im Ex-post-Zeitraum von 2004 bis 2021 ergibt sich folgendes Bild: Der mittlere absolute prozentuale Fehler zeigt für den Brennstoff- bzw. Energieeinsatz zur Fernwärmeerzeugung insgesamt mit 2,96 % eine gute Anpassung an die Vergangenheitsentwicklung. In Bezug auf die Ex-post-Prognose differenziert nach einzelnen Energieträgern ergeben sich, wie erwartet, je nach Brennstoff höhere Abweichungen von der beobachteten Entwicklung. Der MAPE (über den Stützzeitraum von 2004 bis 2021) als zentrale Prüfgröße schwankt in einer Bandbreite zwischen 13,1 % (Gase) und 175,5 % (sonstige Energieträger), wobei letztere im Energieträgermix der Fernheizwerke von vernachlässigbar geringer Bedeutung sind. Tabelle 23 fasst die Fehlermaße für den Brennstoffeinsatz zur Wärmeerzeugung zusammen.

Tabelle 23: Fehleranalyse für den Sektor Fernheizwerke im Umwandlungssektor (Energiebilanzzeile 16) nach ökonometrischen Verfahren

Ergebnisse einer dynamischen Ex-post-Prognose von 2004 bis 2021

Variable	МАРЕ	MEAN	MAE	RMSE
Insgesamt	2,96	2.033,14	2.772,31	3.507,44
Kohlen	40,31	-2.958,71	2.961,36	3.446,95
Mineralöle	28,25	-1.968,19	1.968,19	2.165,12
Gase (inkl. Erdgas)	13,06	-8.315,77	9.143,97	10.053,70
Sonstige Energieträger	175,54	4.805,32	5.085,22	5.611,73

Quelle: Eigene Berechnungen EEFA und ZSW.

Abschließend soll verdeutlicht werden, dass die weiterentwickelte Methode zur Prognose des Brennstoffeinsatzes der Fernheizwerke (Statistik 064) eine Verbesserung im Vergleich zur bisher verwendeten Methode der einfachen Fortschreibung mit Hilfe von Gradtagzahlen darstellt. Um dieses Ziel zu erreichen, wurde eine alternative Szenarienrechnung (ebenfalls im Stützzeitraum von 2004 bis 2021) mit dem monokausalen, allein auf die Entwicklung der Gradtagzahlen gestützten, definitorischen Modellansatz durchgeführt.

Aus dem Vergleich dieser Modellrechnung (Fortschreibung nur mit Gradtagzahlen) mit der beobachteten Entwicklung errechnet sich für den Zeitraum von 2004 bis 2021 ein MAPE in Höhe von 7,36 % (vgl. Tabelle 24). Zur Erinnerung: Im Rahmen der Ex-post-Prognose mit dem weiterentwickelten Ansatz ergab sich eine Abweichung von 2,96 % (MAPE).

Auch auf der Ebene einzelner Energieträger (mit Ausnahme der sonstigen Energieträger) lassen die aggregierten Fehlermaße des monokausalen Fortschreibungsverfahrens im direkten Modellvergleich auf deutlich schlechtere Ergebnisse bzw. Ex-post-Anpassungsgüten schließen.

Tabelle 24: Fehleranalyse für den Sektor Fernheizwerke im Umwandlungssektor (Energiebilanzzeile 16) nach definitorischem Verfahren

Ergebnisse einer dynamischen Ex-post-Prognose von 2004 bis 2022

Variable	МАРЕ	MEAN	MAE	RMSE
Insgesamt	7,357	-7.023,44	7.339,11	9.555,58
Kohlen	44,87	-3.651,78	3.651,78	4.115,83
Mineralöle	34,40	-2.656,03	2.656,03	2.881,51
Gase (inkl. Erdgas)	20,26	-15.411,88	15.984,18	18.358,76
Sonstige Energieträger	145,61	4.513,06	4.801,13	5.295,38

Quelle: Eigene Berechnungen EEFA und ZSW.

All dies zeigt, dass im Wege der Weiterentwicklung des Modells zur Prognose des Brennstoffeinsatzes zur Fernwärmeerzeugung im Vergleich zum bislang eingesetzten Verfahren zur Frühschätzung der Energiebilanz Deutschland eine Verbesserung erzielt werden konnte.

Abschließend ist darauf hinzuweisen, dass das in der Vorgänger- bzw. Pilotstudie beschriebene Hybridverfahren durch die hier vorgestellte Weiterentwicklung des Prognoseverfahrens unangetastet bleibt. Durch Verzicht einer Prognose der Energiebilanzzeile 16 als Ganzes (auf der Ebene von Jahresdaten) bzw. durch die Verwendung eines isolierten Schätzverfahrens nur für die ungekoppelte Fernwärmeerzeugung in Heizwerken (auf Basis der Jahresstatistik 064) und dem damit verbundenen Brennstoffeinsatz können die Informationen zur ungekoppelten Fernwärmeerzeugung in Heizkraftwerken (auf Basis der Monatsstatistik 066) weiterhin uneingeschränkt in die Frühschätzung einfließen. Auf diese Weise sind alle frühzeitig verfügbaren empirisch-statistischen Informationen weiterhin wichtiger Bestandteil der Prognose.

5 Weitere empirische Aspekte zur Verbesserung der Prognosegenauigkeit (Frühindikatoren)

Die Vorgängerstudie zur Erarbeitung einer Frühschätzung der Energiebilanz Deutschland hat gezeigt, dass die Erstellung einer konsistenten Bilanzmatrix zum abgelaufenen Jahr mittels eines Hybridansatzes sowohl unter Verwendung aller vorliegenden empirischen Monatsdaten am aktuellen Rand als auch unter Verwendung von Schätzmodellen, die auf empirischen Jahresdaten des Vorjahres aufsetzen, zu einem sehr frühen Zeitpunkt (t+1Monat) gelingen kann.

Frühindikatoren, die bei der ökonometrisch gestützten Prognose des Energieverbrauchs in einzelnen Sektoren derzeit Verwendung finden, sind u.a. die demografische Entwicklung (Bevölkerung), Temperatur- und Witterungseinflüsse (Gradtagzahlen), die sektorale Entwicklung des Produktionswerts und der Energiepreise. Hingegen werden im Bereich der unterjährig vorliegenden Energiedaten einzelne Monate mittels autoregressiver oder nonkausaler Verfahren geschätzt. Hintergrund ist das Verhältnis von Aufwand und Ertrag – der Fehler, der bei Schätzung eines einzelnen Monats in Bezug auf das Gesamtergebnis eines Sektors entsteht, ist untergeordnet klein, weswegen ökonometrisch gestützte Verfahren in diesen Fällen klare Nachteile aufweisen.

Vor diesem Hintergrund analysiert der folgende Abschnitt, inwieweit, neben den bereits genannten, weitere Frühindikatoren in die Frühschätzung integriert werden können, die bisher keine Berücksichtigung fanden. Ein Hauptaugenmerk dieser Analyse (liegt wie in anderen Bereichen auch) auf der Datenverfügbarkeit: Zur nachhaltigen Verbesserung der Prognosegenauigkeit der Frühschätzung sollte idealerweise gewährleistet sein, dass die als exogene Erklärungsgrößen verwendeten Daten bereits Anfang Februar für das jeweilige Vorjahr vorliegen. Darüber hinaus soll beleuchtet werden, ob die identifizierten zusätzlichen oder alternativen Frühindikatoren zusätzlich eine Verbesserung der Prognosegüte im Bereich der Jahresdaten darstellen, sich also zugleich in die verwendeten ökonometrischen Schätzmodelle integrieren lassen oder sogar, ohne größeren Aufwand zu induzieren, in die Monatsmodelle eingearbeitet werden können.

Es liegt auf der Hand, dass die Verbesserung des Dateninputs (Frühindikatoren im Prognosejahr) eine der zentralen Stellschrauben zur Erhöhung der Prognosegenauigkeit darstellt. Dabei hängen die Optionen zur Nutzung zusätzlicher Datenquellen im Rahmen der Frühschätzung grundsätzlich von der Art und Detaillierung des verwendeten Schätzverfahrens ab

In diesen Zusammenhang wurde bereits darauf hingewiesen, dass der Rückgriff auf zusätzliche Variablen zur Erklärung des Energieverbrauchs insbesondere in jenen Fällen einen substanziellen Beitrag zur Steigerung der Prognosegenauigkeit leisten kann, wenn der Indikator nicht nur für Zeiträume im Stützzeitraum des Modells (Ex-post), sondern auch für das jeweilige Prognosejahr der Frühschätzung etwa in Form von Monatsdaten bereits verfügbar ist.

Im Mittelpunkt der folgenden Ausführungen stehen Datenquellen, die bislang noch nicht in die Erstellung der Frühschätzung eingeflossen sind. Untersucht wird insbesondere, ob die Informationen durch Inhalt, Methodik der Erhebung sowie zeitliche Abgrenzung in Bezug auf die Prognosegüte der Frühschätzung einen Mehrwert erbringen können.

5.1 Stromerzeugung und Energieeinsätze zur Stromerzeugung

Die Ausgangslage zur laufenden Frühschätzung der gesamten Stromerzeugung und den damit verbundenen Energie- bzw. Umwandlungseinsätzen stellt sich wie folgt dar:

- ► Amtliche Daten zur Stromerzeugung der Wärmekraftwerke der allgemeinen Versorgung, wie auch die korrespondierenden Energieeinsätze (EBZ 11 sowie EBZ 23), liegen als Monatsinformation mit einer Verzögerung von in der Regel 55 Tagen vor. Für die Frühschätzung der Energiebilanz Deutschland folgt daraus, dass der Berichtsmonat Dezember für das Prognosejahr typischerweise geschätzt werden muss (wenn die bereits vorliegenden Monatsdaten, wie im Hybridverfahren intendiert, in die Schätzbilanz einfließen sollen).⁷⁴
- ▶ Hingegen können Daten zur Stromerzeugung der Industriekraftwerke sowie Informationen zu den damit verbundenen Brennstoffeinsätzen (EBZ 12 sowie EBZ 24) lediglich einer amtlichen Jahresstatistik (Stat. Nr. 067) entnommen werden, die allerdings erst mit einer Verzögerung von 10 Monaten zum abgelaufenen Berichtsjahr zur Verfügung steht.⁷⁵
- ▶ Monatliche Daten zur Stromerzeugung der Kernkraftwerke in Deutschland waren in der Vergangenheit beim Verband der Großkraftwerksbetreiber (VGBE) in monatlicher Granularität mit einer Verzögerung von 31 Tagen abrufbar. ⁷⁶ Durch die Änderung des Atomgesetzes wurde die ursprünglich für den 31. Dezember 2022 vorgesehene Stilllegung der drei letzten Kernkraftwerksblöcke (Isar 2, Neckarwestheim 2 und Emsland) um dreieinhalb Monate auf den 15. April 2023 verschoben. ⁷⁷ Damit entfällt die Notwendigkeit einer Prognose für diesen Energieträger im Rahmen der laufenden Frühschätzungen ab dem Berichtsjahr 2023 (EBZ 13 sowie EBZ 25).
- ▶ Die Stromerzeugung der "Sonstigen Stromerzeugungsanlagen" (darunter verbergen sich insbesondere dezentrale Kleinanlagen, die nicht von der amtlichen Statistik erfasst werden) erstreckt sich über drei Teilbereiche: die Stromerzeugung aus erneuerbaren Energien (wird von der AGEE-Stat bereitgestellt bzw. ist nicht Teil der Prognosen dieser Studie), leichtes Heizöl sowie schließlich Grubengas und Erdgas. Die Stromerzeugung der drei letztgenannten Energieträger wird im Zusammenhang mit der Frühschätzung unter Zuhilfenahme eines Vintage-Ansatzes, also aus der zugebauten (Netto-)Leistung der Anlagen berechnet. Anschließend wird unter Verwendung geeigneter anlagenspezifischer Kennziffern der KWK-Prozess (KWK-Wärmeerzeugung und korrespondierende Energieeinsätze) modellgestützt ermittelt (EBZ 14 sowie EBZ 26).⁷⁸

Die knappe Beschreibung dieser Ausgangslage lässt bereits erkennen, dass die Frühschätzung der Stromerzeugung unter Einbeziehung bereits vorhandener Statistikdaten (Hybridansatz) aufgrund der skizzierten Heterogenität der verschiedenen Datenquellen nur unter kombinierter Verwendung verstreut vorliegender Frühindikatoren gelingen kann.

Vor diesem Hintergrund beleuchten die nachfolgenden Abschnitte zusätzliche bestehende Optionen zur Vervollständigung der vorliegenden Statistikdaten, um ggf. zu einer

⁷⁴ Vgl. Statistisches Bundesamt (2023a).

⁷⁵ Vgl. Statistisches Bundesamt (2022b).

⁷⁶ Vgl. VGBE (2023), Operating Results of Nuclear Power Plants, monatliche Daten.

 $^{^{77}}$ AtG (2022), Gesetz über die friedliche Verwendung der Kernenergie und den Schutz gegen ihre Gefahren (Atomgesetz), Internet: https://www.gesetze-im-internet.de/atg/AtG.pdf (Abrufdatum 25.10.2023)

⁷⁸ Beim Grubengas findet praktisch kein Anlagenzubau mehr statt, die Prognose der Stromerzeugung konzentriert sich auf den noch in Betrieb befindlichen Anlagenbestand.

zuverlässigeren Abbildung der Daten bzw. der damit verbundenen Frühschätzung in den strombezogenen Segmenten der Bilanz zu gelangen.

5.1.1 BDEW-Schnellstatistik - Stromerzeugung und -verbrauch in Deutschland

Eine bislang ungenutzte Option zur Verbesserung des Prognoseverfahrens stellt die sogenannte "Schnellstatistik Stromerzeugung und -verbrauch in Deutschland" dar, die regelmäßig vom Bundesverband der Energie- und Wasserwirtschaft (BDEW) publiziert wird.⁷⁹ Da es sich hier um eine Verbandserhebung handelt, besteht zwar kein Anspruch auf dauerhafte und ggf. zukünftige Verfügbarkeit der Statistik, dafür bietet diese monatliche Datenquelle den Vorteil, dass sie in der Regel nur mit einer Verzögerung von 17 Tagen, zur Monatsmitte des Folgemonats, vorliegt.

In Bezug auf die bereits dargelegte Terminierung der laufenden Frühschätzungen der Energiebilanz Deutschland ist festzuhalten, dass das Veröffentlichungsdatum der Schnellstatistik im Dezember stets deutlich vor dem 15. Februar liegt (beispielsweise wurde die Schnellstatistik des Monats Dezember 2022 am 20. Januar 2023 versandt). Damit steht einer Nutzung als Frühindikator zumindest aus der Perspektive der zeitlichen Verfügbarkeit nichts im Wege.

Die BDEW-Schnellstatistik stellt die gesamte Bruttostromerzeugung in Deutschland nach Energieträgern seit 1991 (Jahresdaten) bzw. seit 2003 auch in monatlicher Abfolge dar. Dabei differenziert die publizierte Fassung der BDEW-Schnellstatistik nach den Energieträgern:

- Kernenergie
- Braunkohle
- Steinkohle
- Erdgas
- ▶ Mineralölprodukte
- Wasser
- Wind an Land
- Wind auf See
- Photovoltaik
- Biomasse
- ► Siedlungsabfälle (50%)
- Geothermie
- Sonstige Energieträger (sonstige konventionelle Energieträger, z.B. Hochofengas)

Ein wesentliches Problem bei der Verwendung der Daten der Schnellstatistik als Frühindikator liegt darin, dass insbesondere die Stromerzeugung aus konventionellen Energieträgern (z.B. Braunkohle, Mineralölprodukte) lediglich in aggregierter Form (Energieträgerhauptgruppen) veröffentlicht wird. Dies hat zur Folge, dass im Vergleich zu den amtlichen Erhebungen der

⁷⁹ Vgl. BDEW Bundesverband der Energie- und Wasserwirtschaft (2023), Schnellstatistik Stromerzeugung und –verbrauch in Deutschland, versch. Monate, (per E-Mail).

Statistik Nr. 066 (diese unterscheidet 41 Energieträger) deutlich reduzierte Detailinformationen verfügbar sind.

Auch im Hinblick auf die Prognose der Energiebilanz Deutschland (die ohne Berücksichtigung der erneuerbaren Energieträger in der Satellitenbilanz, also in der Hauptbilanz 30 Energieträger ausweist) müssten aufgrund der skizzierten Aggregation in der BDEW-Schnellstatistik Abstriche bei der Genauigkeit der Prognose in Kauf genommen werden, sofern diese als Indikator genutzt werden soll.

Zusätzlich als problematisch, im Hinblick auf die Erhöhung der Prognosegenauigkeit durch Verwendung der BDEW-Schnellstatistik, erweist sich die fehlende Unterteilung in die für die Energiebilanzierung erforderlichen Bereiche "Allgemeine Versorgung", "Industriekraftwerke" und schließlich "Sonstige Stromerzeugungsanlagen bzw. Einspeiser".

Zur Verwendung der BDEW-Schnellstatistik als Kennziffer zur Fortschreibung der Frühschätzung der Energiebilanz Deutschland bzw. zur Fortschreibung der amtlichen, relevanten Monats- und Jahresstatistiken (für die sachgerechte Bilanzierung der Stromerzeugung) müsste zunächst eine Aggregation auf die gröbere Gliederung der Verbandserhebung erfolgen. Anschließend (also nach der zusammenfassenden Fortschreibung für den fehlenden Berichtsmonat) bestünde das Problem, die "Prognose" wieder auf das für die Energiebilanz erforderliche Disaggregationsniveau (Energieträger, Sektoren bzw. Bilanzzeilen) aufzusplitten.

Es liegt auf der Hand, dass dem BDEW-Branchenverband über das Datenangebot des Statistischen Bundesamtes hinsichtlich Aufgliederung, zeitlicher Abgrenzung und Aktualität letztlich identische amtliche Erhebungen zur Verfügung stehen, auf die auch die AG Energiebilanzen zur Erstellung ihrer Frühschätzungen zurückgreifen kann. Positiv ist allerdings hinzuzufügen, dass sich die BDEW-Schnellstatistik insbesondere in Bereichen, für die (noch) keine amtlichen Statistikdaten vorliegen, zusätzlich auf eigene (unveröffentlichte) Verbandserhebungen sowie auf umfangreiches Expertenwissen innerhalb des Verbandes sowie der dort organisierten Mitgliedsunternehmen stützen kann. Kritisch gegen die Nutzung der BDEW-Schnellstatistik ist in diesem Zusammenhang jedoch anzumerken, dass die ermittelten Stromerzeugungsmengen in nicht von empirischen Erhebungen erfassten Bereichen am aktuellen Rand ihrerseits auf Prognosen basieren.

Als vorläufiges Fazit haben die vorangegangenen Abschnitte gezeigt, dass die BDEW-Schnellstatistik aufgrund ihrer Aktualität einerseits zwar Zusatzinformationen bereithält, die auch als sehr aktueller Frühindikator zu interpretieren sind, sich der damit verbundene Mehrwert bzw. Zusatznutzen zur Verbesserung der Prognosegenauigkeit im Rahmen der Frühschätzung aufgrund des hohen Aggregationsgrades dieser Datenquelle andererseits eher in Grenzen hält. Ein Rückgriff auf die BDEW-Schnellstatistik als neuer Frühindikator, der in die Frühschätzung der Energiebilanz Deutschland (t-1) zum 15. Februar eines Jahres einfließt, wird vor diesem Hintergrund derzeit nicht ins Auge gefasst.

5.1.2 Daten der European Transmission System Operators - ENTSO-E

Die europäischen Übertragungsnetzbetreiber (European Network of Transmission System Operators for Electricity, kurz ENTSO-E) veröffentlichen seit 2015 u.a. Daten zur Erzeugung und zum Verbrauch von elektrischem Strom, zu Lastgängen sowie zum Ausfall von Kraftwerkskapazitäten auf dem europäischen Kontinent.⁸⁰ Insbesondere Informationen zur

⁸⁰ Vgl. ENTSOE (2023), Actual generation per production type, Viertelstunden, Internet: https://transparency.entsoe.eu/(Abrufdatum zuletzt 10.10.2023).

Erzeugungskapazität liegen in viertelstündlicher Auflösung und mit einer zeitlichen Verzögerung von lediglich ca. 90 Minuten vor. Die hohe Granularität der Datenquelle impliziert, dass sich die Informationen beliebig zu höher aggregierten Zeitreihen transformieren bzw. aufsummieren lassen (Stunden, Monate, Quartale, Jahre). Grundsätzlich lässt sich also feststellen, dass der Frühindikator allein aus zeitlicher Perspektive als Datenquelle zur Verbesserung der Prognose bzw. Frühschätzung der Energiebilanz gut geeignet ist.

Die auf der Plattform ENTSO-E angebotenen Daten lassen sich sowohl nach der Art der Erzeugung (Energieträger) als auch nach einzelnen Kraftwerksblöcken filtern. Auf der Ebene "Erzeugungsart" wird nach insgesamt 20 Energieträgern unterschieden, wobei allerdings zu beachten ist, dass einige dieser Energieträger in Deutschland nicht zur Stromerzeugung eingesetzt werden bzw. hierzulande keine Anlagen installiert sind. Konkret unterscheidet ENTSO-E folgende Energieträger:

- ▶ Biomass (Biomasse)
- Fossil Brown Coal / Lignite (Braunkohle)
- Fossil Coal-derived gas (Kohlegase, keine Daten für Deutschland verfügbar)
- Fossil Gas (Erdgas, ggf. auch Grubengas)
- Fossil Hard Coal (Steinkohle)
- ► Fossil Oil (Mineralöl und -produkte)
- ► Fossil Oil shale (Ölschiefer, keine Daten für Deutschland verfügbar)
- ► Fossil Peat (Torf, keine Daten für Deutschland verfügbar)
- Geothermal (Geothermie)
- ► Hydro Pumped Storage (Stromerzeugung und -verbrauch von Pumpspeichern)
- ► Hydro Run-of-river and poundage (Laufwasserkraft)
- Hydro Water Reservoir (Speicherwasserkraft)
- Marine (Meeresenergie, keine Daten für Deutschland verfügbar)
- ▶ Nuclear (Kernenergie, seit Mitte April 2023 keine Daten für Deutschland verfügbar)
- Other (andere konventionelle Stromerzeugung)
- Other renewable (andere erneuerbare Stromerzeugung)
- Solar (Photovoltaik)
- Waste (Abfälle, Müll)
- Wind Offshore (Wind auf See)
- Wind Onshore (Wind an Land)

Lässt man aufgrund der vereinbarten Arbeitsteilung im Rahmen der Frühschätzung die erneuerbaren Energien außer Acht, stehen insbesondere die Daten zur Stromerzeugung aus Braunkohlen, Erdgas, Steinkohlen, Mineralöl und -produkte sowie Pumpspeicher und Abfällen im Mittelpunkt des Interesses.

Beschränkt man sich auf die grundlegenden Sachverhalte und vergleicht die Entwicklung der fossilen Stromerzeugung für ausgewählte Brennstoffe im Ex-post-Zeitraum von Januar 2015 bis Juli 2023 für die beiden Datenquellen (ENTSO-E und Statistisches Bundesamt⁸¹) auf Monatsebene, so zeigt sich folgendes Bild: Offensichtlich weisen beide Statistiken hinsichtlich des Niveaus und Verlauf bzw. Varianz eine große Übereinstimmung auf. Insbesondere am aktuellen Rand liegen die Entwicklungen nach beiden Statistiken eng beieinander, im Falle der Stromerzeugung aus Steinkohle ist sogar eine nahezu deckungsgleiche Entwicklung zu beobachten (vgl. Abbildungen 24 und 25).

Verstärkt wird der soeben gewonnene, grafische Eindruck, wenn man die betrachtete Stromerzeugung aus Stein- und Braunkohle laut amtlicher Statistik 066 im Rahmen einfacher Regressionsgleichungen durch die Stromerzeugung dieser Energieträger nach ENTSO-E erklärt (vgl. Gleichungen 13 und 14).

In GWh 14000 12000 10000 8000 GWh 6000 4000 2000 .05.2016 .09.2019 .01.2020 01.01.2015 01.05.2015 01.09.2015 01.01.2016 01.09.2016 01.01.2018 01.05.2018 01.09.2018 .01.2019 .05.2019 .05.2020 01.09.2020 .05.2022 01.09.2022 01.01.2017 01.05.2017 01.09.2017 .05.2021 .09.2021 .01.2022 01.01.2021 Steinkohle EnStat066 Steinkohle entso-e

Abbildung 24: Monatliche Stromerzeugung aus Steinkohle nach EnStat066 und ENTSO-E

Quelle: Eigene Berechnungen EEFA und ZSW, nach destatis, ENTSO-E.

13. LOG(ENSTAT066_SK) = 1,06*LOG(ENTSOE_SK) - 0,43*C

p-Werte: 0,00; 0,24;

R²: 0,89; AR²: 0,89; DW: 0,25; Stützzeitraum: Januar 2015 bis Januar 2023;

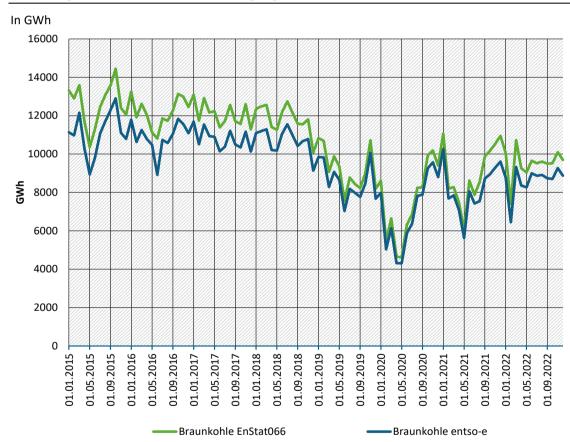
mit:

ENSTAT066_SK: Bruttostromerzeugung aus Steinkohle, Stat. Nr. 066, (MWh); ENTSOE_SK: Bruttostromerzeugung aus Steinkohle lt. ENTSO-E, (MWh); C: Absolutglied.

⁸¹ Vgl. Statistisches Bundesamt (2023a).

Offensichtlich liefern die ENTSO-E-Daten für diese Energieträger einen guten Erklärungsbeitrag. Für die Steinkohle ergibt sich aus der skizzierten einfachen Gleichung ein korrigiertes Bestimmtheitsmaß in Höhe von 0,89, für die Braunkohle sogar von 0,99. Auch eine statistische Korrelationsrechnung bestätigt die ermittelten Befunde: für die Steinkohle nimmt der Korrelationskoeffizient einen Wert von 0,93, für die Braunkohle sogar einen Wert von 0,99 an, was für eine starke positive Korrelation der Zeitreihen spricht.

14. LOG(ENSTAT066_BK) = 1,07*LOG(ENTSOE_BK) - 0,38*C


p-Werte: 0,00; 0,00;

R²: 0,99; AR2: 0,99; DW: 0,93; Stützzeitraum: Januar 2015 bis Januar 2023;

mit:

ENSTAT066_BK: Bruttostromerzeugung aus Braunkohle, Stat. Nr. 066, (MWh); ENTSOE_BK: Bruttostromerzeugung aus Braunkohle laut ENTSO-E, (MWh); C: Absolutglied.

Abbildung 25: Monatliche Stromerzeugung aus Braunkohle nach EnStat066 und ENTSO-E

Quelle: Eigene Berechnungen EEFA und ZSW, nach destatis, ENTSO-E.

Im Zusammenhang mit der Interpretation der Unterschiede zwischen den beiden hier betrachteten Statistiken sei an dieser Stelle darauf hingewiesen, dass üblicherweise nicht die gesamte Stromerzeugung Deutschlands in Übertragungs- oder Verteilnetze eingespeist wird.⁸² Die Stromerzeugung in Kraftwerken des Verarbeitenden Gewerbes (Industriekraftwerke) beispielsweise wird, je nach betrachtetem Wirtschaftszweig, ganz überwiegend direkt vor Ort

⁸² Unter der Netzeinspeisung in ein Übertragungsnetz versteht man per Definition die Summe aller Einspeisungen von Verbundübergabestellen, Kraftwerken und Verteilnetzen.

zur Versorgung der eigenen Produktionsprozesse genutzt und allenfalls mittels kleinerer örtlicher Verteil- oder Werksnetze transportiert. Auch kleinere, dezentrale Anlagen, wie z.B. BHKWs oder Mikro-KWK-Anlagen, sind zwar in der Regel mit dem Stromnetz verbunden, speisen ihre Erzeugungsmengen aber nicht zwangsläufig vollständig in das öffentliche Netz ein, sodass Teile dieser Stromerzeugung nicht in den von ENTSO-E aufbereiteten Datensätzen enthalten sein können.

All dies zeigt, dass ungeachtet größerer methodischer und inhaltlicher Ähnlichkeiten zwischen den Datenquellen auch für diesen Frühindikator, je nach Energieträger, Abweichungen zwischen den Erhebungs- und Berichtskreisen nicht vollständig ausgeschlossen werden können.

Untersucht man den Zusammenhang zwischen den Daten zur Stromerzeugung aus Erdgas nach Angaben des Statistischen Bundesamtes und ENTSO-E, ergibt sich ein anderer Eindruck. Die Übereinstimmung der beiden Datensammlungen im Ex-post-Zeitraum fällt insgesamt spürbar schlechter aus, als dies noch bei Stein- oder Braunkohle der Fall gewesen ist. Lediglich für ausgewählte Abschnitte des Beobachtungszeitraums (z.B. von März 2020 bis Mai 2022) ist eine gewisse Angleichung der beiden Zeitreihen erkennbar. Erschwerend hinzu kommt, dass die ENTSO-E-Daten in einigen Segmenten des Beobachtungszeitraums vom Niveau über den amtlichen Befunden liegen, während sie in anderen Zeitabschnitten spürbar unterhalb der Stromerzeugungsmengen liegen, die die Statistik der Allgemeinen Versorgung ausweist (vgl. Abbildung 26). Bedauerlich ist gleichwohl, dass Kenntnisse zu den genauen Ursachen der größeren Abweichungen (bzw. Unter- und Überschreitungen) beim Erdgas lückenhaft sind bzw. nicht vorliegen.

In GWh 8000 7000 6000 5000 4000 3000 2000 1000 0 .01.2020 2019 .09.2019 .05.2020 2022 .01.2018 .05.2018 .01.2022 .05.2022 01.01.2015 01.05.2015 01.09.2015 01.01.2016 01.05.2016 01.09.2016 .09.2018 .05.2019 .09.2020 01.01.2017 01.05.2017 01.09.2017 .01.2021 .05.2021 .09.2021 10 .09 01. 01. Erdgas EnStat066 Erdgas entso-e

Abbildung 26: Monatliche Stromerzeugung aus Erdgas nach EnStat066 und ENTSO-E

Quelle: Eigene Berechnungen EEFA und ZSW, nach destatis, ENTSO-E.

Eine ökonometrische Analyse bestätigt den skizzierten Eindruck. Regressiert man die erdgasbasierte Stromerzeugung laut ENTSO-E auf die amtlichen Daten, lässt sich aus der so gewonnenen Gleichung 15 (Stützzeitraum Januar 2015 bis Januar 2023) ein korrigiertes Bestimmtheitsmaß von 0,44 ableiten. Dieser niedrige Erklärungsbeitrag kann als Indiz angesehen werden, dass die ENTSO-E-Daten für diesen Energieträger eher ungeeignet erscheinen, die Zeitreihe der Erdgas-Stromerzeugung in der Allgemeinen Versorgung als Frühindikator vollständig zu erklären.

15. LOG(ENSTAT066_EG) = 0,31*LOG(ENTSOE_EG) + 5,84*C

p-Werte: 0,00; 0,00;

R²: 0,45; AR²: 0,44; DW: 0,42; Stützzeitraum: Januar 2015 bis Januar 2023;

mit:

ENSTAT066_EG: Bruttostromerzeugung aus Erdgas, Stat. Nr. 066, (MWh); ENTSOE_EG: Bruttostromerzeugung aus Erdgas laut ENTSO-E, (MWh); C: Absolutglied.

Die einfache Prüfung mittels Korrelationsrechnung bestätigt auch hier die zuvor ermittelten Befunde: der statistische Koeffizient liegt für Erdgas nur bei 0,61 und verdeutlicht allenfalls eine schwache Korrelation der Zeitreihen.

In GWh 700 600 500 400 gWh 300 200 100 01.05.2015 01.01.2016 01.05.2016 01.09.2016 01.01.2018 01.05.2018 01.09.2018 01.01.2019 01.05.2019 01.09.2019 01.01.2015 01.09.2015 01.01.2017 01.09.2017 01.01.2020 01.05.2020 01.09.2020 01.09.2021 01.01.2022 01.05.2022 01.09.2022 01.05.2017 01.01.2021 01.05.2021 Mineralöl EnStat066 Mineralöl entso-e

Abbildung 27: Monatliche Stromerzeugung aus Mineralöl nach EnStat066 und ENTSO-E

Quelle: Eigene Berechnungen EEFA und ZSW, nach destatis, ENTSO-E.

Die nachfolgenden Abbildungen 27, 28 und 29 zeigen entsprechende Vergleiche der Stromerzeugung aus Mineralöl und Mineralölprodukten, Pumpspeicherkraftwerken sowie Abfällen (in reinen Abfallverbrennungsanlagen oder als Mitverbrennung in konventionellen Kraftwerken). Für diese drei Energieträger gilt generell, dass sie für die Stromerzeugung insgesamt im Vergleich zu den vorangegangenen Betrachtungen (Stromerzeugung aus Steinund Braunkohle sowie Erdgas) eher von untergeordneter Bedeutung sind.

Gleichzeitig ist aber auch festzuhalten, dass die Kohärenz zwischen den Datenquellen deutlich abfällt oder gar nicht vorhanden ist. Insbesondere für die Stromerzeugung aus Mineralöl erscheint deshalb eine sachgerechte Nutzung der ENTSO-E-Daten als Frühindikator ausgeschlossen. Der zeitliche Verlauf zeigt hier auffällige Plateaus, immer wieder gefolgt von mehreren Monaten, in denen offenkundig keine Stromerzeugung aus Mineralölprodukten von den Übertragungsnetzbetreibern an ENTSO-E berichtet wurde, wohingegen die Statistik der Allgemeinen Versorgung (Statistik 066) über den gesamten Beobachtungszeitraum hinweg ein konstantes Niveau zwischen 50 und 200 GWh pro Monat aufweist. Die statistische Korrelation beträgt -0,06 über den gesamten Zeitraum seit Januar 2015 hinweg, es besteht also kaum ein Zusammenhang zwischen den Zeitreihen.

In GWh 1200 1000 800 GWh 600 400 200 .01.2022 .09.2022 01.01.2015 01.05.2015 01.09.2015 01.01.2016 01.05.2016 01.09.2016 01.01.2017 01.05.2017 01.09.2017 01.01.2018 01.05.2018 01.09.2018 01.01.2019 01.05.2019 01.09.2019 01.01.2020 01.05.2020 01.09.2020 01.05.2021 .09.2021 01.05.2022 .01.2021 Pumpspeicher EnStat066 Pumpspeicher entso-e

Abbildung 28: Monatliche Stromerzeugung aus Pumpspeichern nach EnStat066 und ENTSO-E

Quelle: Eigene Berechnungen EEFA und ZSW, nach destatis, ENTSO-E.

Die Erzeugung aus Pumpspeichern variiert zwischen 2015 und 2017 im Vergleich zwischen den beiden Datenquellen auf einem ähnlichen Niveau. Allerdings nehmen die Differenzen zwischen den beiden Statistiken ab 2018 spürbar zu. Grund hierfür dürfte vermutlich in Änderungen des Berichtskreiszuschnitts zu suchen sein: Während die Statistik der Allgemeinen Versorgung sogenannte Grenzkraftwerke, also Stromerzeugungsanlagen, die entweder direkt auf der deutschen Landesgrenze oder im grenznahen, benachbarten Ausland errichtet wurden, jedoch für das deutsche Versorgungsnetz bzw. für einen der vier heimischen Betreiber der

Übertragungsnetze Strom produzieren, nur hälftig berücksichtigt, wird die Stromerzeugung aus solchen Anlagen in ENTSO-E-Statistik vollständig dem jeweiligen Übertragungsnetzbetreiber zugerechnet.⁸³ Die statistische Korrelation liegt für die Stromerzeugung in Pumpspeicherkraftwerken über den Gesamtzeitraum hinweg bei 0,42 und damit niedriger als beim Erdgas.

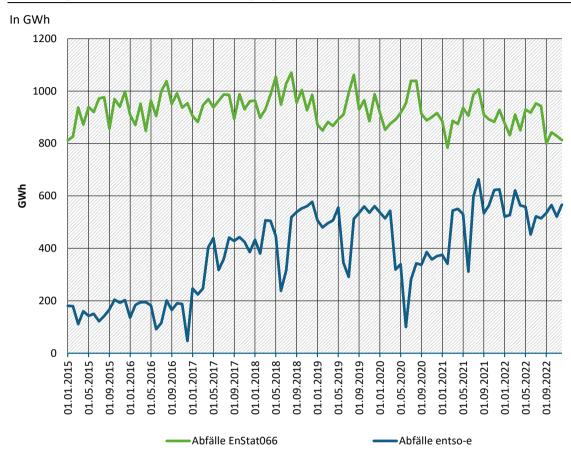


Abbildung 29: Monatliche Stromerzeugung aus Abfällen nach EnStat066 und ENTSO-E

Quelle: Eigene Berechnungen EEFA und ZSW, nach destatis, ENTSO-E.

Eine ähnlich schwierige Ausgangslage zeigt sich für die Stromerzeugung in Abfallverbrennungsanlagen. Auch für diese Erzeugungsmengen ist zwischen den beiden Statistiken über den gesamten hier betrachteten Beobachtungszeitraum hinweg ein deutlicher Niveaushift zu beobachten. Hinzu kommen sichtbare Verwerfungen im zeitlichen Verlauf. Der Hauptgrund für die Abweichungen ist zum einen vermutlich in unterschiedlichen Berichtskreisen zu suchen. Die Stromerzeugung laut Statistik der Allgemeinen Versorgung verläuft über den gesamten Betrachtungszeitraum über dem Niveau, welches sich in den ENTSO-E-Daten eingestellt hat. Auf der Grundlage dieses empirischen Befundes kann vermutet werden, dass bei ENTSO-E nur jene Strommengen aus reinen Abfallverbrennungsanlagen einfließen, andererseits ließe sich auch schlussfolgern, dass die Begriffsbestimmungen bei der Definition von Abfällen (Siedlungsabfälle, Industrieabfälle, andere Abfälle usw.) voneinander abweichen. Der Korrelationskoeffizient zeigt bei einem Wert von -0,15 über den Gesamtzeitraum praktisch keinen Zusammenhang zwischen Statistik 066 und ENTSO-E.

⁸³ Prominentestes Beispiel ist das Pumpspeicherkraftwerk Vianden, das auf dem Territorium Luxemburgs errichtet wurde, jedoch vollständig in das Netz von Amprion einspeist.

Zusammenfassend ist somit festzustellen, dass eine Nutzung der ENTSO-E-Daten als Frühindikator zur Fortschreibung der Stromerzeugung aus Erdgas, Mineralöl, Abfällen sowie bei Pumpspeicherkraftwerken weitgehend ausgeschlossen werden kann. Im Gegensatz dazu haben die Analysen und Vergleiche für die Stromerzeugung aus Stein- und Braunkohle eindeutig gezeigt, dass die Frühschätzung durch die Berücksichtigung der ENTSO-E-Daten spürbar gegenüber dem bisher verwendeten autoregressiven Fortschreibungsverfahren verbessert werden kann.

Die praktische Umsetzbarkeit, insbesondere unter dem Aspekt von Aufwand und Ertrag, erscheint ebenfalls gewährleistet, da im Rahmen der Frühschätzung der Energiebilanz Deutschland auch weiterhin von der Spezifikation ökonometrischer Gleichungen in diesem Bereich abgesehen werden kann. Im Rahmen zukünftiger Frühschätzungen ist eine einfache Übertragung, dann allerdings mittels der aus den ENTSO-E-Daten gewonnenen Veränderungsrate, auf die zum Zeitpunkt 15. Februar noch fehlende amtliche Dezember-Statistik der Allgemeinen Versorgung vorgesehen, die dann idealerweise noch belastbarere Ergebnisse liefert.

5.2 Daten der Trading Hub Europe GmbH

Die Trading Hub Europe GmbH (THE) ist seit 1.10.2021 das marktgebietsverantwortliche Unternehmen im deutschen Gasmarkt.⁸⁴ Als Marktgebietsverantwortlicher veröffentlicht Trading Hub Europe die aggregierten Verbrauchsdaten (Allokationsdaten) für Standard-Lastprofil-Kunden (SLP)⁸⁵ sowie für Entnahmestellen mit registrierender Leistungsmessung (RLM)⁸⁶ im Marktgebiet.⁸⁷

Die aggregierten Verbrauchsdaten beruhen auf den Allokationsdaten, die die Netzbetreiber an Trading Hub Europe übermitteln. Im Zusammenhang mit der Nutzung der THE-Daten ist zu berücksichtigen, dass beide Datenreihen (SLP- und RLM-Kunden) auch im Nachhinein einer Korrektur durch die Netzbetreiber unterliegen können. Im Gegensatz zu den gemessenen RLM-Daten behalten die Verbrauchsangaben für die SLP-Kunden auch nach einer solchen Korrektur weiterhin den Status berechneter Angaben bzw. von Prognosedaten.

5.2.1 Vergleich der THE-Daten mit der amtlichen Monatsstatistik 068

Im Rahmen der Frühschätzung der Energiebilanz Deutschland mit Hilfe des Hybridansatzes aus unterjährig vorliegenden, empirischen Erhebungen gepaart mit ökonometrisch gestützten Prognosen auf Basis von Jahresdaten des Vorjahres kommt im Bereich des Energieträgers

⁸⁴ Bis zum 1. Oktober 2021 betrieb die Trading Hub Europe GmbH die beiden Marktgebiete NetConnect Germany und Gaspool, seitdem betreibt sie das gesamtdeutsche Marktgebiet Trading Hub Europe.

⁸⁵ SLP-Kunden sind Haushaltskunden oder kleinere bis mittlere Gewerbebetriebe, deren Zähler einmal im Jahr abgelesen wird. Daher sind die täglichen Allokationsdaten Prognosewerte. In der Regel haben diese Kunden einen Jahresverbrauch von weniger als 1,5 Mio. kWh. Der deutschlandweite Gesamtjahresverbrauch aller Kunden in diesem Segment liegt bei ca. 430 TWh. Die von THE veröffentlichten SLP-Daten sind Allokationsdaten der Netzbetreiber, die auf einem Prognoseverfahren beruhen. Größtenteils erfolgt die Prognose auf Basis einer Temperaturprognose für den Folgetag. Hiermit wird dann der Kundenverbrauch prognostiziert. Was die SLP-Kunden tatsächlich verbrauchen, kann somit von den Prognosen abweichen. Der tatsächliche Verbrauch eines SLP-Kunden wird erst im Zuge der Ablesung durch den Netzbetreiber ermittelt. Die Veröffentlichung der vorläufigen SLP-Daten erfolgt täglich für den Folgetag.

⁸⁶ RLM-Kunden sind Großabnehmer von Gas, also z.B. große Industriebetriebe oder Kraftwerke. Der Jahresverbrauch liegt in der Regel über 1,5 Mio. kWh. Der deutschlandweite Gesamtjahresverbrauch in diesem Segment liegt bei ca. 580 TWh. Die RLM-Werte sind tatsächlich gemessene Verbräuche. Die Veröffentlichung der vorläufigen RLM-Daten erfolgt täglich für den Vortag.

⁸⁷ THE (2023), Downloadcenter, Internet: https://www.tradinghub.eu/de-de/Download/Downloadcenter-THE (Abrufdatum zuletzt 10.10.2023).

Erdgas die amtliche Monatserhebung über die Gasversorgung (EnStat0688) zum Einsatz. Die Erhebung richtet sich an alle Betreiber von Anlagen zur Gewinnung von Erdgas, zum Transport von Erdgas (oder Biogas) durch Fernleitungen sowie an alle Betreiber von Anlagen zur Speicherung von Erdgas. Erhoben werden folgende Merkmale:

- die Menge des gewonnenen Erdgases sowie die Menge des Eigenverbrauchs bei der Gewinnung,
- die Menge des in das Fernleitungsnetz eingespeisten Erdgases
- die Menge des aus dem Fernleitungsnetz ausgespeisten Gases,
- b die Ein- und Ausfuhr von Erdgas in physikalischen Mengen,
- die Menge des leitungsbedingten Eigenverbrauchs,
- der Speichersaldo am Monatsende, die Speicherfüllstände am Monatsende sowie die Menge des speicherbedingten Eigenverbrauchs.

Diese kurzen Ausführungen zeigen, dass die Statistik nicht nur den Aufkommensteil der Erdgasbilanz (Gewinnung, Außenhandel, Bestandsveränderungen), sondern gleichzeitig auch die wichtige Kenngröße des Inlandsabsatzes an Erdgas vollständig mit empirischen monatlichen Daten unterfüttert. Hinzu kommt, dass die Ergebnisse aus der amtlichen Monatserhebung ca. 42 Tage nach Abschluss des Berichtsmonats durch das Statistische Bundesamt veröffentlicht werden.

In Bezug auf die Frühschätzung der Energiebilanz Deutschland folgt aus alledem, dass die Daten für den Berichtmonat Dezember des Prognosejahres theoretisch ab dem 11. Februar zur Verfügung stehen könnten. Aufgrund des mit dem Auftraggeber vereinbarten Datenschlusses (zum 5. Februar) konnten diese Informationen in der Vergangenheit nicht mehr im Rahmen der laufenden Frühschätzung genutzt werden.

Um das Erdgasaufkommen des fehlenden Berichtsmonats Dezember zu schätzen, bietet es sich daher an, die Veröffentlichungen der THE als Kennziffer bzw. Frühindikator zu nutzen, die

- als vorläufige Daten mit einer Verzögerung von zwei Tagen,
- als korrigierte Daten mit einer Verzögerung von einem Monat und
- ▶ als finale Daten mit einer Verzögerung von zwei Monaten vorliegen.

Vergleicht man vor diesem Hintergrund den Inlandsabsatz an Erdgas nach der amtlichen Statistik mit den Daten laut THE für Zeiträume ab Januar 2018 (bis Juli 2023) ergibt sich folgendes Bild: Die relative Differenz zwischen den genannten Datenquellen liegt über alle Monate des Betrachtungszeitraum im Mittel bei nur 2,2 % (der Median beträgt 1,8 %), wie auch Abbildung 30 anhand des Vergleiches der absoluten Daten erkennen lässt. Schränkt man die Betrachtung nur auf die fünf verfügbaren Dezembermonate ein, so liegt die mittlere Abweichung zwischen den beiden Datensätzen sogar nur bei -1,6 %. All dies zeigt, dass die Nutzung der THE-Daten grundsätzlich geeignet erscheint, die Prognosegüte der Frühschätzung unter Inkaufnahme eines vergleichsweise geringen Zusatzaufwandes zu verbessern.

⁸⁸ Vgl. Statistisches Bundesamt (2023b), Monatserhebung über die Gasversorgung (Statistik Nr. 068, unveröffentlicht), Qualitätsbericht im Internet: https://www.destatis.de/DE/Methoden/Qualitaet/Qualitaetsberichte/Energie/gasversorgung-m-068.pdf?_blob=publicationFile (Abrufdatum zuletzt 11.04.2024).

Bei der Interpretation ist jedoch zweierlei zu berücksichtigten. Zum einen sei daran erinnert, dass die Schätzung nur eines Monates insgesamt betrachtet nur geringe Auswirkungen auf das Gesamtergebnis ausüben dürfte.⁸⁹

Zum anderen muss weiterhin beachtet werden, dass sich die amtliche Monatserhebung und die THE-Daten gewissermaßen von entgegengesetzten Seiten der Bilanz annähern. Während der Inlandsabsatz an Erdgas mit Hilfe der amtlichen Erhebung ausgehend von der Seite des Erdgasaufkommens empirisch ermittelt werden kann, zeigen die THE-Daten den tatsächlichen (RLM- bzw. Großkunden) und den prognostizierten (SLP-Kunden bzw. Haushaltskunden und Gewerbebetriebe) Erdgasverbrauch in Deutschland formal ausgehend von der Verwendungsseite. Es liegt auf der Hand, dass die beiden betrachteten Datenquellen vor diesem Hintergrund zwangsläufig nie vollständig deckungsgleich sein dürften.

Nichtsdestotrotz bestätigt der hier vorgenommene kurze Vergleich aller vorliegenden Monatsdaten seit Januar 2018 eine überraschend gute Kohärenz zwischen beiden Datenquellen.

In TWh 160 140 120 100 60 40 20 01.01.2018 01.04.2018 01.07.2018 01.10.2018 01.01.2019 01.04.2019 01.07.2019 01.10.2019 01.10.2020 01.01.2020 01.04.2020 01.07.2020 01.01.2021 01.04.2021 01.01.2022 1.04.2022 1.07.2022 01.10.2022 01.01.2023 01.04.2023 01.07.2023 11.07.2021 01.10.2021 Erdgas EnStat068

Abbildung 30: Vergleich des Inlandsabsatzes nach EnStat068 mit dem Erdgasverbrauch nach THE

Quelle: Eigene Berechnungen EEFA und ZSW, nach destatis, Trading Hub Europe GmbH.

Die inländische Gewinnung von Erdgas und Erdölgas wird auch vom Bundesverband Erdgas, Erdöl und Geoenergie e.V. (BVEG) monatsweise publiziert und könnte eine Ergänzung zu den Informationen aus der EnStat068 darstellen. Allerdings lagen die BVEG-Monatsberichte zum Dezember in den vergangenen zwei Jahren immer erst in der zweiten Märzwoche vor und sind damit für die Zwecke der Frühschätzung der Energiebilanz in zeitlicher Hinsicht ungeeignet.

⁸⁹ Am Verfahren der Schätzung von Gewinnung, Einfuhr, Ausfuhr oder Eigenverbrauch im Rahmen der isolierten Betrachtung der EnStat068 (Monat Dezember) ändert sich im Vergleich zur Vorgängerstudie methodisch nichts. Wie bisher wird weiterhin der empirisch vorhandene Zeitraum von Januar bis November genutzt, um den Dezember im Verhältnis zur Entwicklung des Vorjahreszeitraumes (bzw. auf der Basis von Veränderungsraten des Vorjahreszeitraums) zu schätzen. Neu ist hingegen, dass der Posten der Bestandsveränderungen, der für sich genommen erfahrungsgemäß nur sehr schwer prognostiziert werden kann, nun als Restposten zum gesamten Inlandsabsatz (der seinerseits wie oben beschrieben mit den THE-Daten berechnet wird) gebildet wird.

5.2.2 Vergleich der THE-Daten mit den amtlichen Jahresdaten im Bereich des Verarbeitenden Gewerbes

Die vorangegangenen Analysen haben gezeigt, dass die THE-Daten eine (insbesondere mit Blick auf die zeitliche Verfügbarkeit und Genauigkeit) hinreichend geeignete Datenquelle darstellen, um die Frühschätzung der Energiebilanz im Bereich des Energieträgers Erdgas spürbar zu verbessern.⁹⁰

Gleichwohl blieb bislang noch ungeklärt, ob der skizzierte Frühindikator darüber hinaus zumindest auch grobe Rückschlüsse auf die aktuelle Entwicklung des Erdgasverbrauchs beispielsweise der industriellen Großkunden bzw. im (sektoralen) Endenergieverbrauch des Verarbeitenden Gewerbes am aktuellen Rand zulässt.

Im Fokus der Analyse steht in diesem Zusammenhang also in erster Linie die Frage, ob die Abgrenzung zwischen Großkunden (RLM) und Kleinverbrauchern (SLP) innerhalb der THE-Daten mit der Aufteilung der Sektoren Industrie (Energiebilanzzeile 60) sowie Haushalte (Energiebilanzzeile 66) und GHD (Energiebilanzzeile 67) in der Energiebilanz korreliert und deshalb auch in diesen Teilbereichen der Bilanzschätzung als Frühindikator herangezogen werden könnte.

Versucht man im ersten Schritt den Erdgasverbrauch der Industrie als Ganzes (Energiebilanzzeile 60) in Abhängigkeit von den THE-Daten für den Erdgasverbrauch der RLM-Kunden für die Zeit von 2011 bis 2021 mit Hilfe der klassischen Regressionsanalyse zu schätzen, ergibt sich ein korrigiertes Bestimmtheitsmaß von lediglich 0,37 (vgl. Gleichung 16). Unabhängig davon, dass der Anteil der erklärten Varianz an der Gesamtvarianz in diesem Modell mit 43 % eher gering ausfällt, ist der Zusammenhang zwischen den Datensätzen auf einem 5 %-Niveau signifikant.

```
16. LOG(EBZ60S22) = 0,04*LOG(THE_RLM) + 12,75*C p-Werte: 0,03; 0,00; R<sup>2</sup>: 0,43; AR<sup>2</sup>: 0,37; DW: 1,63; Stützzeitraum: 2011 bis 2021; mit: EBZ60S22: Erdgasverbrauch Industrie, insgesamt, (TJ); THE_RLM: Erdgasverbrauch RLM-Kunden, THE, (TJ); C: Absolutglied
```

Bei der Interpretation dieses empirischen Befundes sollte jedoch nicht übersehen werden, dass der Erdgasverbrauch für die RLM-Kunden sämtliche Großkunden also z.B. auch Industriekraftwerke umfasst. Der Erdgaseinsatz zur Stromerzeugung der Industriekraftwerke wird in der Energiebilanz in der Bilanzzeile 12 erfasst und ist nicht Gegenstand der Berichterstattung in Energiebilanzeile 60 (Energieverbrauch der Industrie) bzw. der Erfassung des Energieverbrauchs in den einzelnen Wirtschaftszweigen der Industrie (Energiebilanzzeilen 46 bis 59).

⁹⁰ In der Fachliteratur wird allerdings einschränkend darauf verwiesen, dass die THE-Daten am aktuellen Rand üblicherweise laufenden Revisionen unterliegen. Vgl. dazu Ruhnau, O.; Stiewe, C.; Muessel, J. and Hirth, L. (2023). In der Praxis spielt diese Einschränkung für die Belange dieser Studie keine nennenswerte Rolle. Während die THE-Daten für RLM-Kunden gemessene Werte darstellen und kaum Revisionen unterliegen, werden die Angaben für SLP-Kunden am aktuellen Rand revidiert. Allerdings liegen auch die Angaben zum Erdgasverbrauch der SLP-Kunden zum Zeitpunkt Mitte Februar, für Berichtszeiträume von Januar bis Dezember des Vorjahres, in Form endgültiger bzw. revidierter Datensätze vor. Konkret lagen beispielsweise die THE-Daten vom 1. Januar 2023 bis 30. November 2023 zum Zeitpunkt der Frühschätzung bereits mit dem Status "Final" vor, die Daten vom 1. bis 31. Dezember 2023 hingegen mit dem Status "Corrected". Die Differenzen zwischen den gegenüber den vorläufigen Datenständen bereits korrigierten Daten und den endgültigen Daten sind sehr gering und haben sich beispielsweise im Mittel für Dezember 2023 in der Größenordnung von 0,01 % bewegt.

Erweitert man vor diesem Hintergrund die Analyse und stellt zu diesem Zweck in einem zweiten Schritt eine weitere einfache OLS-Schätzgleichung auf, die den Erdgasverbrauch der Industrie (EBZ 60), diesmal zzgl. des Erdgaseinsatzes zur Stromerzeugung in Industriekraftwerken (EBZ 12) in Abhängigkeit des Erdgasverbrauchs für RLM-Kunden laut THE-Daten im Stützeitraum von 2011 bis 2021 erklärt⁹¹, ergibt sich ein anderes Bild.

Im Ergebnis weist die Regressionsgleichung (vgl. Gleichung 17) zwar immer noch ein relativ niedriges, nicht zufriedenstellendes Bestimmtheitsmaß von 0,72 auf. Der Erklärungsbeitrag ist jedoch im Vergleich zum ersten Ansatz spürbar gestiegen. Der Einfluss des RLM-Verbrauchs auf die zu erklärende Variable kann zudem als signifikant interpretiert werden.

```
17. LOG(EBZ60S22 + EBZ12S22) = 0,08*LOG(THE_RLM) + 12,29*C p-Werte: 0,00; 0,00; R²: 0,72; AR²: 0,69; DW: 1,55; Stützzeitraum: 2011 bis 2021; mit: EBZ60S22: Erdgasverbrauch Industrie, insgesamt, EBZ 60, (TJ); EBZ12S22: Erdgasverbrauch Industriekraftwerke, EBZ 12, (TJ); THE_RLM: Erdgasverbrauch RLM-Kunden, THE, (TJ); C: Absolutglied.
```

Unter den skizzierten Prämissen ist dennoch davon auszugehen, dass die strukturelle marktbezogene Zusammensetzung der RLM-Kunden mehr oder weniger stark vom Berichtskreis abweicht, den das Statistische Bundesamt im Rahmen der Erhebung des Energieeinsatzes im Verarbeitenden Gewerbe (Abschneidegrenze: mindestens 20 Beschäftigte, in ausgewählten Segmenten 10 Beschäftigte) und in Industriekraftwerken (Abschneidegrenze: installierte elektrische Leistung größer 1 MW) berücksichtigt.

Eine noch stärker abweichende Entwicklung von diesem Grundmuster wäre vor diesem Hintergrund zu erwarten, wenn man versucht mit Hilfe der THE-Daten (RLM-Kunden) den Erdgasverbrauch auf der Ebene einzelner Wirtschaftszweige (inkl. Erdgaseinsatz zur Stromerzeugung in Industriekraftwerken) zu prognostizieren bzw. zu schätzen. Der Grund hierfür ist, dass die THE-Daten für den Erdgasverbrauch der RLM-Kunden keine weitere sektorale Differenzierung aufweisen bzw. zulassen. Es erwies sich aufgrund dieser Datenlage als unmöglich, auf der sektoralen Ebene den Einfluss dieser Datenquelle als Frühindikator sinnvoll zu testen. In Anbetracht dieser Ausgangslage und weil allein mit Hilfe der aggregierten THE-Daten (nur RLM-Kunden) keine Verbesserung der Prognose auf der Ebene von Wirtschaftszweigen zu erwarten ist, wurde auf diese tiefergehende Form der Analyse an dieser Stelle verzichtet.

5.2.3 Vergleich mit den amtlichen Jahresdaten der Sektoren Private Haushalte und GHD

Analog zum Bereich des Verarbeitenden Gewerbes wurde abschließend untersucht, ob eine Beziehung zwischen den THE-Daten für den Erdgasverbrauch der SLP-Kunden, die den Erdgasverbrauch der Privaten Haushalte und sonstigen gewerbetreibenden Kleinverbrauchern abbilden, ggf. dazu verwendet werden könnten, die Frühschätzung der Energiebilanz Deutschland in diesem Segment zu verbessern. Auch dazu wurde eine Regressionsgleichung nach obigem Muster spezifiziert (vgl. Gleichung 18).

⁹¹ Hintergrund der Berücksichtigung der Industriekraftwerke ist die Annahme, dass RLM-Kunden unter Umständen Erdgas sowohl zur Produktion von Waren und Gütern als auch zum Betrieb werkseigene Kraftwerke zur gekoppelten Erzeugung von Strom- und Wärme beziehen.

```
18. LOG(EBZ66S22 + EBZ67S22) = 0,07*LOG(THE_SLP) + 12,62*C p-Werte: 0,08; 0,00; R²: 0,30; AR²: 0,22; DW: 2,41; Stützzeitraum: 2011 bis 2021; mit: EBZ66S22: Erdgasverbrauch Private Haushalte, EBZ 66, (TJ); EBZ67S22: Erdgasverbrauch GHD-Sektor, EBZ 67, (TJ); THE_SLP: Erdgasverbrauch SLP-Kunden, THE, (TJ); C: Absolutglied.
```

Leider sind die Resultate der Analyse auch auf dieser Ebene wenig zielführend bzw. überzeugend. Offensichtlich können die SLP-Datenerhebungen der Trading Hub Europe GmbH zumindest auf einem 5%-Niveau keinen signifikanten Erklärungsbeitrag zur Entwicklung des Erdgasverbrauchs im GHD-Sektor laut Energiebilanz Deutschland leisten (auf einem Niveau von 10 % ist der Zusammenhang hingegen signifikant). Ein möglicher Grund für diesen Befund ist der Umstand, dass nicht zuverlässig ausgeschlossen werden kann, dass auch in der Industrie SLP-Kunden vorhanden sind. Das korrigierte Bestimmtheitsmaß liegt mit 0,22 noch einmal spürbar niedriger, als dies im Erklärungsansatz für die Industrie bzw. im Verarbeitenden Gewerbe (RLM-Kunden) der Fall ist.

Insgesamt bleibt also festzuhalten, dass die THE-Daten zwar eine tagesscharfe und damit zeitnah verfügbare Datenquelle darstellen, sie sind jedoch als Indikator im Rahmen der sektoral aufgegliederten Frühschätzung der Energiebilanz insbesondere im Bereich des Endenergieverbrauchs kaum sachgerecht einsetzbar und deshalb auch nicht geeignet, die Frühschätzung der Energiebilanz in diesen Bereichen auf eine konsistentere bzw. noch belastbarere Prognosebasis zu heben.

5.3 Verwendung sektorspezifischer Verbandsinformationen

Die Schätzung/Prognose des Endenergieverbrauchs des Verarbeitenden Gewerbes erfolgte bislang unter Zuhilfenahme eines Modells, das sich im Aufbau an der Gliederung der Energiebilanz Deutschland nach Energieträgern und Wirtschaftszweigen orientierte. Aufgrund der damit verbundenen hohen Aggregation insbesondere der Sektoren bzw. der Vermischung energieintensiver und energieextensiver Branchen in einigen Wirtschaftszweigen konnten im Rahmen dieses Prototyps sektorspezifische Erklärungsgrößen, die die Produktionsbedingungen in einem Subsektor genauer erfassen, nur in sehr eingeschränktem Umfang verwendet werden. Im Wesentlichen erfolgte die ökonometrische Erklärung des Energieverbrauchs anhand der realen Produktionsentwicklung des Wirtschaftszweiges (in Mio. Euro) und den Veränderungen der relativen Energiepreise.

Im Gegensatz dazu konnten im aktualisierten und sektoral tiefer disgaggregierten Industriemodell (Aufnahme ausgewählter energieintensiver Subsektoren, vgl. Abschnitt 2.3 dieser Studie) ausgewählte technisch-ökonomische Kennziffern, die die spezifischen Produktionsbedingungen der energieintensiven Branchen sachgerechter beschreiben und den Energieverbrauch dieser Wirtschaftszweige in hohem Maße beeinflussen, zusätzlich in den Erklärungsansatz aufgenommen werden.

Die mit Abstand relevantesten Kennziffern stellen in diesem Zusammenhang die physischen Produktionsmengen von:

- ▶ Papier, Karton und Pappe (ex EBZ 48, WZ 17.1)
- Zement- und Zementklinker (ex EBZ 53, WZ 23.51)

- ► Branntkalk (ex EBZ 53, WZ 23.52)
- ▶ Sinter, Roheisen, Oxygenstahl, Elektrostahl und Walzstahl (ex EBZ54, WZ 24.1) dar.

Die Daten zur physischen Produktionsentwicklung dieser energieintensiven Subsektoren können den regelmäßigen Veröffentlichungen und Publikationen der entsprechenden Industrieverbände entnommen werden:

- ▶ Die Papierindustrie e. V. (Papier Ein Leistungsbericht, derzeit Ausgabe 2023)⁹²,
- ► Verein Deutscher Zementwerke e.V. (Umweltdaten der deutschen Zementindustrie, derzeit Ausgabe 2022)⁹³,
- ▶ Bundesverband der Deutschen Kalkindustrie e.V. (Geschäftsberichte, derzeit 2022/23, nur Absatzzahlen)⁹⁴,
- ▶ Wirtschaftsvereinigung Stahl (Pressemitteilungen, derzeit bis August 2023)95.

Während die Produktionsdaten der Zement- und Kalkindustrie sowie der Papierindustrie lediglich in Form von Jahresdaten publiziert werden, veröffentlicht die Wirtschaftsvereinigung Stahl ihre Daten zur Roheisen- und Rohstahlerzeugung (ohne Sinterproduktion) in monatlichem Abstand. Zum einen ermöglicht die gute Datenlage für die Stahlindustrie, dass die physischen Erzeugungsmengen differenziert nach einzelnen Produktionsstufen⁹⁶ als exogene Erklärungsvariablen in das neu konzipierte, detailliertere Industriemodell einfließen können, zum anderen bringt die monatliche Datenbasis den Vorteil mit sich, dass die Produktionsdaten als beobachtete Größen (und nicht als zusätzliche Schätzung) in das Modell bzw. die Prognose der Frühschätzung einfließen.

Unterjährige Daten zur Produktionsentwicklung stehen - wie bereits erwähnt - für die übrigen energieintensiven Produktionsprozesse nicht zur Verfügung. Hinzu kommt, dass die oben genannten Publikationen (mit den entsprechenden Jahresinformation) erst zu einem späteren Zeitpunkt im Jahr von den Verbänden veröffentlicht werden. Daten zur Produktionsentwicklung der Zementindustrie (Produktion von Zement und Klinker) beispielsweise waren zum Zeitpunkt der Entwicklung des differenzierteren Modells zur Erklärung des industriellen Endenergieverbrauchs im Frühjahr 2023 (März, April) auf der Homepage des Verbandes noch nicht abrufbar.⁹⁷

Der Bundesverband der Kalkindustrie ist im Hinblick auf die Veröffentlichung von Daten zur Produktionsentwicklung, Anzahl, Technologie und Kapazität der Kalköfen sowie Brennstoffbzw. Energieverbrauch sehr zurückhaltend. Die jährlichen Geschäftsberichte des Verbandes beinhalten beispielsweise keine empirischen Angaben zur Produktion von Kalk, lediglich Informationen zur Absatzentwicklung sind verfügbar. Vor diesem Hintergrund musste im Rahmen der hier angestrebten detaillierteren Modellierung der Steine- und Erdenindustrie auf

 $^{^{92}}$ Die Papierindustrie (2023a), Papier – Ein Leistungsbericht sowie Statistiken zum Leistungsbericht Papier, versch. Jg., Internet: https://www.papierindustrie.de/papierindustrie/statistik/papier-2023-herunterladen (Abrufdatum: 30.10.2023).

⁹³ Verein Deutscher Zementwerke e.V. (2023).

⁹⁴ Bundesverband der Deutschen Kalkindustrie e. V. (2023), Geschäftsberichte, versch. Jg., Internet: https://www.kalk.de/wissensportal/publikationen/geschaeftsberichte (Abrufdatum: 30.10.2023).

⁹⁵ Wirtschaftsvereinigung Stahl (2023b), Pressemitteilungen "Rohstahlproduktion in Deutschland" (monatlich), Internet: https://www.stahl-online.de/medieninformationen (Abrufdatum: 30.10.2023).

⁹⁶ Diese Aufgliederung nach Produktionsstufen innerhalb von Wirtschaftszweigen bietet die amtliche Statistik nicht.

⁹⁷ Die erforderlichen Produktionsdaten wurden durch den Verein Deutscher Zementwerke auf Anfrage vorzeitig zur Verfügung gestellt.

die Zeitreihen zur Kalkproduktion zurückgegriffen werden, die das Umweltbundesamt im Nationalen THG-Inventarbericht zusammengetragen hat. ⁹⁸ Die aktuelle Publikation umfasst jedoch nur Daten bis einschließlich 2021, so dass die Kalkproduktion für das Prognosejahr 2022 mit Hilfe der Daten des Statistischen Bundesamtes fortgeschrieben werden mussten.

Der Leistungsbericht Papier 2023 ist Ende September 2023 erschienen und umfasst Zeitreihen zur Entwicklung der Holzschliff-, Zellstoff-, Papier- und Pappeindustrie für Berichtsjahre bis 2022. All dies macht deutlich, dass der Frühindikator "Produktion von Papier, Karton und Pappe (in Mio. Tonnen)" zum Zeitpunkt der Erstellung der Frühschätzung zumindest als beobachtete Größe noch nicht verfügbar ist.⁹⁹

Die kurzen Erläuterungen zu den einzelnen Positionen der Verwendung physischer Produktionsdaten als Frühindikator im Rahmen der Energiebilanzschätzung zum 15. Februar dürften deutlich gemacht haben, dass die detailliertere Modellierung der energieintensiven Sektoren und die damit verbundene erhoffte Steigerung der Prognosegenauigkeit, zumindest in einigen energieintensiven Teilbereichen, dadurch eingeschränkt wird, dass Schätzungen bzw. plausible Setzungen auf der Ebene der exogenen Variablen erforderlich werden. Positiv in diesem Zusammenhang ist jedoch zu bewerten, dass die vorliegenden amtlichen Daten zur monatlichen Produktionsentwicklung nach Wirtschaftszweigen (monatliche Produktionsindizes) auch auf der Ebene physischer Produktionsmengen eine vergleichsweise zuverlässige Vorausschätzung dieser wichtigen Einflussgröße ermöglichen.

Im Zusammenhang mit der Diskussion um geeignete Frühindikatoren bzw. relevante Einflussgrößen des Energieverbrauchs in den energieintensiven Branchen des Verarbeitenden Gewerbes spielt zudem das Stichwort "sektorspezifische Einflussgrößen" eine herausragende Rolle. Es liegt auf der Hand, dass die Verfügbarkeit beobachteter Daten zu Indikatoren wie z.B. der Altpapiereinsatzquote oder dem Einsatz an Hüttensand (bzw. anderer Zumahlstoffe) als Klinkersubstitut bei der Zementherstellung für die Prognosegüte von ähnlicher Relevanz sind. Die diesbezüglichen Angaben sind ebenfalls den oben skizzierten Verbandspublikationen zu entnehmen und liegen deshalb ebenfalls nur mit zeitlicher Verzögerung vor bzw. stehen Mitte Februar noch nicht als beobachtete Zeitreihe bis zum aktuellen Rand (t-1) zur Verfügung.

5.4 Frühindikatoren des Statistischen Bundesamtes

Selbstverständlich stehen im Datenangebot des Statistischen Bundesamtes zahlreiche Datenreihen zur Verfügung, die entweder direkt als Frühindikator (exogene Erklärungsvariable) oder indirekt über die Vervollständigung anderer Statistiken/Einflussgrößen in das System zur Frühschätzung der Energiebilanz einfließen können. Zu den sektoral disaggregierten Frühindikatoren zählen

- ▶ Monatliche Indizes der Produktion im Verarbeitenden Gewerbe sowie die
- ▶ Indizes über den Auftragseingang im Verarbeitenden Gewerbe.

⁹⁸ Umweltbundesamt (2023), Berichterstattung unter der Klimarahmenkonvention der Vereinten Nationen und dem Kyoto-Protokoll 2023, Nationaler Inventarbericht zum Deutschen Treibhausgasinventar 1990 – 2021, Climate Change 028/2023, S. 279 f., Internet: https://www.umweltbundesamt.de/publikationen/berichterstattung-unter-der-klimarahmenkonvention-8 (Abrufdatum: 11.4.2024).

⁹⁹ Frühestens im Juli veröffentlicht der VDP Angaben zur Produktionsentwicklung für Zeiträume von Januar bis Juli des laufenden Jahres, vgl. Die Papierindustrie (2023b), Statistische Kurzinformation Zellstoff- und Papierindustrie in Deutschland, lfd. für das jeweils aktuelle Berichtsjahr, Internet: https://www.papierindustrie.de/fileadmin/0002-PAPIERINDUSTRIE/07_Dateien/1_Statistik/2024/02_2024_Statistische_Kurzinformation_D.pdf (Abrufdatum: 11.4.2024).

¹⁰⁰ Als wesentlicher Vorteil der amtlichen Erhebungen ist hervorzuheben, dass diese Datengewinnung und -aufbereitung an strikte Qualitätsanforderungen gebunden ist, die zudem über die Veröffentlichung detaillierter Qualitätsberichte konsequent und transparent dokumentiert wird.

Als wichtiger Frühindikator der Konjunkturentwicklung ist schließlich der Lkw-Fahrleistungsindex zu nennen.

Die nachfolgenden Abschnitte beschreiben den möglichen Einsatz dieser Kennziffern und Indikatoren im weiterentwickelten Verfahren zur Frühschätzung der Energiebilanz Deutschland. Ein Hauptaugenmerk der Analyse liegt dabei auf den potenziellen Schnittstellen zum Prognosesystem, aber auch auf der Beurteilung der Relevanz dieser Kennziffern als Beitrag zur Erklärung des Energieverbrauchs und natürlich der empirischen Verfügbarkeit dieser Daten zum Zeitpunkt der Frühschätzung der Bilanz.

5.4.1 Indizes der Produktion im Verarbeitenden Gewerbe

Die Entwicklung der sektoralen Produktion bildet die zentrale Aktivitätsgröße mit entsprechendem Einfluss auf den Energieverbrauch. Zur Berechnung aktueller Produktionswerte nach einzelnen Branchen (in der Gliederung der Energiebilanz Deutschland) sind die volumenbasierten Indizes der Produktion im Verarbeitenden Gewerbe, die vom Statistischen Bundesamt in monatlicher Auflösung veröffentlicht werden, als Frühindikator von immenser Bedeutung.¹⁰¹

Mit der Veröffentlichung von vorläufigen Ergebnissen innerhalb von 38 Tagen nach Ende des Berichtsmonats stehen die Indizes sehr zeitnah zur Verfügung. Gleichwohl verhindert der abgestimmte bzw. vereinbarte Datenschluss für die Durchführung der Frühschätzung, der auf den 5. Februar terminiert wurde, i.d.R. die Berücksichtigung der Dezember-Indizes und damit verbunden die Ermittlung eines zwar vorläufigen, jedoch statistisch abgesicherten realen Produktionswertes für die in der Bilanz betrachteten Wirtschaftszweige (Berichtsjahr t-1).

Sorgfältig zu analysieren sind vor diesem Hintergrund die ggf. bestehenden Möglichkeiten bzw. technischen Optionen, diesen wichtigen Frühindikator (ungeachtet der Einschränkungen durch den vereinbarten Datenschluss) möglichst sachgerecht und vollständig aufnehmen zu können bzw. in die Prognose einfließen zu lassen.

Im Rahmen der laufenden Frühschätzungen wird dazu derzeit ein eher einfaches Verfahren eingesetzt. Es orientiert sich zur Fortschreibung der Produktionsindizes im Dezember an der Veränderungsrate des jeweils betrachteten Sektors im bisher beobachtbaren aktuellen Gesamtjahr im Vergleich zum Vorjahr (Übertragung der Veränderungsrate von Januar bis November auf Dezember). Das Fortschreibungsverfahren ist technisch einfach und bereits umgesetzt, nachteilig dürfte sich jedoch die vor dem Hintergrund der ökonomischen Theorie nicht belastbare Methode der "auto-regressiven" Fortschreibung ohne Berücksichtigung weiterer ökonomischer Indikatoren auf das Gesamtergebnis auswirken.

5.4.2 Verwendung vollständiger Produktionsindizes von Januar bis Dezember

Der Vollständigkeit halber sei an dieser Stelle erwähnt, dass eine technisch ebenfalls einfache Möglichkeit zur Verbesserung der Prognosegüte in der Verlegung bzw. Verschiebung des vereinbarten Datenschlusses für die Frühschätzung um wenige Tage in die Zukunft (z.B. auf den 10. Februar) läge. Indem die Veröffentlichung der Dezemberwerte der Produktionsindizes (für

¹⁰¹ Im Genesis-Online stellt das Statistische Bundesamt Produktionsindizes in der Systematik der Wirtschaftszweige sowohl für Hauptgruppen (Aggregate) als auch in der Gliederung bis auf die Ebene von WZ-Vierstellern dar. Vgl. Statistisches Bundesamt (2023d), Indizes der Produktion im Verarbeitenden Gewerbe, Deutschland, Wirtschaftszweige, Original- und bereinigte Daten, Monate, online abrufbar in der GENESIS-Datenbank, Internet: https://www-genesis.destatis.de/genesis/online/logon, Tabelle 42153-0002 (Abrufdatum zuletzt 10.10.2023).

¹⁰² Die vorläufigen Ergebnisse werden gegebenenfalls revidiert und als berichtigtes Ergebnis innerhalb von 68 Tagen veröffentlicht. Die Ergebnisse der Jahreskorrektur zu den (nicht-saisonbereinigten) Originalwerten werden spätestens im Mai des Folgejahres veröffentlicht und sind dann endgültig.

das jeweilige Prognosejahr) durch das Statistische Bundesamt abgewartet wird (ein Vorziehen der Publikation oder ein Vorab-Versand der Daten seitens des Statistischen Bundesamtes scheidet als Möglichkeit aus), ließe sich die Genauigkeit der Frühschätzung voraussichtlich verbessern. Außerdem werden Abweichungen zwischen den Prognoseannahmen und den amtlichen Daten reduziert bzw. vermieden.

Aufgrund des engen Zeitplans und im Zusammenspiel mit der Datenlieferung der erneuerbaren Energien durch das Umweltbundesamt für die Frühschätzung ist diese Verbesserungsmöglichkeit nach derzeitigem Kenntnisstand jedoch nicht umsetzbar.

5.4.3 Kombinierte Betrachtung Produktionsindizes und Indizes der Auftragseingänge

Eine dritte Möglichkeit, die vorliegenden monatlichen Daten zur Entwicklung der Produktion (Produktionsindizes) für das jeweils betrachtete Prognosejahr zu vervollständigen, läge in der kombinierten Betrachtung der sektoralen Produktionsindizes und den volumenbasierten Indizes des Auftragseingangs in den Branchen des Verarbeitenden Gewerbes¹⁰³.

Die Auftragseingänge (bzw. die Indizes des Auftragseingangs) messen die Nachfrage nach produzierten Erzeugnissen, sie laufen folglich der Produktion voraus, da die Auftragseingänge je nach Lieferzeit, Engpässen bei der Verfügbarkeit von Vormaterialien bzw. Vorleistungsgütern und bereits vorhandenem Auftragsbestand von Sektor zu Sektor unterschiedlich schnell abgearbeitet werden können. Die Auftragseingänge können deshalb als Frühindikator bzw. Proxy-Variable der zukünftig zu erwartenden Produktionsentwicklung in einem Sektor interpretiert werden. Hinzu kommt, dass die Auftragseingänge aufgrund des beschriebenen zeitlichen Vorlaufs bis zur Produktionswirksamkeit formal eine beobachtbare Variable darstellen.

Unter Zugrundelegung des vorgestellten generellen Erklärungsansatzes und um den in allgemeiner Form skizzierten Zusammenhang zwischen Auftragseingang und Produktion nutzbar zu machen, muss das zeitliche Grundmuster des Einflusses der Auftragseingänge auf die Produktionsentwicklung zunächst empirisch quantifiziert werden. Um dieses Ziel zu erreichen, wurden für jeden Wirtschaftszweig im Rahmen sogenannter "VektorAutoRegressiver Modelle" (VAR) simultane Schätzungen der Indizes der Produktionsentwicklung und des Auftragseingangs durchgeführt. Anschließend wurde die Lag-Länge mit Hilfe eines statistischen Kriteriums (Akaike-Schwarz-Criterion) analysiert bzw. festgelegt.

Für den Sektor Metallerzeugung wurde im Stützzeitraum von Januar 2009 bis Dezember 2022¹⁰⁴ beispielsweise die geringste zeitliche Verzögerung (in Monaten) zwischen Auftragseingang und Produktion ermittelt: Im Sektor Metallerzeugung wird eine Lag-Länge von 14 Monaten identifiziert, d.h. neu induzierte Nachfrage schlägt sich nach ca. 1,2 Jahren in einer entsprechenden Erhöhung der Erzeugung von Rohstahl bzw. Walzstahlfertigerzeugnissen nieder. Hingegen liegt zwischen Auftragseingang und Produktion im Sektor Maschinenbau eine zeitliche Verzögerung von ca. 36 Monaten.

Tabelle 25 fasst abschließend die ermittelten Lag-Längen bzw. empirisch ermittelten Verzögerungen zwischen Auftragseingang und Produktion differenziert nach in der Energiebilanz Deutschland dargestellten Wirtschaftszweigen zusammen. Das hier vorgestellte Verfahren erlaubt als einzige Alternative die Einhaltung des beschlossenen Termins für den

¹⁰³ Vgl. Statistisches Bundesamt (2023c), Indizes des Auftragseingangs im Verarbeitenden Gewerbe, Deutschland, Wirtschaftszweige, Original- und bereinigte Daten, Monate, online abrufbar in der GENESIS-Datenbank, Internet: https://www-genesis.destatis.de/genesis/online/logon, Tabelle 42151-0005 (Abrufdatum zuletzt 10.10.2023).

¹⁰⁴ Bereits vorliegende Beobachtungen (Daten) für Zeiträume ab Januar 2023 wurden nicht in die Analyse einbezogen, weil sich die weiterentwickelten Verfahren zur Frühschätzung in dieser Studie ausschließlich auf das Bilanzjahr 2022 konzentrieren.

Datenschluss unter Hinzuziehung zusätzlicher statistischer Informationen zur Fortschreibung der Produktionsindizes und der damit verbundenen sektoralen Produktionsentwicklung.

Tabelle 25: Lag-Struktur des sektoralen Auftragseinganges in Bezug auf die Produktion

Stützzeitraum Januar 2009 bis Dezember 2022

Sektor	Zeitliche Verzögerung zwischen Auftragseingang und Produktion
Gewinnung von Steinen und Erden, sonst. Bergbau (EBZ 46)	21 Monate
Ernährung und Tabak (EBZ 47)	21 Monate
Papiergewerbe (EBZ 48)	15 Monate
Grundstoffchemie (EBZ49)	17 Monate
Sonstige chemische Industrie (EBZ 50)	21 Monate
Gummi- und Kunststoffwaren (EBZ 51)	27 Monate
Glas und Keramik (EBZ 52)	16 Monate
Verarbeitung von Steinen und Erden (EBZ 53)	22 Monate
Metallerzeugung (EBZ 54)	14 Monate
NE-Metalle und Eisen-, Leicht-, Buntmetallgießereien (EBZ 55)	17 Monate
Metallbearbeitung (EBZ 56)	21 Monate
Maschinenbau (EBZ 57)	36 Monate
Fahrzeugbau (EBZ 58)	16 Monate
Sonstige Wirtschaftszweige (EBZ 59)	17 Monate

Quelle: Eigene Berechnungen EEFA und ZSW.

Einen zusätzlichen Frühindikator, der die Entwicklung der Industrieproduktion etwa einen Monat früher anzeigt als der Produktionsindex, stellt der monatliche Lkw-Maut-Fahrleistungsindex dar. Allerdings bietet dieser Konjunkturindikator keine sektorale Aufschlüsselung, so dass diese Kennziffer im Zusammenhang mit der Frühschätzung der vollständigen Energiebilanz Deutschland und der damit verbundenen Anforderung einer tiefen Detaillierung nach Wirtschaftszweigen (vgl. auch Kapitel 2.3) nicht sinnvoll eingesetzt werden kann.

5.4.4 Schnellschätzung des Bruttoinlandsproduktes

Seit dem 2. Quartal 2020 stellt das Statistische Bundesamt in regelmäßigen Abständen die sogenannte Schnellschätzung des Bruttoinlandsproduktes zur Verfügung. Die BIP-Schnellschätzung wird in der Regel 30 Tage nach Quartalsende (t+30) publiziert. Ende Januar

¹⁰⁵ Vgl. Statistisches Bundesamt (2023e), LKW-Maut, Lkw-Maut-Fahrleistungsindex, Fahrleistungsindex, Daten online abrufbar in der GENESIS-Datenbank, Internet: https://www-genesis.destatis.de/genesis/online/logon, Tabelle 42191-0001, (Abrufdatum zuletzt 11.4.2024).

liegen damit vorläufige Berechnungen des Bruttoinlandsproduktes für das Vorjahr (t-1) bzw. für das Prognosejahr im Rahmen der Frühschätzung vor. 106

Die amtliche Schnellschätzung des Bruttoinlandsproduktes ließe sich auf der einen Seite ebenfalls zur groben Abschätzung der sektoralen Produktionsentwicklung heranziehen. Dieser Ansatz wird in den Frühschätzungen nicht verfolgt, weil über die Auftragseingänge (oder durch die Verschiebung des Datenschlusses) nicht nur genauere, sondern zugleich nach Wirtschaftszweigen aufgeschlüsselte Daten als exogene Randbedingung in die Prognose einfließen können.

Bei der Interpretation der BIP-Schnellschätzung als "amtlicher Frühindikator" im Zusammenhang mit der hier angestrebten Verbesserung der Frühschätzung sollte nicht übersehen werden, dass die BIP-Schnellschätzung lediglich als Orientierungsrahmen dient. Ausgehend von deren Rahmenannahmen muss ein Set an exogenen Daten (Produktionswerte nach Sektoren, physische Produktionsmengen, Bruttowertschöpfung im GHD-Sektor usw.) abgeleitet werden, welches zu den Schnittstellen des hier konzipierten (Gesamt-)Modells zur Frühschätzung der gesamten Energiebilanz passt. Die im Rahmen der BIP-Schnellschätzung bereitgestellten makroökonomischen Kopfgrößen bieten den dazu erforderlichen Detaillierungsgrad nicht.

Sofern die amtliche BIP-Schnellschätzung zum Prognosetermin der Frühschätzung nicht vorliegt, wird die Verwendung einer alternativen Konjunkturprognose geprüft. In diesem Fall wird die Auswahl der konkreten Prognose dargelegt und begründet. Auf die Konsistenz der verwendeten BIP-Prognose im Verhältnis zu den übrigen, im Rahmen der Frühschätzung verwendeten Methoden und Setzungen ist in diesem Zusammenhang besonders zu achten.

 $^{^{106}}$ Vgl. Statistisches Bundesamt (2023f), Bruttoinlandsprodukt, Internet: https://www.destatis.de/DE/Themen/Wirtschaft/Volkswirtschaftliche-Gesamtrechnungen-Inlandsprodukt/_inhalt.html (Abrufdatum: 29.10.2023).

¹⁰⁷ Dazu könnte z.B. die sektorale Produktionsentwicklung in Abhängigkeit vom Bruttoinlandsprodukt u.a. ökometrisch auf der Grundlage vierteljährlicher oder jährlicher Daten geschätzt u. prognostiziert werden.

6 Vergleich zwischen Frühschätzungen und der endgültigen Energiebilanz Deutschland

Zur Evaluierung der Tragfähigkeit der weiterentwickelten Frühschätzung soll in den folgenden Abschnitten (wie bereits in der Vorgängerstudie) ein numerischer Vergleich der beiden Frühschätzungen für das Berichtsjahr 2022 (alte Methode und neues, erweitertes Modellverfahren) mit den inzwischen vorliegenden Daten der endgültigen Energiebilanz Deutschland für das Berichtsjahr 2022 erfolgen.

Allerdings wurde die Energiebilanz Deutschland zum 31. März 2023 einer umfassenden Datenrevision für sämtliche Berichtsjahre von 2003 bis 2021 unterzogen. Die damit verbundenen Veränderungen der Datenbasis machen einen direkten Vergleich zwischen der neuen Frühschätzung der Energiebilanz 2022 mit Hilfe des verbesserten Modells, welches sich bereits ausschließlich auf die revidierten Daten stützt, und der ursprünglichen Version der Frühschätzung vom 15. Februar 2023 (Datengrundlage waren hier noch die nicht-revidierten Zeitreihen der Energiebilanz Deutschland) weitgehend unmöglich bzw. erschweren die Einordnung der empirischen Befunde.

Um trotz dieser (eher ungünstigen) Rahmenbedingungen zu einer besseren Einschätzung der Veränderungen in der nun vorliegenden Frühschätzung (erweitertes Modell) zu gelangen, soll zusätzlich der Versuch unternommen werden, den Einfluss der skizzierten Datenrevision auf die Modellergebnisse bzw. die Frühschätzung separat zu betrachten. Um dieses Ziel zu erreichen, wird die bereits vorliegende, ursprüngliche Frühschätzung der Energiebilanz 2022 (Datenstand 15. Februar 2023)¹⁰⁸, die mit Hilfe des "alten" Modellverfahrens berechnet wurde, unter Beibehaltung der alten Methode sowie aller exogenen Rahmensetzungen (Preise, sektorale Produktionsentwicklung usw.), die seinerzeit in die Prognose eingeflossen sind, erneut ermittelt, wobei diesmal allerdings die revidierten Daten der Energiebilanz Deutschland für Ex-post-Zeiträume (2003 bis 2021) in das Modellverfahren einfließen.¹⁰⁹ Aus dem Vergleich der modifizierten Frühschätzung 2022 (auf Basis der revidierten Energiebilanzdaten) mit der bereits vorliegenden, originären Frühschätzung lässt sich das isolierte Ausmaß des Einflusses der Energiebilanz-Revision auf das Prognoseergebnis ablesen.

Konkret müssen zur Durchführung der nachfolgenden Vergleiche aus diesem Grund zwei neue, zusätzliche Frühschätzungen für das Jahr 2022 erstellt werden, nämlich:

- ▶ 1. Schritt: Wiederholung der Frühschätzung der Energiebilanz 2022 (Datenstand 15. Februar 2023, altes Modell bzw. Verfahren zur Frühschätzung aus Pilotstudie I, allerdings unter Berücksichtigung der revidierten Datensätze der Energiebilanz Deutschland, Datenstand zum 31. März 2023, unter Beibehaltung des Datenstandes der originären bzw. regulären Frühschätzung vom 15. Februar 2023 für die exogenen Einflussgrößen) (Frühschätzung 2022 "Variante B").
- ▶ 2. Schritt: Erstellung einer Frühschätzung der Energiebilanz 2022 mit Hilfe des neuen, erweiterten Modells ebenfalls unter Rückgriff bzw. Beibehaltung des Datenstandes für die exogenen Vorgaben (15. Februar 2023), wie er im Rahmen der regulären Frühschätzung mit der alten Methodik verwendet wurde (Datenstand 15. Februar 2023; neues, verbessertes

 $^{^{\}rm 108}$ Im Folgenden wird die originäre Frühschätzung 2022, Stand 15.02.2023, als "Variante A" bezeichnet.

¹⁰⁹ Konkret folgt daraus, dass die revisionsbedingten Veränderungen der Datenbasis im Ex-post-Zeitraum dazu führen, dass die Gleichungen der ökonometrischen Modelle, die zur Frühschätzung der Energiebilanz verwendet werden, neu geschätzt werden müssen, sich die Koeffizientenschätzer der Regressionsgleichungen daraufhin ggf. verändern und deshalb die für diese Studie zusätzlich berechnete Frühschätzung der Variante B für 2022 (trotz identischem Datenstand der exogenen Erklärungsgrößen) ggf. von der Variante A für 2022 unterscheidet.

Modell; Berücksichtigung der revidierten Datensätze der Energiebilanz Deutschland, Stand 31.03.2023) (Frühschätzung 2022 "Variante C").

Aus dem Vergleich der Frühschätzung 2022 Variante A mit Variante B kann der Einfluss der Datenrevision auf die Prognoseresultate, aus dem Vergleich der Variante B mit Variante C hingegen die Auswirkungen der Modellerweiterungen auf das Schätzergebnis abgelesen werden. Hinweise zu den ggf. über die Modellerweiterung erzielten Verbesserungen der Prognosegüte geben schließlich die numerischen Vergleiche der Frühschätzungen 2022 Variante B und C mit der endgültigen Energiebilanz Deutschland für das Berichtsjahr 2022 (Datenstand: 31. Januar 2024).

Die Frühschätzung der Energiebilanz Deutschland für das Berichtsjahr 2022 unter Rückgriff auf das erweiterte Modellverfahren (Variante C) greift auf ausgewählte, in den Abschnitten 3.2, 4.1, 4.2 und 5 dieser Studie dargestellte Verbesserungen zurück. Konkret werden folgende Module zur Frühschätzung (Variante C) eingesetzt¹¹⁰:

- ➤ Aufgliederung des Industriemodells für die energieintensiven Wirtschaftszweige "Papiergewerbe" (EBZ 48), "Verarbeitung von Steinen und Erden" (EBZ 53) sowie "Metallerzeugung" (EBZ 54) in insgesamt zwölf Sub-Sektoren / Produktionsstufen (Kap. 3),
- ▶ Ökonometrisches Verfahren (auf der Basis j\u00e4hrlicher Zeitreihen von 2005 bis 2021) zur Prognose des Energieverbrauchs in den Umwandlungssektoren (EBZ 33 bis EBZ 39, ohne EBZ 36 ("Kraftwerke") und EBZ 39 ("Sonstige Energieerzeuger") sowie ohne den Einsatz von Mineral\u00f6lprodukten in EBZ 38 ("Mineral\u00f6lverarbeitung")¹¹¹¹ (Kapitel 4.1.),
- ► Fernheizwerke, ökonometrische Schätzung der Fernwärmeerzeugung und Ableitung des damit verbundenen Brennstoffeinsatzes in Energiebilanzzeile 23 (Kapitel 4.2) sowie schließlich
- Verwendung vorliegender monatlicher Daten von ENTSO-E über die Stromerzeugung der Kraftwerke der allgemeinen Erzeugung aus Stein- und Braunkohle zur Bestimmung des Brennstoffeinsatzes dieser Energieträger in Energiebilanzzeile 11 (Kapitel 5.1.2).

Auf die Nutzung der THE-Daten wurde aufgrund der fehlenden bzw. unscharfen sektoralen Aufgliederung und des damit verbundenen geringen Erklärungsbeitrags in der Frühschätzung 2022 zunächst weiter verzichtet.

Darüber hinaus wurde die ins Auge gefasste Fortschreibung der sektoralen Produktionsindizes mit Hilfe der Auftragseingänge (vgl. Kapitel 5.4.3) ebenfalls nicht zur Verbesserung der vorliegenden Frühschätzung verwendet. Der Hauptgrund hierfür ist, dass die Rahmendaten bzw. Annahmen der Prognose gegenüber der ursprünglichen Frühschätzung (15. Februar 2023) nicht verändert werden sollten. Dazu zählen neben den Preisen der verschiedenen Energieträger insbesondere auch die exogenen Vorgaben zur Entwicklung der sektoralen Produktion.¹¹²

¹¹⁰ Der Auftraggeber erhält im Zusammenhang mit den in dieser Studie durchgeführten Neuberechnungen der Frühschätzung 2022 mit Hilfe des weiterentwickelten Modellinstrumentariums, wie in der Vorgängerstudie auch, eine felderscharfe Dokumentation, der mit den neuen Modulen erstellten Frühschätzung im zuvor festgelegten Datenbank- bzw. Excel-Format.

¹¹¹ Diese Daten werden weiterhin unter Rückgriff auf die zum Zeitpunkt der Frühschätzung bereits vorliegenden Daten aus den amtlichen monatlichen Mineralöldaten (AMS) extrapoliert.

¹¹² Diese Einschränkung (Beibehaltung der Vergleichbarkeit) gilt für zukünftige Frühschätzungen der Energiebilanz freilich nicht mehr. Aus diesem Grund kann und sollte das verbesserte, ökonometrische Verfahren zur Prognose der sektoralen Produktionsentwicklung unter Zuhilfenahme der Auftragseingänge ab dem Berichtsjahr 2024 (Frühschätzung zum 15. Februar 2025) angewendet werden.

Die in den folgenden Abschnitten vorgestellten numerischen Vergleiche stellen zusammenfassende Analysen in tabellarischer und grafischer Form dar, die sich in erster Linie auf die fossilen Energieträger (differenziert nach Energieträgergruppen und Wirtschaftszweigen) konzentrieren.

In den nachfolgenden Abschnitten werden die beiden neu erstellten Frühschätzungen 2022 (Variante B und C) mit den Befunden der (endgültigen) Energiebilanz Deutschland 2022 felderscharf verglichen, wobei für alle Bilanzfelder (mit Ausnahme der erneuerbaren Energien) sowohl die absoluten als auch die relativen Abweichungen (in %) ausgewiesen werden. Die Vergleiche auf der Ebene einzelner Bilanzfelder werden dem Auftraggeber zusammen mit dem Endbericht zu dieser Studie im Excel-Format übergeben.

6.1 Einfluss der Datenrevision vom 31. März 2023 in den Energiebilanzen für Berichtsjahre von 2003 bis 2021 auf die Frühschätzung

Es liegt auf der Hand, dass die umfassende Revision der Energiebilanzdaten¹¹³ vom März 2023 nicht ohne Auswirkungen auf die Resultate der Frühschätzung sein kann. Unter Zugrundelegung des vorgestellten generellen Erklärungsansatzes zur Frühschätzung der Energiebilanz Deutschland¹¹⁴ sind drei grundsätzliche Bereiche identifizierbar, die von der Veränderung der Datengrundlage (Revision) tangiert werden können, und zwar:

- ▶ Bereiche oder Felder der Energiebilanz Deutschland, die auf der Grundlage von Jahresdaten mit Hilfe ökonometrischer Modelle geschätzt und prognostiziert werden,
- ► Felder, die sich im Rahmen der skizzierten Datenrevision in der Energiebilanz Deutschland für das Berichtsjahr 2021 verändert haben und als Aufsatzpunkt für die Prognose/Frühschätzung im Jahr 2022 dienen sowie schließlich
- ► Energiebilanzfelder, die in erster Linie aus Konsistenzgründen über einer Restgliedrechnung aus dem jeweiligen Bilanzzusammenhang aus der Frühschätzung ermittelt werden müssen.

Tabelle 26 fasst vor diesem Hintergrund die Ergebnisse der Frühschätzung (altes Modell) für den (fossilen, nicht erneuerbaren) Endenergieverbrauch im Berichtsjahr 2022 zusammen, wobei die Frühschätzung nach Variante A die Berechnungen auf der Grundlage der nicht revidierten Zeitreihe der Energiebilanzen und die Frühschätzung Variante B die Resultate unter Einbeziehung der revidierten Zeitreihe der Energiebilanz Deutschland (2003 bis 2021) wiedergibt. Zur besseren Einordnung und der Vollständigkeit halber werden die beiden Varianten der Frühschätzung für den fossilen, nicht erneuerbaren Endenergieverbrauch, die mit dem alten Prototyp des Modells ermittelt wurden, zusätzlich den entsprechenden Daten der endgültigen Energiebilanz Deutschland gegenübergestellt.¹¹⁵

¹¹³ Vgl. dazu im Einzelnen AG Energiebilanzen (2023b), Umfassende Revision der Energiebilanzen 2003 bis 2021 abgeschlossen, infoplus Nr. 03/2023, Internet: https://ag-energiebilanzen.de/wp-content/uploads/2023/11/AGEB_InfoAusgabe-3-2023.pdf (Abrufdatum: 16.4.2024).

¹¹⁴ EEFA/ZSW (2023), S. 52 ff.

¹¹⁵ Formal ergibt sich der Einfluss der Datenrevision aus dem Vergleich der empirischen Befunde für die Varianten A und B. Die Interpretation des Einflusses der Datenrevision verändert sich allerdings nicht, wenn beide Varianten (A und B) mit den Werten der endgültigen Energiebilanz Deutschland verglichen werden. Deshalb werden in Tabelle 26 nur die Differenzen der Varianten A und B zur endgültigen Bilanz explizit ausgewiesen, wobei die Differenzen zwischen Variante A und B ebenfalls aus Tabelle 26 errechnet werden können.

Tabelle 26: Abweichungen fossiler Endenergieverbrauch 2022 nach Energieträgern zwischen Frühschätzung (Variante A und B) und endgültiger Energiebilanz

2022, in Petajoule und Abweichungen in PJ und %

	Endg. Energiebilanz 2022	Frühschätzung 2022 (Variante B)	Frühschätzung 2022 (Variante A)
	in PJ	in PJ	in PJ
Steinkohle	311	370	370
Braunkohle	81	83	84
Mineralöl	3076	3130	3072
Gase	2094	2034	2039
Sonstige nicht-erneu.	81	67	67
Summe EEV, fossil	5643	5684	5632
		Abweich. endg. EB, in PJ	Abweich. endg. EB, in PJ
Steinkohle		59,0	59,0
Braunkohle		2,0	3,0
Mineralöl		54,0	-4,0
Gase		-60,0	-55,0
Sonstige nicht-erneu.		-14,0	-14,0
Summe EEV, fossil		41,0	-11,0
		Abweich. endg. EB, in %	Abweich. endg. EB, in %
Steinkohle		19,0	19,0
Braunkohle		2,5	3,7
Mineralöl		1,8	-0,1
Gase		-2,9	-2,6
Sonstige nicht-erneu.		-17,3	-17,3
Summe EEV, fossil		0,7	-0,2

Quelle: Eigene Berechnungen EEFA und ZSW. Variante A: alte Methode ohne Datenrevision der Energiebilanz Deutschland; Variante B: alte Methode inkl. Datenrevision der Energiebilanz Deutschland.

Insgesamt zeigen die zusammenfassenden Gegenüberstellungen, dass von der Datenrevision der Energiebilanz Deutschland (2003 bis 2021) für sich genommen erwartungsgemäß ein Einfluss auf das Schätzergebnis ausgeht. Die Auswirkungen auf das Gesamtergebnis sind jedoch zumindest in den hier betrachten Aggregaten eher von untergeordneter Bedeutung. Diese

Einschätzung schließt nicht aus, dass ggf. in einzelnen Bilanzfeldern über den Einfluss der Datenrevision auch größere Auswirkungen auf das Schätzergebnis resultieren können.

6.2 Vergleich der Frühschätzungen 2022 (Variante B und C) mit der endgültigen Energiebilanz Deutschland 2022

Die Qualität der weiterentwickelten Frühschätzung für das Berichtsjahr 2022 wird in den nachfolgenden Abschnitten evaluiert, indem die Ergebnisse der Frühschätzung mit dem erweiterten Modell (Variante C) sowie die Resultate der Schätzungen mit dem Prototyp des Modells inkl. Revision (Variante B) den Befunden der endgültigen Energiebilanz Deutschland (Datenstand: 31. Januar 2023) gegenübergestellt werden. Wie in der Leistungsbeschreibung zu diesem Projekt vorgesehen, beziehen sich die numerischen Vergleiche ausschließlich auf das Berichtsjahr 2022.

Alle in den folgenden Abschnitten genutzten Modellergebnisse, die in die Vergleichstabellen und Schaubilder eingeflossen sind, basieren auf den revidierten Zeitreihen der Energiebilanzen Deutschland (2003 bis 2021, Datenstand: 31. März 2023), so dass die Differenzen allein auf die skizzierten Modellveränderungen und Ergänzungen des zur Frühschätzung eingesetzten Hybridverfahrens und nicht auf die Revision der Datengrundlagen zurückzuführen sind.

Nachfolgend sollen die Auswirkungen der Modellverbesserungen zusammenfassend für die hauptsächlich betroffenen Segmente der Energiebilanz, nämlich die Industrie (mit besonderem Fokus auf die Sektoren Metallerzeugung, Verarbeitung von Steinen und Erden sowie Papiergewerbe), den Umwandlungseinsatz (Fernheizwerke, Wärmekraftwerke der allgemeinen Versorgung) und den Energieverbrauch im Umwandlungssektor beleuchtet werden. Die kurzen Erläuterungen zu den einzelnen Vergleichstabellen und -schaubildern sollen der besseren Einordnung der Ergebnisse dienen und die Güte der aktualisierten Prognose im Vergleich zu der alten Schätzmethode bewerten.

Abschließend ist zu betonen, dass sich die zusammenfassenden empirischen Vergleiche im vorliegenden Text auf den zur Berechnung der energiebedingten CO₂-Emissionen relevanten fossilen, nicht erneuerbaren Brennstoffeinsatz konzentrieren.

6.2.1 Endenergieverbrauch der Industrie

Der gesamte Endenergieverbrauch der Industrie (EBZ 60), ohne den nichtenergetischen Verbrauch, betrug nach den Daten der endgültigen Energiebilanz Deutschland im Jahr 2022 rund 2.392 PJ. Bezogen auf den gesamten Endenergieverbrauch entfiel auf die Sektoren des Verarbeitenden Gewerbes damit insgesamt ein Verbrauchsanteil in Höhe von 28,1 %. Der fossile, nicht erneuerbare Brennstoffeinsatz in industriellen Produktionsprozessen erreichte 2022 ein Niveau von 1.384 PJ, was bezogen auf den entsprechenden Verbrauch aller Endenergiesektoren einem Anteil von 24,1 % entsprach. Bereits diese kurzen Ausführungen lassen erkennen, dass die Prognose des Energieverbrauchs der Industrie für die Treffsicherheit

¹¹⁶ Ein felderscharfer, numerischer Vergleich der verschiedenen Frühschätzungen der Energiebilanz 2022 (altes Modell ohne Revision, altes Modell mit Revision) wird dem Auftraggeber zusätzlich zu dieser Studie im Excel-Format zur Verfügung gestellt. Daraus ist u.a. der Einfluss der Datenrevision in Form relativer und absoluter Abweichungen auf der Ebene jedes einzelnen Bilanzfeldes ablesbar.

¹¹⁷ Die numerischen Vergleiche ergänzen die Ausführungen und Analysen auf der Ebene der einzelnen Modellteile, die zur Frühschätzung der Energiebilanz eingesetzt wurden (vgl. Kapitel 3 und 4 der vorliegenden Studie). Vor diesem Hintergrund können aus den hier angestellten Vergleichen, die ausschließlich ein Jahr betrachten, nur erste (Einzelfall-)Hinweise abgeleitet, aber keine statistisch gesicherten Schlussfolgerungen gezogen werden. Lediglich aus der kombinierten Gesamtbetrachtung der Prognosefehler über einen längeren Ex-post-Zeitraum (2012 bis 2021, vgl. Kapitel 3.3) und den Vergleichen für ein Berichtsjahr lassen sich entsprechende Hinweise ablesen.

der gesamten Frühschätzung der Energiebilanz Deutschland und hier insbesondere die Abbildung des Endenergieverbrauchs (nach Sektoren) von herausragender Bedeutung ist.

Seit geraumer Zeit ist zwischen der Energieverbrauchs- und der Produktionsentwicklung der Industrie eine deutliche Entkopplung zu beobachten. Im industriellen Bereich ist die Entwicklung des Endenergieverbrauchs gedanklich allerdings auf drei Komponenten bzw. Haupteinflussgrößen zurückzuführen:

- eine Wachstumskomponente, die angibt, wie sich der Endenergieverbrauch entwickelt, sofern alle Wirtschaftszweige mit der identischen Rate wachsen,
- ▶ eine energiepreisabhängige Effizienz- oder Technologiekomponente, in der sich technische Einsparungen beim Energieverbrauch (Zugang neuer moderner Prozesstechnik und Produktionsanlagen und Abgang bzw. Außerbetriebnahme alter Kapazitäten, sowie Substitutionen zwischen den Produktionsfaktoren Energie und Rohstoffe etwa im Rahmen von Recycling) widerspiegeln sowie schließlich
- ▶ eine Strukturkomponente, die den Einfluss unterschiedlicher, sektoraler Wachstumsraten auf die Höhe und die Struktur des industriellen Energieverbrauchs (intersektoraler Strukturwandel) erfasst.

Aufgrund der Vermischung der skizzierten, unterschiedlichen Einflussfaktoren kann für die Industrie oder auf der Ebene hochaggregierter Wirtschaftszweige kaum zuverlässig abgeschätzt werden, wie sich der Energieverbrauch in Zukunft entwickelt.

Die in dieser Studie vorgenommene tiefere Aufgliederung ausgewählter energieintensiver Wirtschaftszweige dient vor dem skizzierten Hintergrund in erster Linie der präziseren Erfassung des Einflusses des Strukturwandels auf den Energieverbrauch.

Die Prognoseergebnisse, die mit Hilfe des erweiterten Modells zur Erklärung des industriellen Endenergieverbrauchs (Variante C) geschätzt wurden, unterscheiden sich nicht unbeträchtlich von jenen, die im Rahmen der ursprünglichen Frühschätzung 2022 ermittelt wurden. Damals ergaben sich insbesondere im Hinblick auf die Prognose des Steinkohlen- und Erdgasverbrauchs in den betrachteten Sektoren spürbar abweichende Schätzergebnisse (Variante B).

6.2.1.1 Metallerzeugung (EBZ 54)

Mit einem Anteil am gesamten Endenergieverbrauch der Industrie von fast 21 % im Jahr 2022 (ohne Umwandlungseinsatz in Hochöfen, der in Energiebilanzzeile 17 erfasst wird und nicht zum Endenergieverbrauch der Roheisen- und Rohstahlerzeugung gerechnet wird) trägt der Sektor Metallerzeugung überdurchschnittlich zum gesamten industriellen Energieverbrauch und damit verbundenen ${\rm CO_2\textsc{-}Ausstoß}$ bei.

Bezogen auf den fossilen Einsatz von Endenergieträgern (ohne erneuerbare Brennstoffe) erreicht der Verbrauch des Sektors Metallerzeugung am gesamten fossilen Einsatz in der Industrie sogar einen Anteil von fast 31 %.

Das Gesamtergebnis der neu berechneten Frühschätzung (fossiler Endenergieverbrauch) im Sektor Metallerzeugung verändert sich gegenüber der Variante B nur geringfügig. Die Abweichung beim gesamten Brennstoff-/Wärmeinsatz gegenüber den Daten der endgültigen Energiebilanz 2022 verringert sich im Rahmen des erweiterten Modellansatzes zur Erklärung

des industriellen Endenergieverbrauchs (Variante C) auf 1,9 % (8 PJ). In der Vorgängerversion (altes Modell, Variante B) lag die Abweichung noch bei 2 % bzw. 9 PJ (vgl. Tabelle 27).¹¹⁸

Spürbar verbessert hat sich die Treffsicherheit der Frühschätzung für das Jahr 2022 im Rahmen der Modellerweiterung im Hinblick auf die Erfassung der Zusammensetzung des Energieträgermix. Bei Steinkohlen (Steinkohle, roh sowie Steinkohlenkoks) konnte der Prognosefehler (für 2022) von 60 auf ca. 21 PJ und damit unter 8 % reduziert werden. Gleichzeitig erhöhte sich die Prognosegenauigkeit für die Gase (in der Reihenfolge der Bedeutung: Gichtgas, Erdgas inkl. Grubengas, Kokereigas) gegenüber dem Prototyp des Modells zur Erklärung des Energieverbrauchs in der Metallerzeugung spürbar.

Für die Berechnung der sektoralen (energiebedingten) CO₂-Emissionen sind die skizzierten Verbesserungen in der Prognose des Energieträgermix von essenzieller Bedeutung.

Tabelle 27: Fossiler Endenergieverbrauch im Sektor Metallerzeugung (EBZ 54) nach Frühschätzung und endgültiger Energiebilanz Deutschland 2022

2022, nach Energieträger, in Petajoule und Abweichungen in %

	endgültige Energiebilanz 2022	Frühschätzung 2022 (Variante C)	Frühschätzung 2022 (Variante B)
	in PJ	in PJ	in PJ
Steinkohle	265	286	325
Braunkohle	13	10	14
Mineralöl	2	2	2
Gase	150	140	98
Sonstige nicht-erneu.	0	0	0
Summe EEV, fossil	430	438	439
		Abweich. endg. EB, in PJ	Abweich. endg. EB, in PJ
Steinkohle		21,0	60,0
Braunkohle		-3,0	1,0
Mineralöl		0,0	0,0
Gase		-10,0	-52,0
Sonstige nicht-erneu.		0,0	0,0
Summe EEV, fossil		8,0	9,0
		Abweich. endg. EB, in %	Abweich. endg. EB, in %
Steinkohle		7,9	22,6
Braunkohle		-23,1	7,7

¹¹⁸ Bei der Interpretation der Kennziffer "Abweichung zur endgültigen Energiebilanz" (in PJ oder %) ist zu beachten, dass die Abweichungen der einzelnen Energieträger nicht betragsmäßig addiert werden, so dass auftretende Über- oder Unterschätzungen sich gegenseitig kompensieren können. Als zusätzliches Beurteilungskriterium weisen die nachfolgenden Tabellen darüber hinaus die Summe der betragsmäßigen Abweichungen zur endgültigen Energiebilanz 2022 aus.

	endgültige Energiebilanz 2022	Frühschätzung 2022 (Variante C)	Frühschätzung 2022 (Variante B)
Mineralöl		0,0	0,0
Gase		-6,7	-34,7
Sonstige nicht-erneu.		0,0	0,0
Summe EEV, fossil		1,9	2,1
		Absol. Abweich. endg. EB ¹	Absol. Abweich. endg. EB ¹
Abweichungen in PJ		34,0	113,0
Abweichungen in %		7,9	26,3

Quelle: Eigene Berechnungen EEFA und ZSW. Variante B: alte Methode inkl. Datenrevision der Energiebilanz Deutschland; Variante C: neue Methode inkl. Datenrevision der Energiebilanz Deutschland. ¹Summe der absoluten, betragsmäßigen Abweichungen der disaggregierten Energieträger.

6.2.1.2 Verarbeitung von Steinen und Erden (EBZ 53)

Die Steine und Erdenindustrie (EBZ 53) vereinte im Jahr 2022 mit 189 PJ rund 7,8 % der gesamten industriellen (End-)Energienachfrage auf sich. Bezogen auf den fossilen, nicht erneuerbaren Brennstoffeinsatz beträgt ihr Anteil im Jahr 2022 mehr als 10 %.

Die Aufgliederung des Sektors "Verarbeitung von Steinen und Erden" (EBZ 53) in die drei Sub-Sektoren Herstellung von Zement (WZ 23.51), Herstellung von Kalk (WZ 23.52) und Herstellung sonstiger Erzeugnisse der Steine- und Erdenindustrie (WZ 23.6 bis 23.9) hat für sich genommen zu einer Verbesserung der Verbrauchsprognose im Gesamtsektor geführt. Die Abweichung des fossilen, nicht erneuerbaren Brennstoffeinsatzes gegenüber den endgültigen Daten verringert sich im Jahr 2022 von -8 % (Variante B) auf -2 % (Variante C). Das erweiterte Erklärungsmodell unterschätzt den fossilen, nicht erneuerbaren Brennstoffeinsatz im Jahr 2022 damit nur noch um ca. 1,4 PJ.

Im Hinblick auf den Brennstoffmix sind ebenfalls Verschiebungen gegenüber der "alten" Prognose zu beobachten (vgl. Tabelle 28). Wurde der Einsatz von Braunkohle¹¹⁹ in der Frühschätzung nach Variante B noch um 4,8 % (2 PJ) überschätzt, ergibt sich nach dem erweiterten Modellansatz (Variante C) nunmehr eine Unterschätzung in gleicher Größenordnung. Bei den Gasen (in der Steine- und Erdenindustrie im Jahr 2022 ausschließlich Erdgas und Erdölgas) resultiert aus der Anwendung des erweiterten Modells eine spürbare Verbesserung der Prognosegenauigkeit. Insgesamt überschätzt die Prognose den endgültigen Befund laut Energiebilanz Deutschland im Jahr 2022 um 5,1 % bzw. 2 PJ. Hingegen ergab sich nach dem alten Verfahren (Prototyp des Industriemodells, Variante B) für den Erdgasverbrauch der Steine- und Erdenindustrie noch eine Unterschätzung in Höhe von 9 PJ (entspricht -23,1 %).

Die Schätzung des Mineralölverbrauchs (die Steine- und Erdenindustrie verbrauchte 2022 in der Reihenfolge der Bedeutung Andere Mineralölprodukte, leichtes Heizöl und Petrolkoks sowie geringe Mengen an Dieselkraftstoff, schwerem Heizöl und Flüssiggas) hat sich allerdings im direkten Vergleich zu den früheren Resultaten (Variante B) unter Zuhilfenahme der erweiterten Modellierung (Variante C) verschlechtert. Während das alte Modell den gesamten Mineralölverbrauch um 1 PJ (gut 9 %) überschätzte, verfehlt das detaillierte Erklärungsmodell

¹¹⁹ Im Sektor Verarbeitung von Steinen und Erden konzentriert sich der Verbrauch auf "Andere Braunkohlenprodukte," die sich ihrerseits aus "Staub- und Trockenkohle", "Wirbelschichtkohle", "Braunkohlenkoks" zusammensetzen, sowie in geringem Umfang auf "Braunkohlenbriketts".

den wahren Wert laut Energiebilanz Deutschland im Jahr 2022 um -2 PJ (-18,2 %). Die Mineralöle sind allerdings im fossilen Brennstoffeinsatz des Sektors eher von untergeordneter Bedeutung (auf sie entfiel 2022 noch ein Verbrauchsanteil von 7,7 %). Hinzu kommt, dass der Mineralölverbrauch u.a. aufgrund seiner Untergliederung in sechs Energieträger mit zum Teil geringen und stark schwankenden Einsatzmengen über den Zeitverlauf schwerer zu prognostizieren ist als andere Energieträger. 120

Tabelle 28: Fossiler Endenergieverbrauch im Sektor Verarbeitung von Steinen und Erden (EBZ 53) nach Frühschätzung und endgültiger Energiebilanz Deutschland 2022

2022, nach Energieträgern, in Petajoule und Abweichungen in %

	endgültige Energiebilanz 2022	Frühschätzung 2022 (Variante C)	Frühschätzung 2022 (Variante B)
	in PJ	in PJ	in PJ
Steinkohle	10	14	12
Braunkohle	42	40	44
Mineralöl	11	9	12
Gase	39	41	30
Sonstige nicht-erneu.	37	33	33
Summe EEV, fossil	139	137	131
		Abweich. endg. EB, in PJ	Abweich. endg. EB, in PJ
Steinkohle		4,0	2,0
Braunkohle		-2,0	2,0
Mineralöl		-2,0	1,0
Gase		2,0	-9,0
Sonstige nicht-erneu.		-4,0	-4,0
Summe EEV, fossil		-2,0	-8,0
		Abweich. endg. EB, in %	Abweich. endg. EB, in %
Steinkohle		40,0	20,0
Braunkohle		-4,8	4,8
Mineralöl		-18,2	9,1
Gase		5,1	-23,1
Sonstige nicht-erneu.		-10,8	-10,8
Summe EEV, fossil		-1,4	-5,8
		Absol. Abweich. endg. EB ¹	Absol. Abweich. endg. EB ¹

¹²⁰ Insofern dürfte die Aufgliederung des Gesamtsektors "Verarbeitung von Steinen und Erden" in drei Sub-Sektoren das Schätzproblem zumindest im Bereich der Mineralölprodukte zumindest tendenziell verstärkt haben.

	endgültige Energiebilanz 2022	Frühschätzung 2022 (Variante C)	Frühschätzung 2022 (Variante B)
Abweichungen in PJ		14,0	18,0
Abweichungen in %		10,1	12,9

Quelle: Eigene Berechnungen EEFA und ZSW. Variante B: alte Methode inkl. Datenrevision der Energiebilanz Deutschland; Variante C: neue Methode inkl. Datenrevision der Energiebilanz Deutschland. ¹Summe der absoluten, betragsmäßigen Abweichungen der disaggregierten Energieträger.

6.2.1.3 Papiergewerbe (EBZ 48)

Die Papierindustrie (WZ 17) ist einer der kleineren Industriezweige in Deutschland mit einem Anteil von 3,1% an der Produktion im Verarbeitenden Gewerbe. Die hier anzutreffenden Produktionsprozesse, insbesondere die Primärproduktion von Holzschliff, Zellstoff, Papier und Pappe (WZ 17.1), sind jedoch außerordentlich energieintensiv. Im Jahr 2022 wurden in Deutschland, allein in diesem Sub-Sektor, rund 21,6 Mill. Tonnen Papier, Karton und Pappe produziert. Hierbei wurden 144 PJ 122 thermische und rund 33 PJ (9.055 GWh) elektrische Energie verbraucht und 11,8 Mill. t 122 emittiert. Die Produktion einer Tonne Papier und Pappe benötigte 2022 ca. 2.587 kWh an Energie und war mit Kohlendioxid-Emissionen in Höhe von 546 kg verbunden.

Die im Sektor Papiergewerbe insgesamt (WZ 17.1 und WZ 17.2, EBZ 48) vorzufindenden Produktionsprozesse benötigten 2022 rund 200 PJ an Brennstoffen, Wärme und elektrischem Strom, was einem Verbrauchsanteil von 8,4 % am Energieverbrauch des Verarbeitenden Gewerbes entspricht (bezogen auf den fossilen Brennstoffeinsatz ohne erneuerbare Energieträger liegt dieser Anteil bei 6,1 %).

Vergleicht man vor diesem Hintergrund die Prognoseergebnisse der beiden Frühschätzungen (Variante B und C) mit den Befunden der Energiebilanz 2022, ergibt sich zusammenfassend das in Tabelle 27 dargestellte Bild. Insgesamt fällt auf, dass die differenziertere Schätzung auf der Ebene der Sub-Sektoren (Herstellung von Holschliff, Zellstoff Papier und Pappe (WZ 17.2) sowie Herstellung von Waren aus Papier und Pappe (WZ 17.2)) im Vergleich zum Prototyp des Erklärungsmodells (Variante B) zu einer Verschlechterung des Prognoseergebnisses geführt hat. Die Abweichung des Prognoseergebnisses zu den Befunden der endgültigen Energiebilanz 2022 erhöhte sich durch die Modellerweiterung von -12 auf -21 PJ, so dass die relative Unterschätzung von -14 % auf -24,7 % zunahm.

In der vorliegenden Fassung der Modellerweiterung (Variante C) wird der Einsatz von Gasen im Papiergewerbe (EBZ 48) um 18 PJ bzw. 26 % unterschätzt. Dies stellt gegenüber dem Prototyp des Modells eine Verschlechterung der Prognosegenauigkeit (für das Jahr 2022) um 8 PJ dar (vgl. Tabelle 29). Der Einsatz fester und flüssiger Energieträger ist für das Gesamtergebnis im Sektor Papiergewerbe eher von untergeordneter Bedeutung, obwohl bei den Mineralölprodukten über die umgesetzte Erweiterung des Industriemodells ebenfalls keine Verbesserung der Treffsicherheit der Prognose erreicht werden konnte (-2 PJ).

¹²¹ Bezugsgröße ist die reale Produktion des Verarbeitenden Gewerbes in der Abgrenzung der Energiebilanz Deutschland (Bilanzzeile 60), also ohne Sektoren der Energieumwandlung wie Kokereien oder Raffinerien u.a., die in der Energiebilanz dem Umwandlungsbereich zugeordnet werden.

¹²² Inkl. 45 PJ überwiegend erneuerbare Brennstoffe wie Ablauge, Faser- und Deinking-Rückstände, Biogas, Biomasse usw.

Tabelle 29: Fossiler Endenergieverbrauch im Sektor Papiergewerbe (EBZ 48) nach Frühschätzung und endgültiger Energiebilanz Deutschland 2022

2022, nach Energieträgern, in Petajoule und Abweichungen in %

	endgültige Energiebilanz 2022	Frühschätzung 2022 (Variante C)	Frühschätzung 2022 (Variante B)
	in PJ	in PJ	in PJ
Steinkohle	4	3	4
Braunkohle	3	4	4
Mineralöl	3	1	1
Gase	69	51	59
Sonstige nicht-erneu.	6	5	5
Summe EEV, fossil	85	64	73
		Abweich. endg. EB, in PJ	Abweich. endg. EB, in PJ
Steinkohle		-1,0	0,0
Braunkohle		1,0	1,0
Mineralöl		-2,0	-2,0
Gase		-18,0	-10,0
Sonstige nicht-erneu.		-1,0	-1,0
Summe EEV, fossil		-21,0	-12,0
		Abweich. endg. EB, in %	Abweich. endg. EB, in %
Steinkohle		-25,0	0,0
Braunkohle		33,3	33,3
Mineralöl		-66,7	-66,7
Gase		-26,1	-14,5
Sonstige nicht-erneu.		-16,7	-16,7
Summe EEV, fossil		-24,7	-14,1
		Absol. Abweich. endg. EB ¹	Absol. Abweich. endg. EB ¹
Abweichungen in PJ		23,0	14,0
Abweichungen in %		27,1	16,5

Quelle: Eigene Berechnungen EEFA und ZSW. Variante B: alte Methode inkl. Datenrevision der Energiebilanz Deutschland; Variante C: neue Methode inkl. Datenrevision der Energiebilanz Deutschland. ¹Summe der absoluten, betragsmäßigen Abweichungen der disaggregierten Energieträger.

Eine genauere Analyse dieses zunächst überraschenden Modellergebnisses ergab, dass der skizzierte Rückgang des Brennstoffeinsatzes ausschließlich auf den Sub-Sektor Herstellung von Holzschliff, Zellstoff, Papier und Pappe (WZ 17.1) zurückzuführen ist. Aufgrund der gewählten

Modellkonzeption (ein Energieträger, i.d.R. Erdgas, wird aus Konsistenzgründen stets als Restgliedgröße zum Brennstoffeinsatz des Sektors ermittelt) schlagen sich Probleme bzw. Verzerrungen in der Prognose anderer Brennstoffe typischerweise im Schätzergebnis des Energieträger Erdgas nieder. Konkret ist die Unterschätzung des Erdgasverbrauchs zur Produktion von Papier, Pappe und Produkten daraus (EBZ 48) darauf zurückführen, dass für den Sektor Herstellung von Holzschliff, Zellstoff, Papier und Pappe bei insgesamt sinkendem Brennstoffeinsatz ein nahezu konstanter bzw. leicht ansteigender Verbrauch an biogenen Energieträgern (Biomasse und erneuerbare Abfälle) geschätzt wird. Hinzu kommt, dass in die Gleichung zur Erklärung des Einsatzes an biogenen Energieträgern im Sub-Sektor Herstellung von Holzschliff, Zellstoff, Papier und Pappe (WZ 17.1) kein sinnvoller Preiseinfluss identifiziert werden konnte (die eingesetzte Biomasse stammt überwiegend aus eigener Produktion, so dass Informationen über marktgängige Preise für diesen Energieträger fehlen). Die Schätzgleichung zur Prognose des Endenergieverbrauchs von Biomasse ist vor diesem Hintergrund sehr einfach geschätzt und weist u.U. größere Prognoseungenauigkeiten auf.

Im Gegensatz dazu konnte in der Regressionsgleichung zur Erklärung des Erdgaseinsatzes im Sub-Sektor Herstellung von Holzschliff, Zellstoff, Papier und Pappe (WZ 17.1), die gegenwärtig aufgrund der skizzierten Restrechnung im Rahmen des Modelllaufs bzw. der Prognose nicht zum Einsatz kommt, der Einfluss des Erdgaspreises berücksichtigt werden (wenn auch kein signifikanter Erklärungsbeitrag vorliegt). Hinzu kommt, dass die Gleichung zur Erklärung des Erdgaseinsatzes zur Produktion von Holzschliff, Zellstoff, Papier und Pappe (EBZ48HZ22), die beobachtete Ex-post-Entwicklung insgesamt deutlich besser erklärt, als dies für den Einsatz der Biomasse der Fall ist.

```
19. LOG(EBZ48HZ22) = 1,51*LOG(VEWE48HZ22) - 0,19*LOG(EBZ48HZ22(-1)) - 0,06*LOG(PE11IN/PEWE48HZ) - 0,11*log(@TREND) + 0,16*D2013 + 418*C p-Werte: 0,00; 0,09; 0,80; 0,01; 0,00; 0,03; R²: 0,91; AR²: 0,87; DW: 1,36; Stützzeitraum: 2004 bis 2021; mit:

EBZ48HZ22: Erdgaseinsatz HZPP, in TJ
VEWE48HZ: Brennstoff- u. Wärmeeinsatz HZPP, in TJ; PE11IN: Preis Erdgas energieintensive Industrie; €/GJ; PEWE48HZ: Preis Brennstoffe und Wärme HZPP, €/GJ; TREND: Trendvariable; D2013: Dummyvariable, 2013=1; C: Absolutglied.
```

Der Anteil der aufgeklärten Varianz liegt in Gleichung 19 mit 0,91 (R²) spürbar über dem Wert, der in der Regressionsgleichung zur Erklärung des Biomasseeinsatzes im Sub-Sektor Herstellung von Holzschliff, Zellstoff, Papier und Pappe erzielt werden konnte (R²: 0,80 AR²: 0,73).

Löst man das weiterentwickelte Modell alternativ, indem man im Sub-Sektor Herstellung von Holzschliff, Zellstoff, Papier und Pappe die Restrechnung vom Energieträger Erdgas auf den Energieträger Biomasse verlagert (bei entsprechendem Austausch der beiden Regressionsgleichungen), so zeigt sich bereits eine spürbare Verbesserung der Prognose für das von Sondereffekten geprägte Jahr 2022. Unter diesen Prämissen würde sich der Erdgaseinsatz

im Papiergewerbe auf ca. 62 PJ erhöhen, was bezogen auf das Jahr 2022 eine deutliche Verbesserung der Prognosegenauigkeit mit sich bringen würde.¹²³

Die in den vorangehenden Abschnitten gewonnenen Erkenntnisse können in der vorliegenden Arbeit allerdings nicht mehr berücksichtigt werden, da

- eine Modifikation des Modells (Veränderung einzelner Regressionsgleichungen, Verlagerung der Restrechnung auf einen anderen Energieträger usw.) im laufenden Forschungsvorhaben zum einen aufgrund des vorgegebenen zeitlichen Projektablaufs (Erstellung des erweiterten Modells, Publikation des ersten Zwischenberichtes, empirische Vergleiche der Modellergebnisse alt und neu mit der endgültigen Energiebilanz 2022, Endbericht) nicht möglich ist und zum anderen
- ► Veränderungen des Modellverfahrens und der damit verbundenen Frühschätzung für das Berichtsjahr 2022 die Konsistenz des vorliegenden Gesamtberichts gefährden sowie die Interpretation der hier angestrebten Vergleiche erheblich erschweren würde.

Zu betonen ist in diesem Zusammenhang, dass die skizzierten Verbesserungspotenziale bzw. Feinanpassungen des Modells jederzeit ohne größeren Aufwand (z.B. im Rahmen der in jährlichem Abstand vorgesehenen Aktualisierung der Modellinstrumentariums, welches allein aufgrund der Erweiterung des Stützzeitraums bis zum Jahr 2022 eine Neuschätzung und damit verbundene kritische Prüfung sämtlicher Regressionsgleichungen erfordert) rechtzeitig zur Frühschätzung der Energiebilanz Deutschland 2024 im Februar 2025 umgesetzt wird.

Fasst man die Prognoseergebnisse nur für die drei neu modellierten, energieintensiven Sektoren (Papiergewerbe, Verarbeitung von Steinen und Erden sowie Metallerzeugung) zusammen und stellt sie der endgültigen Energiebilanz 2022 sowie den bisherigen Befunden gegenüber, so ergibt sich folgendes Bild:

- ▶ Die Schätzung des gesamten fossilen Endenergieverbrauchs der drei neu modellierten Sektoren verändert sich gegenüber der Prognose mit dem Prototyp des Modells nur geringfügig. Die Frühschätzung mit dem erweiterten Modell (Variante C) unterschätzt den wahren Wert laut endgültiger Energiebilanz Deutschland (Datenstand: 31. Januar 2023) um 2,3 %. Zum Vergleich: Mit dem Prototyp des Modells zur Erklärung des Endenergieverbrauchs der Industrie (Variante B) wurde der endgültige Statistikwert laut Energiebilanz Deutschland noch um 1,7 % unterschätzt.
- ▶ Aufgrund der skizzierten herausragenden Bedeutung der Produktionsentwicklung im Sektor Metallerzeugung (nach den einzelnen Produktionsstufen Sintererzeugung, Hochofen bzw. Roheisenerzeugung, Oxygenstahl- und Elektrostahlerzeugung sowie Walzstahlerzeugung) für die Entwicklung des fossilen Endenergieverbrauchs nach Energieträgern spiegeln sich die Verbesserungen bei der Erfassung des "fuel switches", die vor allem durch die Aufgliederung des Sektors Metallerzeugung nach Prozessstufen erreicht werden konnten, deutlich sichtbar im Gesamtresultat bzw. in der Prognosegenauigkeit der drei neu modellierten Wirtschaftszweige wider (vgl. Tabelle 30).

¹²³ Darüber hinaus haben die Analysen im Rahmen dieser Vergleiche gezeigt, dass die aktuelle Prognose den Verbrauch von Fernwärme im Sub-Sektor Herstellung von Holzschliff, Zellstoff, Papier und Pappe insbesondere im Jahr 2022 überschätzt. Dies hat zur Folge, dass der fossile Endenergieverbrauch (als Restgröße zwischen dem gesamten Brennstoff- und Wärmeeinsatz des Sektors abzüglich der erneuerbaren Energieträger und der Wärme) tendenziell unterschätzt wird. Um das angesprochene Problem zu lösen, ist eine geringe Modifikation der Regressionsgleichung zur Erklärung des Fernwärmeverbrauchs in der Papierproduktion (WZ 17.1), etwa durch Berücksichtigung verzögerter Preisvariablen und eine damit verbundene Verringerung der Energiepreiselastizität bzw. reaktion angezeigt.

Die neuen Ergebnisse bestätigen folglich im Hinblick auf die Prognose des gesamten fossilen, nicht erneuerbaren Endenergieverbrauchs frühere Resultate. Die Feststellung, dass die Prognose des gesamten fossilen, nicht erneuerbaren Brennstoffeinsatz (erweitertes Modell, Variante C) nur geringfügig von den Befunden, die mit Hilfe des Vorgängermodells errechnet wurden, abweichen, mag zunächst als überraschend empfunden werden. Daraus darf aber nicht geschlossen werden, dass die erweiterte Modellversion (Variante C) keine Weiterentwicklung bzw. Verbesserung der Prognoseeigenschaften mit sich bringt. Das Gegenteil ist der Fall: Vielmehr leistet die Weiterentwicklung des Modells zur Erklärung des industriellen Endenergieverbrauchs (unter Beibehaltung der in der Vorgängerprognose bereits erreichten hohen Genauigkeit, bezogen auf den gesamten fossilen, nicht erneuerbaren Brennstoffeinsatz) eine spürbar verbesserte Schätzung des Energieträger- bzw. Brennstoffmix.

Tabelle 30: Fossiler Endenergieverbrauch der auf der Ebene von Sub-Sektoren neu modellierten Industriezweige¹ nach Frühschätzung und endgültiger Energiebilanz Deutschland 2022

2022, nach Energieträgern, in Petajoule und Abweichungen in %

	endgültige Energiebilanz 2022	Frühschätzung 2022 (Variante C)	Frühschätzung 2022 (Variante B)
	in PJ	in PJ	in PJ
Steinkohle	279	303	341
Braunkohle	58	54	62
Mineralöl	16	12	15
Gase	258	232	187
Sonstige nicht-erneu.	43	38	38
Summe EEV, fossil	654	639	643
		Abweich. endg. EB, in PJ	Abweich. endg. EB, in PJ
Steinkohle		24,0	62,0
Braunkohle		-4,0	4,0
Mineralöl		-4,0	-1,0
Gase		-26,0	-71,0
Sonstige nicht-erneu.		-5,0	-5,0
Summe EEV, fossil		-15,0	-11,0
		Abweich. endg. EB, in %	Abweich. endg. EB, in %
Steinkohle		8,6	22,2
Braunkohle		-6,9	6,9
Mineralöl		-25,0	-6,3
Gase		-10,1	-27,5
Sonstige nicht-erneu.		-11,6	-11,6

	endgültige Energiebilanz 2022	Frühschätzung 2022 (Variante C)	Frühschätzung 2022 (Variante B)
Summe EEV, fossil		-2,3	-1,7
		Absol. Abweich. endg. EB ²	Absol. Abweich. endg. EB ²
Abweichungen in PJ		63,0	143,0
Abweichungen in %		9,6	21,9

Quelle: Eigene Berechnungen EEFA und ZSW. Variante B: alte Methode inkl. Datenrevision der Energiebilanz Deutschland; Variante C: neue Methode inkl. Datenrevision der Energiebilanz Deutschland. ¹Papiergewerbe, Verarbeitung von Steinen und Erden sowie Metallerzeugung. ²Summe der absoluten, betragsmäßigen Abweichungen der disaggregierten Energieträger.

Vergleicht man die Schätzergebnisse anhand der energiebedingten CO_2 -Emissionen¹²⁴, die mit dem fossilen Brennstoffeinsatz der detailliert modellierten energieintensiven Branchen verbunden ist, wird der Einfluss der Neukonzeption (Variante C) auf den "fuel switch" noch sichtbarer. In der ursprünglichen Version (Variante B, Prototyp) schätzte das Industriemodell in den drei hier betrachteten Industriesektoren einen CO_2 -Ausstoß in Höhe von 53,3 Mio. t (Abgrenzung der Energiebilanz Deutschland, d.h. ohne den Einsatz von Brennstoffen zur Erzeugung von elektrischem Strom in industriellen Stromerzeugungsanlagen), wobei sich in den beiden Sektoren Papiergewerbe und Verarbeitung von Steinen und Erden eine Unterschätzung in der Größenordnung von 0,6 bzw. 0,3 Mio. t CO_2 , in der Metallerzeugung hingegen eine Überschätzung von 2,8 Mio. t CO_2 im Vergleich zum beobachteten Emissionsniveau ergab. Insgesamt folgte aus alledem für die drei hier betrachteten Branchen eine Überschätzung der tatsächlichen Emissionen in Höhe von rund 1,9 Mio. t CO_2 .

Tabelle 31: Energiebedingte CO₂-Emissionen der auf der Ebene von Sub-Sektoren neu modellierten Industriezweige¹ nach Frühschätzung und endgültiger Energiebilanz Deutschland 2022

2022, in 1.000 t und Abweichungen in %

	endgültige Energiebilanz 2022	Frühschätzung 2022 (Variante C)	Frühschätzung 2022 (Variante B)
	in 1.000 Tonnen	in 1.000 Tonnen	in 1.000 Tonnen
Papiergewerbe	4764	3680	4184
Ver. Steine u. Erden	7646	7938	7383
Metallerzeugung	38963	39655	41722
Insgesamt	51373	51273	53289
		Abweichung zu den CO ₂ - Emissionen It. endgültiger Energiebilanz, in 1.000 t	Abweichung zu den CO ₂ - Emissionen It. endgültiger Energiebilanz, in 1.000 t
Papiergewerbe		-1084	-580

¹²⁴ An dieser Stelle ist der Hinweis von Bedeutung, dass die Berechnung der energiebedingten CO₂-Emissionen aus den vorliegenden Frühschätzungen (Variante B und C) sowie der endgültigen Energiebilanz Deutschland eigene Berechnungen darstellen und keineswegs der Ermittlung absoluter Kohlendioxid-Emissionsmengen dient. Vielmehr dienen die CO₂-Emissionen auf der Ebene ausgewählter Aggregate hier als Gewichtungsschema bzw. als zusätzlicher Indikator zur besseren Einordnung der Schätzergebnisse anhand einer Kennziffer.

	endgültige Energiebilanz 2022	Frühschätzung 2022 (Variante C)	Frühschätzung 2022 (Variante B)
Ver. Steine u. Erden		292	-263
Metallerzeugung		692	2759
Insgesamt		-100	1916
		Abweichung zu den CO ₂ - Emissionen lt. endgültiger Energiebilanz, in %	Abweichung zu den CO ₂ - Emissionen lt. endgültiger Energiebilanz, in %
Papiergewerbe		-22,8	-12,2
Ver. Steine u. Erden		3,8	-3,4
Metallerzeugung		1,8	7,1
Insgesamt		-0,2	3,7
		Absolute Abweichung zu den CO ₂ -Emissionen lt. endgültiger Energiebilanz ²	Absolute Abweichung zu den CO ₂ -Emissionen lt. endgültiger Energiebilanz ²
Abweichungen in PJ		2068	3602
Abweichungen in %		4,0	7,0

Quelle: Eigene Berechnungen EEFA und ZSW. Variante B: alte Methode inkl. Datenrevision der Energiebilanz Deutschland; Variante C: neue Methode inkl. Datenrevision der Energiebilanz Deutschland. ¹Papiergewerbe, Verarbeitung von Steinen und Erden sowie Metallerzeugung. ²Summe der absoluten, betragsmäßigen Abweichungen der disaggregierten Energieträger.

Die erweiterte Modellversion (Variante C, inkl. Sub-Sektoren) unterschätzt die aus der endgültigen Energiebilanz Deutschland (Datenstand: 31. Januar 2024) abgeleiteten energiebedingten CO_2 -Emissionen hingegen um 0,1 Mio. t, so dass die Abweichung von +3,7 % auf -0,2 % reduziert werden konnte (vgl. Tabelle 31). Auch unter der Prämisse, dass man eine deutliche Verbesserung der Prognosegenauigkeit im Sektor Papiergewerbe (derzeit Unterschätzung der energiebedingten CO_2 -Emissionen um etwa 1 Mio. t) auf ein Fehlerniveau unter 5 % unterstellt, ergibt sich in der Summe über alle drei Branchen rein rechnerisch weiterhin eine Reduktion der Abweichungen im Vergleich zu den beobachteten CO_2 -Emissionen laut endgültiger Energiebilanz Deutschland von 3,7 % (altes Modell) auf 1,5 % (neues Modell), was einer absoluten Differenz von knapp 0,8 Mio. t CO_2 entspräche.

Fasst man die Prognoseergebnisse (fossiler, nicht erneuerbarer Endenergieverbrauch) für die gesamte Industrie (EBZ 60) zusammen, zeigt sich erwartungsgemäß wiederum ein ähnliches (leicht abgeschwächtes) Bild, wie es für die ausgewählten, energieintensiven Wirtschaftszweige, die in der erweiterten Modellvariante auf der Ebene von Sub-Sektoren neu modelliert wurden, bereits skizziert wurde. Die Prognose des gesamten fossilen Endenergieverbrauchs der Industrie unterschätzt den Wert der endgültigen Energiebilanz Deutschland im Jahr 2022 um 2,0 %; in der alten, einfacheren Prototyp-Version des Industriemodells (ohne Modellierung der energieintensiven Sub-Sektoren) lag die Schätzung für 2022 auf einem ähnlichen Niveau (-1,9 % im Vergleich zur endgültigen Energiebilanz 2022).

Spürbar verändert hat sich hingegen die Zusammensetzung des Energieträgermix. Insbesondere bei den Gasen und Steinkohlen konnte durch die verbesserte Berücksichtigung des intrasektoralen Strukturwandels eine signifikante Erhöhung der Prognosegenauigkeit (zumindest für 2022) erreicht werden. So konnte die Abweichung der Schätzung beim Verbrauch von Steinkohlen in der Industrie im Vergleich zur endgültigen Energiebilanz 2022 mit Hilfe des erweiterten Modells (Variante C) auf 7,1 % bzw. 22 PJ reduziert werden (zuvor, mit dem Prototyp des Modells prognostiziert, betrug diese Differenz noch 19,1 % bzw. 59 PJ). Der Endenergieverbrauch von Gasen in der Industrie insgesamt weicht nach der neuen Schätzung nur noch um -3 PJ bzw. -0,4 % vom endgültigen Wert der Energiebilanz Deutschland für das Jahr 2022 ab (die alte Modellversion unterschätzte den statistischen Wert der endgültigen Energiebilanz noch um 49 PJ bzw. rund 6 %).

Tabelle 32 fasst die Schätzergebnisse der beiden hier betrachteten Modellversionen inkl. den absoluten sowie relativen Abweichungen im Vergleich zur endgültigen Energiebilanz Deutschland 2022 (Datenstand: 31. Januar 2023) für alle Energieträger detailliert zusammen.

Tabelle 32: Fossiler Endenergieverbrauch der Industrie (EBZ 60) nach Frühschätzung und endgültiger Energiebilanz Deutschland 2022

2022, nach Energieträgern, in Petajoule und Abweichungen in %

	endgültige Energiebilanz 2022	Frühschätzung 2022 (Variante C)	Frühschätzung 2022 (Variante B)
	in PJ	in PJ	in PJ
Steinkohle	309	331	368
Braunkohle	70	66	73
Mineralöl	112	83	87
Gase	813	810	764
Sonstige nicht-erneu.	81	67	67
Summe EEV, fossil	1385	1357	1359
		Abweich. endg. EB, in PJ	Abweich. endg. EB, in PJ
Steinkohle		22,0	59,0
Braunkohle		-4,0	3,0
Mineralöl		-29,0	-25,0
Gase		-3,0	-49,0
Sonstige nicht-erneu.		-14,0	-14,0
Summe EEV, fossil		-28,0	-26,0
		Abweich. endg. EB, in %	Abweich. endg. EB, in %
Steinkohle		7,1	19,1
Braunkohle		-5,7	4,3
Mineralöl		-25,9	-22,3
Gase		-0,4	-6,0
Sonstige nicht-erneu.		0,0	0,0

	endgültige Energiebilanz 2022	Frühschätzung 2022 (Variante C)	Frühschätzung 2022 (Variante B)
Summe EEV, fossil		-2,0	-1,9
		Absol. Abweich. endg. EB ¹	Absol. Abweich. endg. EB ¹
Abweichungen in PJ		72,0	150,0
Abweichungen in %		5,2	10,8

Quelle: Eigene Berechnungen EEFA und ZSW. Variante B: alte Methode inkl. Datenrevision der Energiebilanz Deutschland; Variante C: neue Methode inkl. Datenrevision der Energiebilanz Deutschland. ¹Summe der absoluten, betragsmäßigen Abweichungen der disaggregierten Energieträger.

6.2.2 Gesamter fossiler Endenergieverbrauch

Auch die Gegenüberstellung der aktualisierten Prognose bzw. Frühschätzung für das Berichtsjahr 2022 sowie der früheren Resultate auf der Ebene des gesamten fossilen, nicht erneuerbaren Endenergieverbrauchs (vgl. Tabelle 33) mit den Werten der endgültigen Energiebilanz Deutschland lässt insgesamt Verbesserungen erkennen, die sich allerdings insbesondere in einer exakteren Prognose der Zusammensetzung des Brennstoffmix widerspiegeln.

Tabelle 33: Gesamter fossiler Endenergieverbrauch nach Frühschätzung und endgültiger Energiebilanz Deutschland 2022

2022, nach Energieträgern, in Petajoule und Abweichungen in %

	endgültige Energiebilanz 2022	Frühschätzung 2022 (Variante C)	Frühschätzung 2022 (Variante B)
	in PJ	in PJ	in PJ
Steinkohle	311	333	370
Braunkohle	81	75	83
Mineralöl	3076	3127	3130
Gase	2094	2080	2034
Sonstige nicht-erneu.	81	67	67
Summe EEV, fossil	5643	5682	5684
		Abweich. endg. EB, in PJ	Abweich. endg. EB, in PJ
Steinkohle		22,0	59,0
Braunkohle		-6,0	2,0
Mineralöl		51,0	54,0
Gase		-14,0	-60,0
Sonstige nicht-erneu.		-14,0	-14,0
Summe EEV, fossil		39,0	41,0
		Abweich. endg. EB, in %	Abweich. endg. EB, in %

	endgültige Energiebilanz 2022	Frühschätzung 2022 (Variante C)	Frühschätzung 2022 (Variante B)
Steinkohle		7,1	19,0
Braunkohle		-7,4	2,5
Mineralöl		1,7	1,8
Gase		-0,7	-2,9
Sonstige nicht-erneu.		-17,3	-17,3
Summe EEV, fossil		0,7	0,7
		Absol. Abweich. endg. EB ¹	Absol. Abweich. endg. EB ¹
Abweichungen in PJ		107,0	189,0
Abweichungen in %		1,9	3,3

Quelle: Eigene Berechnungen EEFA und ZSW. Variante B: alte Methode inkl. Datenrevision der Energiebilanz Deutschland; Variante C: neue Methode inkl. Datenrevision der Energiebilanz Deutschland. ¹Summe der absoluten, betragsmäßigen Abweichungen der disaggregierten Energieträger.

Die Weiterentwicklungen des Modells führen, bezogen auf den gesamten fossilen Endenergieverbrauch (ohne erneuerbare Brennstoffe), nur zu geringen Verschiebungen. Die Differenzen der Frühschätzung im Vergleich zur endgültigen Energiebilanz 2022 konnten gegenüber der alten Modellversion (Variante B) um 2 PJ verringert werden. So positiv diese Veränderung zu bewerten ist, so verharrt doch die relative Abweichung zwischen dem Prognoseresultat nach der weiterentwickelten Modellversion (Variante C) und der endgültigen Energiebilanz weiterhin auf dem Niveau von plus 0,7 %.

Innerhalb des Brennstoffmix ist, vor dem Hintergrund der zuvor für den fossilen, nicht erneuerbaren Brennstoffeinsatz der energieintensiven Branchen/Industrie insgesamt skizzierten Befunde wenig überraschend, eine gewisse Veränderung bzw. Verbesserung erkennbar. Insbesondere die Steinkohlen und die Gase, in geringerem Umfang auch die Mineralöle, werden unter Verwendung des weiterentwickelten Modells (Variante C) besser abgebildet.

Zusammenfassend kann festgehalten werden, dass die betragsmäßigen absoluten und relativen Abweichungen zur endgültigen Energiebilanz 2022 für die Prognoseergebnisse, die auf der Basis des erweiterten Modells (Variante C) berechnet wurden, in der Größenordnung von 107 PJ bzw. 1,9 % liegen. Sie fallen deutlich geringer aus als die entsprechenden betragsmäßigen Differenzen, die im Vergleich zwischen der endgültigen Energiebilanz 2022 und den Prognoseresultaten unter Zuhilfenahme des Prototyps des Modells zur Erklärung des industriellen Endenergieverbrauchs (Variante B) zustande gekommen sind (189 PJ bzw. 3,3 %).

Zusätzliche Hinweise über die Veränderungen im Zusammenhang mit der Weiterentwicklung des Modells zur Frühschätzung der Energiebilanz geben wiederum die energiebedingten CO₂-Emissionen, die sich aus den vorliegenden Varianten der geschätzten Bilanzen (Varianten B und C) im Vergleich zur endgültigen Energiebilanz ergeben. Im Jahr 2022 lagen die direkten energiebedingten CO₂-Emissionen aus dem Einsatz fossiler Brennstoffe in den Sektoren des Endenergieverbrauchs (Industrie, Verkehr, Private Haushalte und Industrie) nach der ursprünglichen Frühschätzung (Variante B) bei 388,3 Mio. t. Nach der aktuellen Frühschätzung mit dem erweiterten Modellverfahren betrugen die direkten CO₂-Emissionen hingegen

386,2 Mio. t, so dass die Schätzung vom beobachteten Emissionsniveau, welches sich aus der endgültigen Energiebilanz 2022 (Datenstand 31.1.2024) ergibt (382,1 Mio. t), nur noch um 4,1 Mio. t bzw. rund 1,1 % abweicht. Zum Vergleich: Aus der Frühschätzung nach Variante B errechnete sich ein Emissionsniveau, welches noch um 6,2 Mio. t bzw. 1,6 % vom beobachteten CO_2 -Ausstoß abgewichen ist. Betrachtet man die absoluten Abweichungen, ergibt sich ein ähnliches Bild: Variante B weicht um 4,1 % vom endgültigen Datenstand ab, Variante C um 2,9 %.

Die direkt mit dem fossilen Brennstoffeinsatz der Endenergiesektoren verbundenen CO₂-Emissionen (die hier als Indikator zur Evaluierung der Prognose verwendet wurden) erfassen ganz überwiegend die Weiterentwicklungen des Modells zur Frühschätzung der Energiebilanz Deutschland, die innerhalb des Prognoseverfahrens zur Erklärung des Endenergieverbrauchs vorgenommen wurden. Erweitert man den Betrachtungshorizont und bezieht die Kohlendioxid-Emissionen der Umwandlungsbereiche (Strom- und Wärmeerzeugung in Kraftwerken (EBZ 11, 12, 15 und 16), Energieverbrauch in den Umwandlungsbereichen (EBZ 40)) in die Analyse ein, ergibt sich folgendes Bild:

Die energiebedingten CO₂-Emissionen (direkt und indirekt) belaufen sich danach im Jahr 2022 (laut endgültiger Energiebilanz Deutschland) in etwa auf eine Größenordnung von 628 Mio. t. Berechnet man den gesamten energiebedingten CO₂-Ausstoß unter Beibehaltung der methodischen Rahmenbedingungen und verwendeten Emissionsfaktoren hingegen aus der Frühschätzung der Energiebilanz, die mit Hilfe des weiterentwickelten Verfahrens prognostiziert wurde, wären in Deutschland rund 632,8 Mio. t CO2 im Zusammenhang mit der Verbrennung fossiler Energieträger freigesetzt worden. Aus der bisherigen Frühschätzung (Variante B), errechnete sich noch ein Emissionsniveau von 636,7 Mio. t CO₂. All dies zeigt, dass auch unter Einbeziehung der Weiterentwicklungen des Modells zur Frühschätzung der Bilanz, die innerhalb der Umwandlungsbereiche vorgenommen wurden (vgl. die Kapitel 4), gemessen am Indikator "energiebedingter CO₂-Ausstoß" eine Erhöhung der Prognosegenauigkeit erreicht wurde. Nach der neuen Schätzung (Variante C) weichen die gesamten CO₂-Emissionen nur noch um 0,6 % (laut der Vorgängerschätzung, Variante B, betrug diese Differenz noch 1,4 % bzw. 8,7 Mio. t CO₂) vom Berechnungsresultat ab, welches sich aus der endgültigen Energiebilanz Deutschland für das Berichtsjahr 2022 ergibt. Auch die absoluten Abweichungen (der direkten und indirekten energiebedingten CO₂-Emissionen) fallen nach den Berechnungen des weiterentwickelten Modells bzw. Schätzverfahrens (Variante C) geringer aus als die im Rahmen der ursprünglichen Schätzung (Variante B) ermittelten Emissionen. Variante B weicht um 2,3 % vom endgültigen Datenstand ab, Variante C lediglich um 1,9 %.

6.2.3 Umwandlungseinsatz Fernheizwerke

Der Umwandlungseinsatz in Fernheizwerken wird in Energiebilanzzeile 16 abgebildet und hat einen Anteil von nur 1,1 % am gesamten Primärenergieverbrauch im Jahr 2022 (Datenstand: endgültige Energiebilanz Deutschland vom 31. Januar 2024). Mit 53,7 % dominiert Erdgas den gesamten Brennstoffeinsatz der Fernheizwerke, gefolgt von der Biomasse (17,5 %, ist nicht Teil der vorliegenden Analysen) und den Sonstigen Energieträgern (12,2 %).

Bei der Interpretation der Befunde und der Einordnung des Schätzverfahrens im Rahmen des Hybridansatzes ist jedoch ein Aspekt von besonderer Bedeutung, der in Bezug auf die gesamte Energiebilanz Deutschland nur in dieser Zeile der Energiebilanz auftritt: die empirische Datenlage in Kombination mit der spezifischen Sektorenabgrenzung der Fernheizwerke führen im Rahmen des Schätzverfahrens zu einer Vermischung unterjährig verfügbarer Monatsdaten (Statistik 066, Energieeinsatz zur ungekoppelten Wärmeerzeugung in Heizkraftwerken der

allgemeinen Versorgung) auf der einen Seite und Jahresdaten (Statistik 064, Energieeinsatz zur ungekoppelten Wärmeerzeugung in reinen Heizwerken) auf der anderen Seite.

All dies zieht nicht nur im Rahmen der regulären Erstellung der Frühschätzung eine Sonderbehandlung nach sich¹²⁵, sondern es liegt zugleich auf der Hand, dass diese spezifische Ausgangslage auch im Zusammenhang mit den empirischen Vergleichen der Frühschätzungen mit der endgültigen Energiebilanz Deutschland beachtet werden müsste. Allerdings sind Vergleiche auf einer Gliederungsebene unterhalb der Aggregate, die die Energiebilanz Deutschland ausweist, nicht vorgesehen, so dass eine isolierte Betrachtung der gegebenenfalls unterschiedlichen Entwicklungen des fossilen, nicht erneuerbaren Brennstoffeinsatzes in Heizkraft- und Heizwerken nicht in Frage kommen.

Ungeachtet dessen dürften sich Verbesserungen, die mit der Weiterentwicklung der Frühschätzung in den genannten Teilbereichen verbunden sind, letztlich auch in den Befunden bzw. geschätzten Daten der Energiebilanzzeile 16 widerspiegeln und die Differenzen zur endgültigen Energiebilanz reduzieren.

Vergleicht man vor diesem Hintergrund die Prognoseergebnisse der beiden Frühschätzungen (Variante B und C) mit den Befunden der endgültigen Energiebilanz 2022, ergibt sich zusammenfassend das in Tabelle 34 dargestellte Bild. Insgesamt fällt auf, dass die Schätzung der Heizwerke mittels des beschriebenen ökonometrischen Verfahrens im Hinblick auf das Gesamtergebnis für die fossilen Energieträger (EBZ 16) eine Verbesserung nach sich zieht. Die Abweichung gegenüber den endgültigen Daten verringert sich im Jahr 2022 von -5,8 % (Variante B) auf 1,0 % (Variante C). Das ökonometrisch gestützte Modell zur Erklärung des Brennstoffeinsatzes der Heizwerke unterschätzt den fossilen, nicht erneuerbaren Brennstoffeinsatz im Jahr 2022 in der weiterentwickelten Version nur noch um 1,0 PJ.

Darüber hinaus sind im Hinblick auf den Brennstoffmix verglichen mit der bisherigen Frühschätzung Verschiebungen in beide Richtungen zu beobachten. Während der Einsatz von Stein- und Braunkohlen in den Varianten B und C der Frühschätzung identisch geschätzt wurde, ergibt sich nach dem neuen Modell zur Erklärung des fossilen Brennstoffeinsatzes in Heizwerken (Variante C) nunmehr eine leicht geringere Unterschätzung des Einsatzes von Mineralölen sowie für die sonstigen fossilen Energieträger bezogen auf den endgültigen Wert laut Energiebilanz 2022 sogar eine Punktlandung. Bei den Gasen (fast ausschließlich Erdgas) resultiert hingegen aus der Verwendung des weiterentwickelten Modells zur Erklärung des Brennstoffeinsatzes der Heizwerke eine Verschlechterung der Prognosegenauigkeit von -1,4 % (Variante B) auf 5,6 % (Variante C). Aufgrund der unterschiedlichen Vorzeichen heben sich die veränderten Abweichungen jedoch zum Teil gegenseitig nahezu auf.

Tabelle 34: Fossiler Umwandlungseinsatz Fernheizwerke (EBZ 16) nach Frühschätzung und endgültiger Energiebilanz Deutschland 2022

2022, in Petajou	le und Al	bweichungen	in %
------------------	-----------	-------------	------

	endgültige Energiebilanz 2022	Frühschätzung 2022 (Variante C)	Frühschätzung 2022 (Variante B)	
	in PJ	in PJ	in PJ	
Steinkohle	4	3		3

¹²⁵ Die Sonderbehandlung liegt darin, dass innerhalb einer Bilanzzeile verschiedene Schätzverfahren zum Einsatz kommen. Der fossile Brennstoffeinsatz der Heizkraftwerke wird ausgehend von den bereits verfügbaren Monatsdaten berechnet bzw. prognostiziert, wohingegen der Brennstoffeinsatz zur Erzeugung von Fernwärme in Heizwerken auf der Basis von Jahresdaten im weiterentwickelten Konzept zum Teil ökonometrisch geschätzt wird.

	endgültige Energiebilanz 2022	Frühschätzung 2022 (Variante C)	Frühschätzung 2022 (Variante B)
Braunkohle	2	2	2
Mineralöl	10	8	7
Gase	71	75	70
Sonstige nicht-erneu.	16	16	15
Summe, fossil	103	104	97
		Abweich. endg. EB, in PJ	Abweich. endg. EB, in PJ
Steinkohle		-1,0	-1,0
Braunkohle		0,0	0,0
Mineralöl		-2,0	-3,0
Gase		4,0	-1,0
Sonstige nicht-erneu.		0,0	-1,0
Summe, fossil		1,0	-6,0
		Abweich. endg. EB, in %	Abweich. endg. EB, in %
Steinkohle		-25,0	-25,0
Braunkohle		0,0	0,0
Mineralöl		-20,0	-30,0
Gase		5,6	-1,4
Sonstige nicht-erneu.		0,0	-6,3
Summe, fossil		1,0	-5,8
		Absol. Abweich. endg. EB ¹	Absol. Abweich. endg. EB ¹
Abweichungen in PJ		7,0	6,0
Abweichungen in %		6,8	5,8

Quelle: Eigene Berechnungen EEFA und ZSW. Variante B: alte Methode inkl. Datenrevision der Energiebilanz Deutschland; Variante C: neue Methode inkl. Datenrevision der Energiebilanz Deutschland. ¹Summe der absoluten, betragsmäßigen Abweichungen der disaggregierten Energieträger.

Im Hinblick auf die in dieser Studie prioritär herangezogene Messzahl (absolute betragsmäßige Abweichung) zur Beurteilung der Prognosegenauigkeit ergibt sich allerdings zumindest für das Prognosejahr 2022 beim Übergang auf Variante C eine leichte Verschlechterung der Schätzgüte (vgl. Tabelle 34).

6.2.4 Umwandlungseinsatz Wärmekraftwerke

Auf den gesamten Umwandlungseinsatz der Wärmekraftwerke (EBZ 11) entfällt mit einem Anteil von gut 17 % am Primärenergieverbrauch ein bedeutender Teil des Energieverbrauchs in Deutschland. Aufgrund der Tatsache, dass die Kraftwerke der allgemeinen Versorgung rund

75 % ihres Umwandlungseinsatzes über die Verbrennung von Stein- und Braunkohle decken, hat dieser Sektor zudem auch eine hohe CO₂-Relevanz.¹²⁶

Zur Verbesserung der Schätzung der Stromerzeugung aus Kohle sowie des damit verbundenen Einsatzes von Kohle in Kraftwerken der Allgemeinen Versorgung wurde die bisherige Schätzmethode vor diesem Hintergrund durch die Verwendung bereits zu einem früheren Zeitpunkt verfügbarer Daten von ENTSO-E ergänzt bzw. verbessert. Statistische Monatsdaten für diesen Sektor liegen aus den amtlichen Erhebungen zum Zeitpunkt der Frühschätzung bis Oktober vor, die Daten von ENTSO-E bieten die Möglichkeit (für die Energieträger Stein- und Braunkohle, vgl. hierzu Kapitel 5.1.2) den Brennstoffeinsatz bzw. Kohleeinsatz für die beiden fehlenden Monate mit Hilfe der vorliegenden Aktivitätsgrößen (Stromerzeugung aus Stein- und Braunkohle) fortzuschreiben, anstatt die fehlenden Daten auf Basis einfacher statistischer Fortschreibungsmethoden (bisheriges Verfahren) zu ergänzen.

Im Ergebnis konnten durch die damit verbundene Erhöhung der statistischen Evidenz leichte Verbesserungen der Prognosegenauigkeit für die Kohle insgesamt erreicht werden (vgl. Tabelle 35). Die Schätzung für die Steinkohle hat sich nach den Berechnungen mit dem neuen Verfahren (Variante C) zwar um 1 PJ bzw. 0,2 % gegenüber dem alten Verfahren (Variante B) geringfügig verschlechtert, die Abweichungen beim Brennstoffeinsatz von Braunkohle in Wärmekraftwerken zu den Befunden der endgültigen Energiebilanz Deutschland 2022 konnte hingegen um 6 PJ (entspricht einer Reduktion der relativen Abweichung von 1,2 auf -0,6 %) verringert werden.

In der Summe über den gesamten Sektor Wärmekraftwerke (EBZ 11) betrachtet hat sich die Frühschätzung des fossilen Brennstoffeinsatzes (ohne erneuerbare Brennstoffe) verglichen mit den Daten der endgültigen Energiebilanz allerdings verschlechtert. Der Grund hierfür ist, dass sich die positiven und negativen Schätzfehler bzw. Abweichungen zur endgültigen Bilanz 2022 bei Anwendung der alten Methode (Variante B) weitgehend aufheben bzw. kompensieren. Der Überschätzung bei der Braunkohle (12 PJ) steht bei den Gasen in absoluter Betrachtung eine nahezu gleich große Unterschätzung entgegen, sodass sich im Gesamtergebnis nur noch eine Abweichung zur endgültigen Energiebilanz in Höhe von 1 PJ bzw. -0,1 % niederschlägt. In der Frühschätzung nach dem neuen weiterentwickelten Verfahren (Variante C) summieren sich hingegen die negativen Abweichungen, sodass die Frühschätzung des fossilen Brennstoffeinsatzes um insgesamt 20 PJ bzw. 1,1 % von den Werten abweicht, die die endgültige Energiebilanz bilanziert.

Tabelle 35: Fossiler Umwandlungseinsatz Wärmekraftwerke (EBZ 11) nach Frühschätzung und endgültiger Energiebilanz Deutschland 2022

2022 in	Petaioule	und	Ahweich	nungen	in	%
2022. III	retaiouie	unu	ADWEIL	IUIIECII	111	70

	endgültige Energiebilanz 2022	Frühschätzung 2022 (Variante C)	Frühschätzung 2022 (Variante B)	
	in PJ	in PJ	in PJ	
Steinkohle	504	503	504	
Braunkohle	1020	1014	1032	
Mineralöl	10	10	10	

¹²⁶ Die hohe Bedeutung der Kohle im Umwandlungseinsatz von Kraftwerken ist auch auf die Bewertungsmethoden zum Umwandlungseinsatz erneuerbarer Energien zurückzuführen (der Einsatz wird mit einem Wirkungsgrad von 100 % bewertet). An der Stromerzeugung erreichen Stein- und Braunkohle im Jahr 2022 lediglich einen Anteil von knapp 25 %.

	endgültige Energiebilanz 2022	Frühschätzung 2022 (Variante C)	Frühschätzung 2022 (Variante B)
Gase	301	288	288
Sonstige nicht-erneu.	60	60	60
Summe, fossil	1895	1875	1894
		Abweich. endg. EB, in PJ	Abweich. endg. EB, in PJ
Steinkohle		-1,0	0,0
Braunkohle		-6,0	12,0
Mineralöl		0,0	0,0
Gase		-13,0	-13,0
Sonstige nicht-erneu.		0,0	0,0
Summe, fossil		-20,0	-1,0
		Abweich. endg. EB, in %	Abweich. endg. EB, in %
Steinkohle		-0,2	0,0
Braunkohle		-0,6	1,2
Mineralöl		0,0	0,0
Gase		-4,3	-4,3
Sonstige nicht-erneu.		0,0	0,0
Summe, fossil		-1,1	-0,1
		Absol. Abweich. endg. EB ¹	Absol. Abweich. endg. EB ¹
Abweichungen in PJ		20,0	25,0
Abweichungen in %		1,1	1,3

Quelle: Eigene Berechnungen EEFA und ZSW. Variante B: alte Methode inkl. Datenrevision der Energiebilanz Deutschland; Variante C: neue Methode inkl. Datenrevision der Energiebilanz Deutschland. ¹Summe der absoluten, betragsmäßigen Abweichungen der disaggregierten Energieträger.

Zieht man vor diesem Hintergrund die absoluten Abweichungen als alternativen Maßstab zur Beurteilung der Schätzgenauigkeit heran, ist nach dem weiterentwickelten Verfahren (Variante C) eine Verbesserung gegenüber der alten Variante (Variante B) erkennbar. Die absolute relative Abweichung im Vergleich zu den Daten der endgültigen Energiebilanz Deutschland für das Jahr 2022 reduziert sich in dieser Betrachtung von 1,3 auf 1,1 % (entspricht einer absoluten Verbesserung in der Größenordnung um 5 PJ).

6.2.5 Energieverbrauch im Umwandlungssektor

Im Sektor Energieverbrauch im Umwandlungsbereich (EBZ 33 bis 39, Summe EBZ 40) wurde für die neue Frühschätzung 2022 (Variante C) das weiterentwickelte Schätzverfahren (vgl. Kapitel 4.1) angewendet. Die Ergebnisse dieser Frühschätzung (für die fossilen, nicht

erneuerbaren Energieträger) werden in Tabelle 36 der endgültigen Energiebilanz 2022, sowie der Frühschätzung Variante B (alte Methode, inkl. Revisionen) gegenübergestellt.

Beim Vergleich der Ergebnisse der alten Frühschätzung (Variante B) mit der neuen Frühschätzung (Variante C) im Sektor Energieverbrauch im Umwandlungsbereich ist zu beachten, dass zur Prognose des Energieverbrauchs von Mineralölen das bisherige (alte) Verfahren beibehalten wurde. Auch bei den sonstigen nicht erneuerbaren Energieträgern hat sich in der Schätzmethode keine Änderung gegenüber dem ursprünglich angewendeten Prognoseverfahren ergeben. Aus diesem Grund treten beim Einsatz von Mineralölen sowie sonstigen nicht erneuerbaren Energieträgern auch keine Differenzen zwischen den beiden Schätzvarianten B und C auf.

Die größten Unterschiede zwischen beiden Verfahren beschränken sich demnach auf den Einsatz von Kohlen und Gasen in den Umwandlungsbereichen. Die Gase (bestehend aus Erdgas, Kokerei- und Gichtgas) weisen nach den Berechnungen mit Hilfe des neuen Verfahrens eine (geringfügige) Verbesserung in Bezug auf den Vergleich zur endgültigen Energiebilanz 2022 auf. Die Abweichungen gegenüber der endgültigen Energiebilanz 2022 liegen bei Variante C bei 37 PJ bzw. 40,2 %, fallen damit also um 5 PJ bzw. 6 Prozentpunkte niedriger aus, als dies bei Variante B (42 PJ bzw. 46,3 % Abweichung zur endgültigen Bilanz) der Fall gewesen ist. Allerdings sind die Abweichungen mit über 40 % immer noch sehr hoch. Der Hauptgrund für diese hohe Abweichung nach den Schätzungen beider Varianten (B und C) gegenüber den Daten der endgültigen Energiebilanz 2022 liegt in dem außergewöhnlich hohen Rückgang des Gasverbrauchs (-20 %, bei Erdgas sogar -35 %) der gegenüber dem Jahr 2021 zu beobachten war (und in beiden Modellvarianten nicht repliziert werden konnte).

Eine theoretische Schwäche des ökonometrisch gestützten Erklärungsansatzes für die unter den Sektoren "Energieverbrauch im Umwandlungsbereich" zusammengefassten Branchen ist, dass in den Regressionsgleichungen des weiterentwickelten Modells (vgl. Kapitel 4.1.3) i.d.R. ein plausibler Einfluss der Energiepreise und hier insbesondere des Erdgaspreises empirisch nicht nachgewiesen werden konnte. Die krisenhaften Sonderentwicklungen, die mit der russischen Invasion in die Ukraine seit Februar 2022 eingetreten waren, konnten vor diesem Hintergrund nicht sachgerecht erfasst werden. Infolgedessen konnten auch die drastischen Preiserhöhungen bei Erdgas (die in vielen Branchen der Industrie, des GHD-Sektors und bei privaten Verbrauchern zu einem spürbaren Rückgang des Erdgasverbrauchs beitrug) nicht als Erklärungsgröße oder Indikator für kurzfristige Substitutionsprozesse oder Einsparungen in die Prognose einfließen. Empirisch verfügbare alternative Indikatoren, die den skizzierten Sondereffekt erfassen könnten, konnten nicht ermittelt werden.

Sichtbar sind die Unterschiede zwischen den beiden Schätzergebnissen auch bei der Braunkohle. Lag der Schätzfehler (gegenüber EB 2022) mit der alten Variante noch bei -1,1 PJ bzw. 18,9 %, hat dieser sich auf -0,7 PJ bzw. -11,5 % verbessert.

Insgesamt ist bei den fossilen Energieträgern (ohne erneuerbare Brennstoffe) eine leichte Verringerung der Abweichungen zwischen dem Schätzergebnis, welches mit Hilfe der weiterentwickelten Methode (Variante C) prognostiziert wurde, und der endgültigen Energiebilanz Deutschland erkennbar. Die neue Frühschätzung weicht um 36 PJ bzw. rund 11 % von der endgültigen Energiebilanz 2022 ab; nach der alten Schätzmethode (Variante B) betrug diese Differenz noch rund 42 PJ bzw. 12,6 %.

¹²⁷ Für Mineralöle kann in beiden Varianten auf Monatsdaten zurückgegriffen werden, weshalb die neue Modellvariante an dieser Stelle nicht angewandt wird. Die sonstigen nicht erneuerbaren Energieträger zählen zu den "nicht-schätzbaren Zeitreihen" die weiterhin mit Hilfe einfacher Indikatoren fortgeschrieben werden (vgl. hierzu Kapitel 4.1.3).

Tabelle 36: Fossiler Energieverbrauch im Umwandlungsbereich (EBZ 40) nach Frühschätzung und endgültiger Energiebilanz Deutschland 2022

2022, in Petajoule und Abweichungen in %

	endgültige Energiebilanz 2022	Frühschätzung 2022 (Variante C)	Frühschätzung 2022 (Variante B)
	in PJ	in PJ	in PJ
Steinkohle	0	0	0
Braunkohle	6	5	5
Mineralöl	230	231	231
Gase	91	128	134
Sonstige nicht-erneu.	1	0	0
Summe, fossil	328	364	370
		Abweich. endg. EB, in PJ	Abweich. endg. EB, in PJ
Steinkohle		0,0	0,0
Braunkohle		-0,7	-1,1
Mineralöl		0,8	0,9
Gase		36,7	42,3
Sonstige nicht-erneu.		-0,5	-0,5
Summe, fossil		36,3	41,5
		Abweich. endg. EB, in %	Abweich. endg. EB, in %
Steinkohle		0,0	0,0
Braunkohle		-11,5	-18,9
Mineralöl		0,3	0,4
Gase		40,2	46,3
Sonstige nicht-erneu.		-83,2	-82,0
Summe, fossil		11,0	12,6
		Absol. Abweich. endg. EB ¹	Absol. Abweich. endg. EB ¹
Abweichungen in PJ		38,7	44,8
Abweichungen in %		11,8	13,6

Quelle: Eigene Berechnungen EEFA und ZSW. Variante B: alte Methode inkl. Datenrevision der Energiebilanz Deutschland; Variante C: neue Methode inkl. Datenrevision der Energiebilanz Deutschland. ¹Summe der absoluten, betragsmäßigen Abweichungen der disaggregierten Energieträger.

7 Fazit

Die in dieser Studie vorgestellten Analysen ausgewählter Möglichkeiten zur Weiterentwicklung des Modells zur Frühschätzung der Energiebilanz Deutschland lassen folgende Schlüsse zu:

- Zur Weiterentwicklung der Prognose des Energieverbrauchs der Industrie (differenziert nach Energieträgern und Wirtschafszweigen in der Gliederung der Energiebilanz Deutschland) konnte das bestehende Prototyp-Modell insbesondere durch die zusätzliche Einbeziehung 12 energieintensiver Subsektoren (als Ersatz für Bilanzsektoren "Papiergewerbe" (EBZ 48), Verarbeitung von Steinen und Erden" (EBZ 53) und "Metallerzeugung" (EBZ 54)) formal verbessert werden. Das weiterentwickelte Modell umfasst nun 1.172 Variablen, darunter 972 endogene und 175 exogene Größen. Der Stützzeitraum für die Verhaltensgleichungen wurde bis zum Berichtsjahr 2021 (zum Zeitpunkt der Weiterentwicklung des Modells aktuellste endgültige Energiebilanz Deutschland) erweitert. Das nunmehr vorliegende weiterentwickelte Modell zur Erklärung bzw. Frühschätzung des Endenergieverbrauchs der Industrie (Modellversion 2023) stützt sich auf die revidierte Energiebilanzzeitreihe für Zeiträume zwischen 2003 und 2021, die seit Anfang Dezember 2023 auf der Homepage der AG-Energiebilanzen abrufbar sind.
- ➤ Zur Validierung wurde das aktualisierte, weiterentwickelte Modell zur Erklärung des industriellen Energieverbrauchs diversen Tests unterzogen, darunter eine dynamische Expost-Prognose im Stützzeitraum (2012 bis 2021), ausgewählte Simulationsexperimente zur Prüfung der Reaktionsweise und schließlich eine Ex-ante-Prognose für 2022 (innerhalb des Beobachtungszeitraums jedoch außerhalb des Stützzeitraum) zur Prüfung der Modellstabilität.
- ▶ Insgesamt zeigte sich, dass die mit Hilfe des Modells geschätzten Werte die beobachteten Daten recht gut widerspiegeln. Beispielsweise liegt der Prognosefehler gemessen am MAPE für die Zielgröße gesamter Endenergieverbrauch der Industrie (EBZ60S33) bei 1,08 % (2012 bis 2021). In den einzelnen Energiebilanzsektoren (Energiebilanzzeilen 46 bis 59) variieren die MAPE zwischen 0,84 % und maximal 4,18 %.
- ▶ Auch in den übrigen, in dieser Studie näher beleuchteten Bilanzbereichen (Energieverbrauch in den Umwandlungsbereichen (EBZ 33 bis EBZ 39) sowie im Modul zur Erklärung des Brennstoffeinsatzes der Fernheizwerke (EBZ 16) konnten Weiterentwicklungen der Prognoseverfahren erzielt werden. Insbesondere konnte für die genannten Segmente innerhalb der Frühschätzung aufgezeigt werden, dass die hier vorgestellten, weiterentwickelten Schätzverfahren eine höhere Anpassungsgüte an die beobachtete Vergangenheitsentwicklung aufweisen als die bislang eingesetzten Erklärungsverfahren, die Fortschreibungen anhand einfacher Kennziffern vorgenommen haben.
- ▶ Bedeutsame Einschränkungen im Hinblick auf eine weitere Vertiefung der Erklärungs-/Prognosemodelle, auch dies geht aus den vorliegenden Analysen hervor, ergeben sich allerdings aus der Verfügbarkeit geeigneter Frühindikatoren für das jeweilige Prognosejahr. Die Frühschätzung der Energiebilanz Deutschland sollte sich bei der Auswahl der exogenen Erklärungsgrößen so weit möglich auf (zumindest teilweise) vorliegende Monatsdaten bzw. -statistiken stützen. Ansonsten bestünde die Gefahr, dass sich das ohnehin bestehende Prognoseproblem tendenziell weiter vergrößert und nicht reduziert wird, sofern für die zusätzlichen Erklärungsgrößen bzw. Bestimmungsfaktoren, die in das Modell einfließen, keine geeigneten Frühindikatoren vorliegen (und diese ihrerseits über plausible Setzungen oder den Aufbau weiterer Modellteile erklärt werden müssten).

- ▶ Die Überprüfung statistisch verfügbarer Frühindikatoren, die ggf. zusätzlich in die Prognose einfließen könnten, ergab ein heterogenes Bild. Während z.B. eine Nutzung der tagesaktuell zur Verfügung stehenden Datensätze von Trading Hub Europe (THE) zur Fortschreibung des gesamten Erdgasverbrauchs grundsätzlich als nutzbare Datenquelle eingestuft werden kann, scheitert der Rückgriff auf diese Datenquellen zur Frühschätzung in anderen Bilanzbereichen (Industrie, Haushalte und GHD) aufgrund der unzureichenden bzw. unklaren sektoralen Aufgliederung dieser Datenquelle. Vor diesem Hintergrund fließen die Daten nicht als exogene Größe in das Modell ein, sondern werden lediglich im Sinne eines "Softlinks" als Korrektur- bzw. Vergleichsgröße zum Modellergebnis herangezogen.
- ▶ Eine empirische Evaluierung der ENTSO-E-Daten hat ergeben, dass dieser Frühindikator (obwohl die Daten in stündlicher Auflösung und damit sehr aktuell vorliegen) zur Fortschreibung der Stromerzeugung aus Erdgas, Mineralöl, Abfällen sowie bei Pumpspeicherkraftwerken aufgrund der fehlenden Korrelation zu den amtlichen Statistikdaten (Stat. Nr. 066) weitgehend ausgeschlossen werden muss. Im Gegensatz dazu haben die Analysen und Vergleiche für die Stromerzeugung aus Stein- und Braunkohle gezeigt, dass die Frühschätzung durch die Berücksichtigung der ENTSO-E-Daten spürbar gegenüber dem bisher verwendeten autoregressiven Fortschreibungsverfahren verbessert werden kann, weil diese Datensätze zumindest innerhalb der beobachteten Ex-post-Entwicklung eine hohe Übereinstimmung aufweisen.
- ▶ Innerhalb des Bereichs der exogenen Erklärungsgrößen, die in das Jahresmodell zur Erklärung des industriellen Energieverbrauchs einbezogen werden, stellt insbesondere die statistische Verfügbarkeit einiger Verbandsdaten etwa zur physischen Entwicklung der Papier-, Zement- oder Kalkproduktion (in 1.000 Tonnen) eine Schwierigkeit dar. Monatliche Angaben zur Tonnenproduktion dieser energieintensiven Wirtschaftszweige liegen nicht vor und die Publikation des Jahresergebnisses bzw. der Produktionsmenge erfolgt zu einem späteren Zeitpunkt. Diese Inputdaten müssten also entweder von den entsprechenden Verbänden vorab zur Verfügung gestellt oder mit Hilfe amtlicher Daten (Produktionsindizes) fortgeschrieben werden. Ähnliche empirische Probleme bestehen im Hinblick auf sektorspezifische Anlagendaten (Anzahl und Kapazität der Ofenanlagen), die zur Verbesserung der Erklärungsgüte prinzipiell in das Prognosemodell einbezogen werden könnten.

Im weiteren Verlauf der Studie wurde die Frühschätzung der Energiebilanz Deutschland für das Jahr 2022 auf Grundlage der hier vorgestellten, weiterentwickelten Modellteile unter Rückgriff auf den gleichen Datenstand für die exogenen Vorgaben (Februar 2023), wie er im Rahmen der Frühschätzung mit der alten Methodik verwendet wurde, repliziert (Variante C). Anschließend wurden die Ergebnisse der Frühschätzungen (2022: altes Verfahren revidierte Zeitreihe der Energiebilanzen (Variante B); 2022: weiterentwickeltes Modell revidierte Energiebilanzzeitreihe (Variante C)) und die endgültige Energiebilanz Deutschland 2022 (Datenstand: 31. Januar 2024) empirisch miteinander verglichen (Kapitel 6).

Es ist außerordentlich schwierig, den genauen, isolierten Einfluss der Datenrevision der Energiebilanz Deutschland (2003 bis 2021) auf die Ergebnisse der weiterentwickelten Frühschätzung genau zu ermitteln. Allerdings lassen sich die Auswirkungen der Datenrevision der Energiebilanz Deutschland auf die Frühschätzung 2022 nach der alten Methode (Pilotstudie 1) ermitteln. Um dieses Ziel zu erreichen, wurde die Frühschätzung nach der alten Methode (Pilotstudie 1) für das Berichtsjahr 2022 unter Beibehaltung der exogenen Rahmenbedingungen der Prognose wiederholt, wobei allerdings die revidierten Zeitreihen der Energiebilanz Deutschland (anstelle der ursprünglich genutzten unrevidierten Bilanzdaten) in die Prognosen

und Berechnungen eingeflossen sind (Variante B). Die isolierte Betrachtung lässt erkennen, dass von der Datenrevision der Energiebilanz Deutschland (2003 bis 2021) durchaus Einflüsse auf das Ergebnis der Frühschätzung ausgehen. Diese sind allerdings (auf der Ebene aggregierter Daten für den fossilen, nicht erneuerbaren Endenergieverbrauch) eher von untergeordneter Bedeutung (Einzelheiten vgl. Kapitel 6.1).

Die ebenfalls durchgeführten weiterführenden Vergleiche der Prognoseergebnisse mit den Befunden der endgültigen Energiebilanz Deutschland zeigen, dass die Weiterentwicklung der Frühschätzung insgesamt zu einer Verbesserung der Schätzung geführt hat. 128 Insbesondere in den energieintensiven Sektoren Metallerzeugung (EBZ 54) und Verarbeitung von Steinen und Erden (EBZ 53) liegen die mit dem weiterentwickelten (sektoral tiefer disaggregierten) Modell zur Erklärung des Endenergieverbrauchs prognostizierten Schätzwerte für das Berichtsjahr 2022 näher an den Befunden der endgültigen Energiebilanz Deutschland, als dies mit dem alten Verfahren der Fall gewesen ist. Generell ist festzustellen, dass sich die Erklärung bzw. Prognose des industriellen Endenergieverbrauchs in den betrachteten energieintensiven Wirtschaftszweigen vor allem im Hinblick auf die Erfassung bzw. Schätzung des Energieträgermix ("fuel switch") gegenüber der Prototypversion des Modells (keine Aufgliederung nach Sub-Sektoren) verbessert hat. Hingegen sind die Auswirkungen der vorgenommenen Weiterentwicklungen und Verbesserungen auf die Frühschätzung aggregierter Größen, wie beispielsweise den fossilen, nicht erneuerbaren Endenergieverbrauch der energieintensiven Wirtschaftszweige oder der Industrie als Ganzes, eher von untergeordneter Bedeutung. Für den Sektor Metallerzeugung schätzt das weiterentwickelte Modell vor diesem Hintergrund im Jahr 2022 einen fossilen, nicht erneuerbaren Brennstoffeinsatz in Höhe von 438 PJ, nach dem alten Modell lag dieses Schätzergebnis noch bei 439 PJ. Dieses Resultat mag zunächst als überraschend empfunden werden, allerdings spiegelt sich darin auch wider, dass die Prognose des aggregierten fossilen, nicht erneuerbaren Brennstoffverbrauchs bereits mit dem Prototyp des Modells nahe am Ergebnis der endgültigen Energiebilanz Deutschland lag (Abweichung +2,1 %). Die neue Schätzung nähert sich dem wahren Wert laut endgültiger Energiebilanz (2022: 430 PJ) weiter bis auf eine Abweichung in Höhe von 1,9 % an.

Beschränkt man sich auf die grundlegenden Sachverhalte, so spiegelt sich dieses Ergebnis auch auf der Ebene des fossilen, nicht erneuerbaren Endenergieverbrauchs der Industrie (EBZ 60) sowie des fossilen, nicht erneuerbaren Endenergieverbrauchs insgesamt (EBZ 45) wider. Die mit dem alten Modell bereits erreichte hohe Genauigkeit der Schätzung (die Abweichung zur endgültigen Energiebilanz Deutschland 2022 betrug bezogen auf den fossilen, nicht erneuerbaren Endenergieverbrauch der Industrie -1,9 % und bezogen auf den gesamten Endenergieverbrauch +0,7 %) verändert sich im Rahmen der Weiterentwicklung nur marginal. Allerdings wird, wie bereits erwähnt, die Treffsicherheit der Frühschätzung bei der Erfassung des Energieträgermix (insbesondere für die Brennstoffe Steinkohle und Erdgas) erhöht.

Die empirische Nachprüfung der Frühschätzung auf Basis des weiterentwickelten Modells anhand der vorliegenden Daten der endgültigen Energiebilanz Deutschland hat auch gezeigt, dass im Sektor Papiergewerbe (EBZ 48) durch die vertiefte sektorale Aufgliederung und Neuschätzung des ökonometrischen Modells keine unmittelbare Verbesserung gegenüber dem Prototyp erreicht werden konnte, vielmehr zeigt sich speziell für das Prognosejahr 2022 eine Vergrößerung der Abweichungen im Vergleich zur endgültigen Energiebilanz, die insbesondere die Schätzung des Erdgaseinsatzes betrifft. Eine genauere Überprüfung der Modellgleichungen

¹²⁸ Dies schließt nicht aus, dass in Einzelfällen je nach Wahl des Beurteilungskriteriums auch eine Verschlechterung der Prognose aufgetreten ist. Für die Gesamtbeurteilung der Prognosegüte ist letztendlich die Anpassungsfähigkeit des Modells über einen längeren Zeitraum anhand spezifischer Fehlermaße wie MAPE, MEAN, MAE und RMSE (vgl. dazu Kapitel 3.3 sowie 4.1.4.1 dieser Studie) relevant und weniger die Einzelfallbetrachtung der Abweichungen in nur einem Prognosejahre, hier 2022.

und Schätzergebnisse hat die Ursachen für diese Verschlechterung aufgezeigt. Wichtigste Einflussgröße ist die Schätzung ausgewählter Energieträger (Biomasse, Fernwärme) im Sub-Sektor Herstellung von Holzschliff, Zellstoff, Papier und Pappe (WZ 17.1) verbunden mit der Frage, bei welchem Energieträger die aus Konsistenzgründen erforderliche Restrechnung zum gesamten Brennstoff- und Wärmeverbrauch der Papierproduktion implementiert wird. Obwohl die Ursachen für die Erhöhung der Abweichungen erkannt sind (und leicht behebbar wären), kommt eine Neuberechnung der Frühschätzung 2022 (Variante C, weiterentwickeltes Modell, revidierte Energiebilanzen) im Rahmen dieser laufenden Studie aus Gründen der Gesamtkonsistenz und der Vergleichbarkeit der Ergebnisse nicht in Frage. Eine entsprechende geringfüge Anpassung des Modells für die Papierindustrie erfolgt vor diesem Hintergrund im Rahmen der Modellaktualisierung für die Frühschätzung der Energiebilanz Deutschland 2024 (wird zum 15. Februar 2025 vorgelegt).

Abschließend sei an dieser Stelle explizit darauf hingewiesen, dass aus dem numerischen (ggf. felderscharfen) Vergleich der Energiebilanz Deutschland (Frühschätzung vs. endgültige Energiebilanz) für ein Beobachtungsjahr (hier 2022) keine belastbaren Rückschlüsse im Hinblick auf die Prognosegüte insgesamt abgeleitet werden können (Kapitel 6). Lediglich aus der kombinierten Gesamtbetrachtung der Prognosefehler über einen längeren Ex-post-Zeitraum (2012 bis 2021, vgl. Kapitel 3.3) und den Vergleichen für ein Berichtsjahr lassen sich entsprechende Hinweise ablesen.

Die Interpretation dieses Gesamtergebnisses legt nahe, dass die Weiterentwicklung der Frühschätzung, insbesondere die Erklärung des Energieverbrauchs ausgewählter energieintensiver Wirtschaftszweige auf der Ebene einzelner Sub-Sektoren und Produktionsstufen, zu einer Verbesserung der Prognosegenauigkeit beiträgt (weil der Einfluss des intersektoralen Strukturwandels und damit verbundene Veränderungen im Energieträgermix besser abgebildet werden). Hinzu kommt, dass der formale Rahmen des weiterentwickelten Modells zur Frühschätzung der Energiebilanz Deutschland eine belastbare Ausgangsbasis zur laufenden Verfeinerung des Modellinstrumentariums im Zusammenhang mit der jährlich anstehenden Aufdatierung und Pflege bietet.

8 Quellenverzeichnis

Monografien:

AG Energiebilanzen (2023a), Energieverbrauch in Deutschland im Jahr 2022, Internet: https://agenergiebilanzen.de/wp-content/uploads/2023/06/AGEB_Jahresbericht2022_20230615_dt.pdf (Abrufdatum: 6.10.2023).

AG Energiebilanzen (2023b), Umfassende Revision der Energiebilanzen 2003 bis 2021 abgeschlossen, infoplus Nr. 03/2023, Internet: https://ag-energiebilanzen.de/wp-content/uploads/2023/11/AGEB_InfoAusgabe-3-2023.pdf (Abrufdatum: 16.4.2024).

AG Energiebilanzen (2022), Anwendungsbilanzen zur Energiebilanz Deutschland, Endenergieverbrauch nach Energieträgern und Anwendungszwecken, Internet: https://ag-energiebilanzen.de/wp-content/uploads/2023/01/AGEB 21p2 V3 20221222.pdf (Abrufdatum 25.10.2023).

AG Energiebilanzen (2020), Energie in Zahlen. Arbeit und Leistungen der AG Energiebilanzen, Internet: https://ag-energiebilanzen.de/wp-content/uploads/2019/01/ageb-energie_in_zahlen_2019.pdf (Abrufdatum: 23.1.2023).

Aichinger, M. (2015), Technologievergleich von Elektrostahlerzeugungsverfahren, Eisen- und Stahlmetallurgie, Masterarbeit, Loeben, Internet:

https://pureadmin.unileoben.ac.at/ws/portalfiles/portal/1896823/AC12251146n01vt.pdf (Abrufdatum: 6.12.2023).

Auer, B. und Rottmann, H. (2020), Statistik und Ökonometrie für Wirtschaftswissenschaftler: Eine anwendungsorientierte Einführung, https://doi.org/10.1007/978-3-658-30137-8

Bayer, W. (2003), Amtliche Energiestatistik neu geregelt, Wirtschaft und Statistik 1/2003, S.33-40.

Buttermann, H.-G. (1997), Rohstoff- und Energieverbrauch in der Papierindustrie, RWI-Mitteilungen 48: S. 157-180.

Buttermann, H.-G. (1998), Ein Modell zur Erklärung des Faktoreinsatzes der deutschen Zementindustrie, RWI-Papiere Nr. 48, Essen.

Buttermann, H.-G. und Hillebrand, B. (2000), Die Klimaschutzerklärung der deutschen Industrie vom März 1996 – eine abschließende Bilanz - CO₂ Monitoring-Bericht 2000, Untersuchungen des Rheinisch-Westfälischen Instituts für Wirtschaftsforschung, Heft 40, Essen.

Buttermann, H.-G.; Lechtenböhmer, S.; Nanning, S. und Hillebrand, B. (2006), Einsatz von Sekundärbrennstoffen, UBA-Texte 07/06, Internet:

https://www.umweltbundesamt.de/sites/default/files/medien/publikation/long/3011.pdf (Abrufdatum: 12.4.2024).

Die Papierindustrie (2023a), Papier – Ein Leistungsbericht sowie Statistiken zum Leistungsbericht Papier, versch. Jg., Internet: https://www.papierindustrie.de/papierindustrie/statistik/papier-2023-herunterladen (Abrufdatum: 30.10.2023).

Die Papierindustrie (2023b), Statistische Kurzinformation Zellstoff- und Papierindustrie in Deutschland, lfd. für das jeweils aktuelle Berichtsjahr, Internet: https://www.papierindustrie.de/fileadmin/0002-PAPIERINDUSTRIE/07_Dateien/1_Statistik/2024/02_2024_Statistische_Kurzinformation_D.pdf (Abrufdatum: 11.4.2024).

EEFA/ZSW (2023), Pilotprojekt zur Frühschätzung der Energiebilanz 2020 und Vergleich zu späteren definierten Datenständen, UBA-Texte 18/2023, Projektnummer 152983, Internet:

https://www.umweltbundesamt.de/sites/default/files/medien/479/publikationen/texte_18-2023_pilotprojekt_zur_fruehschaetzung_der_energiebilanz_2020.pdf (Abrufdatum: 11.9.2023).

EEFA/ZSW (2020), Ausgewählte Möglichkeiten zur Bereinigung des Energieverbrauchs um Temperaturschwankungen bzw. Witterungseffekte – eine empirische Analyse, Forschungsvorhaben im Auftrag der AG Energiebilanzen e.V. (unveröffentlicht, erscheint in Kürze).

EEFA/ZSW/DIW (2018), Abbau von Divergenzen zwischen nationaler und internationaler Energiestatistik, Studie im Auftrag des Bundesministeriums für Wirtschaft und Energie., Internet:

https://eefa.de/themen/energiestatistik/abbau-von-divergenzen-in-der-nationalen-und-internationalen-energiestatistik.html (Abrufdatum: 23.1.2023).

Franses, P. H. and van Oest, R. (2004), On the econometrics of the Koyck model, Econometric Institute Report 2004-07, Econometric Institute, Erasmus University Rotterdam.

Helmus, M. und Randel, A. (2014), Sachstandsbericht zum Stahlrecycling im Bauwesen, Studie im Auftrag von bauforum stahl, Internet: https://bauforumstahl.de/wp-content/uploads/2023/12/bfs-sachstandsbericht-recycling-im-bauwesen.pdf (Abrufdatum: 11.4.2023).

Hillebrand, B.; Kiy, M. und Neuhaus, R. (1989), Das RWI-Strukturmodell: Konzeption Hypothesen und Wirkungsanalysen, RWI-Papiere, Nr. 19, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Essen.

Holzinger, T. und Flachberger, H. (2023), Zementmahlung – Stand der Technik und Trends für die Zukunft, in: Berg- und Hüttenmännische Monatshefte (BHM), Vol. 168 (4): 175–183, S. 168. Springer. https://doi.org/10.1007/s00501-023-01343-6

Kennan, J. (1989), Simultaneous Equations Bias in Disaggregated Econometric Models, in: "Review of Economic Studies", Oxford University Press, vol. 56(1), pages 151-156.

Merkel, M. (1997), Altpapieraufbereitung und Energieverbrauch, "Wochenblatt für die Papierfabrikation", Heft 5, S. 211 ff.

Oberstraß, M. (1999), Ein makroökonometrisches Modell zur Abbildung des Zusammenhangs von Strukturwandel und Umweltbelastung dargestellt am Beispiel der Simulation der Einführung einer kompensierten Primärenergiesteuer, Verlag für Wissenschaft und Forschung, Berlin.

Rau, R. (1975), Ökonometrische Analyse der Ausgabearten des Privaten Verbrauchs: Eine ökonometrische Analyse des Privaten Verbrauchs nach Ausgabearten für die Bundesrepublik Deutschland 1950-1967, Schriftenreihe des Rheinisch-Westfälischen Instituts für Wirtschaftsforschung Essen, Nr. 35.

Rheinisch-Westfälisches Institut für Wirtschaftsforschung (1987), Ein Energiemodell für die Bundesrepublik Deutschland, Band 1: Gesamtdarstellung, Essen.

Ruhnau, O.; Stiewe, C.; Muessel, J. and Hirth, L. (2023), Natural gas savings in Germany during the 2022 energy crisis, in: "Nature Energy", Vol. 8, S. 621-628.

Szednyj, I. und Brandhuber, D. (2007), Stand der Technik zur Kalk-, Gips und Magnesiaherstellung, Studie im Auftrag des Bundesministeriums für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft (Österreich) im Rahmen der Überarbeitung des EU BAT-Dokuments zur Zement- und Kalkherstellung, Report Nr. 128, Wien 2007, Internet: https://www.umweltbundesamt.at/fileadmin/site/publikationen/rep0128.pdf (Abrufdatum: 11.4.2024).

Wienert, H. (1996), Technischer und wirtschaftlicher Wandel in der Stahlindustrie seit den sechziger Jahren unter besonderer Berücksichtigung Nordrhein-Westfalens, Untersuchungen des Rheinisch-Westfälischen Instituts für Wirtschaftsforschung, Heft 20, Essen.

Wooldridge, J. M. (2012), Introductory Econometrics: A Modern Approach, 5th Edition, South-Western Cengage Learning.

Umweltbundesamt (2023), Berichterstattung unter der Klimarahmenkonvention der Vereinten Nationen und dem Kyoto-Protokoll 2023, Nationaler Inventarbericht zum Deutschen Treibhausgasinventar 1990 – 2021, Climate Change 028/2023, Internet: https://www.umweltbundesamt.de/publikationen/berichterstattung-unter-der-klimarahmenkonvention-8 (Abrufdatum: 11.4.2024).

Internetadressen / Statistik:

AG Energiebilanzen (2015), Vorwort zu den Energiebilanzen für die Bundesrepublik Deutschland, Internet: https://ag-energiebilanzen.de/wp-content/uploads/2021/11/vorwort.pdf (Abrufdatum: 7.5.2021).

AtG (2022), Gesetz über die friedliche Verwendung der Kernenergie und den Schutz gegen ihre Gefahren (Atomgesetz), Internet: https://www.gesetze-im-internet.de/atg/AtG.pdf (Abrufdatum 25.10.2023).

Bundesverband der Deutschen Kalkindustrie e. V. (2023), Geschäftsberichte, versch. Jg., Internet: https://www.kalk.de/wissensportal/publikationen/geschaeftsberichte (Abrufdatum: 30.10.2023).

BDEW Bundesverband der Energie- und Wasserwirtschaft (2023), Schnellstatistik Stromerzeugung und – verbrauch in Deutschland, versch. Monate, (per E-Mail).

ENTSOE (2023), Actual generation per production type, Viertelstunden, Internet: https://transparency.entsoe.eu/ (Abrufdatum zuletzt 10.10.2023).

Produktion Online (2021), Erster Testlauf: Wasserstoffeinsatz im Hochofen, Zeitschrift Produktion (Technik und Wirtschaft für die deutsche Industrie), Internet: https://www.produktion.de/wirtschaft/erster-testlauf-wasserstoffeinsatz-im-hochofen-207.html (Abrufdatum: 25.1.2024).

Stahl und Eisen (2023), Internet: https://www.stahleisen.de/2021/02/03/thyssenkrupp-steel-schliesst-erstewasserstoffversuche-ab (Abrufdatum 24.9.2023).

Statistisches Bundesamt (2022a), Jahreserhebung über die Energieverwendung der Betriebe des Verarbeitenden Gewerbes, im Bergbau und der Gewinnung von Steinen und Erden (Statistik Nr. 060, unveröffentlicht), Qualitätsbericht im Internet:

https://www.destatis.de/DE/Methoden/Qualitaet/Qualitaetsberichte/Energie/energieverwendung-verarbgewerbe-bergbau-steine-erden-j-060.pdf? blob=publicationFile (Abrufdatum: 11.4.2024).

Statistisches Bundesamt (2022b), Jahreserhebung über Erzeugung und Verwendung von Wärme sowie über den Betrieb von Wärmenetzen (Statistik Nr. 064, unveröffentlicht), Qualitätsbericht im Internet: https://www.destatis.de/DE/Methoden/Qualitaet/Qualitaetsberichte/Energie/erzeugung-verwendung-waermenetze-j-064.pdf?__blob=publicationFile (Abrufdatum: 11.4.2024).

Statistisches Bundesamt (2023a), Monatserhebung über die Elektrizitäts- und Wärmeerzeugung zur allgemeinen Versorgung (Statistik Nr. 066, unveröffentlicht), Qualitätsbericht im Internet: https://www.destatis.de/DE/Methoden/Qualitaet/Qualitaetsberichte/Energie/elektrizitaetswaermeerzeugung-versorgung-m-066k.pdf?__blob=publicationFile (Abrufdatum: 13.4.2024).

Statistisches Bundesamt (2022c), Jahreserhebung über die Elektrizitäts- und Wärmeerzeugung im Verarbeitenden Gewerbe, im Bergbau und in der Gewinnung von Steinen und Erden (Statistik Nr. 067, unveröffentlicht), Qualitätsbericht im Internet:

https://www.destatis.de/DE/Methoden/Qualitaet/Qualitaetsberichte/Energie/elektrizitaets-waermeerzeugung-verarb-gewerbe-bergbau-j-067.pdf?__blob=publicationFile (Abrufdatum: 11.4.2024).

Statistisches Bundesamt (2023b), Monatserhebung über die Gasversorgung (Statistik Nr. 068, unveröffentlicht), Qualitätsbericht im Internet:

https://www.destatis.de/DE/Methoden/Qualitaet/Qualitaetsberichte/Energie/gasversorgung-m-068.pdf? blob=publicationFile (Abrufdatum zuletzt 11.04.2024).

Statistisches Bundesamt (2023c), Indizes des Auftragseingangs im Verarbeitenden Gewerbe, Deutschland, Wirtschaftszweige, Original- und bereinigte Daten, Monate, online abrufbar in der GENESIS-Datenbank, Internet: https://www-genesis.destatis.de/genesis/online/logon, Tabelle 42151-0005 (Abrufdatum zuletzt 10.10.2023).

Statistisches Bundesamt (2023d), Indizes der Produktion im Verarbeitenden Gewerbe, Deutschland, Wirtschaftszweige, Original- und bereinigte Daten, Monate, online abrufbar in der GENESIS-Datenbank, Internet: https://www-genesis.destatis.de/genesis/online/logon, Tabelle 42153-0002 (Abrufdatum zuletzt 10.10.2023).

Statistisches Bundesamt (2023e), LKW-Maut, Lkw-Maut-Fahrleistungsindex, Fahrleistungsindex, Daten online abrufbar in der GENESIS-Datenbank, Internet: https://www-genesis.destatis.de/genesis/online/logon, Tabelle 42191-0001, (Abrufdatum zuletzt 11.4.2024).

Statistisches Bundesamt (2023f), Bruttoinlandsprodukt, Internet:

https://www.destatis.de/DE/Themen/Wirtschaft/Volkswirtschaftliche-Gesamtrechnungen-Inlandsprodukt/_inhalt.html (Abrufdatum: 29.10.2023).

THE (2023), Downloadcenter, Internet: https://www.tradinghub.eu/de-de/Download/Downloadcenter-THE (Abrufdatum zuletzt 10.10.2023).

UBA-Datenbank (2023), "ProBas Prozessorientierte Basisdaten für Umweltmanagementsysteme", Internet: https://www.probas.umweltbundesamt.de/php/prozessdetails.php?id=%7B86C6457F-ABF7-4F8C-803E-794F6EBCB973%7D (Abrufdatum: 22.09.2023).

Verein Deutscher Zementwerke e.V. (2002), Umweltdaten der deutschen Zementindustrie 2000, Düsseldorf, Internet: https://www.vdz-

online.de/fileadmin/wissensportal/publikationen/umweltschutz/Umweltdaten/VDZ_Umweltdaten_2000.pdf (Abrufdatum: 11.4.2023).

Verein Deutscher Zementwerke e.V. (2023), Umweltdaten der deutschen Zementindustrie, versch. Jg.; Düsseldorf, Internet: https://www.vdz-online.de/wissensportal/publikationen/umweltdaten-der-deutschenzementindustrie-2022 (Abrufdatum: 30.10.2023).

VGBE (2023), Operating Results of Nuclear Power Plants, monatliche Daten.

Wirtschaftsvereinigung Stahl (2023a), Brennstoff- Gas- und Stromwirtschaft der Hochofen-, Stahl- und Walzwerke sowie Schmiede-, Preß- und Hammerwerke einschließlich der örtlich verbundenen sonstigen Betriebe (ohne eigene Kokerei), BGS-Eh200 für Berichtsjahre ab 2010.

Wirtschaftsvereinigung Stahl (2023b), Pressemitteilungen "Rohstahlproduktion in Deutschland" (monatlich), Internet: https://www.stahl-online.de/medieninformationen (Abrufdatum: 30.10.2023).

Wirtschaftsvereinigung Stahl (2023c), Statistisches Jahrbuch der Stahlindustrie, versch. Jahre, Düsseldorf und Berlin.

A Anhang A

Tabelle A1: Bezeichnung der Modellvariablen mit Bezug zur Energiebilanz

mit EBZjSi

Energebilanzzeile (EBZ)	Bezeichung Sektor (j)
1	Gewinnung im Inland
2	Einfuhr
3	Bestandsentnahmen
4	Energieaufkommen im Inland
5	Ausfuhr
6	Hochseebunkerungen
7 8	Bestandsaufstockungen PRIMÄRENERGIEVERBRAUCH IM INLAND
9	Kokereien
10	Stein- und Braunkohlenbrikettfabriken
11	Wärmekraftwerke der allg. Versorgung
12	Industriewärmekraftwerke (nur für Strom)
13	Kernkraftwerke
14	Wasser-, Windkraft-, Photovoltaik- u.a. Anlagen
15	Heizkraftwerke der allg. Versorgung
16 17	Fernheizwerke Hochöfen
18	Mineralölverarbeitung
19	Sonstige Energieerzeuger
20	Umwandlungseinsatz
21	Kokereien
22	Stein- und Braunkohlenbrikettfabriken
23	Wärmekraftwerke der allg. Versorgung
24	Industriewärmekraftwerke (nur für Strom)
25 26	Kernkraftwerke Wasser-, Windkraft-, Photovoltaik- u.a. Anlagen
27	Heizkraftwerke der allg. Versorgung
28	Fernheizwerke
29	Hochöfen
30	Mineralölverarbeitung
31	Sonstige Energieerzeuger
32	Umwandlungsausstoß
33	Kokereien
34 35	Steinkohlenzechen, -brikettfabriken Braunkohlengruben, -brikettfabriken
36	Kraftwerke
37	Erdöl- und Erdgasgewinnung
38	Mineralölverarbeitung
39	Sonstige Energieerzeuger
40	Energieverbrauch im Umwandlungsbereich
41	Fackel- u. Leitungsverluste
42 43	ENERGIEANGEBOT IM INL.N.UMWANDLUNGSBILANZ NICHTENERGETISCHER VERBRAUCH
44	Statistische Differenzen
45	ENDENERGIEVERBRAUCH
46	Gewinnung von Steinen und Erden, sonst. Bergbau
47	Ernährung und Tabak
48	Papiergewerbe
49	Grundstoffchemie
50 51	Sonstige chemische Industrie Gummi- u. Kunststoffwaren
51 52	Gummi- u. Kunststoffwaren Glas u. Keramik
53	Verarbeitung v. Steine u. Erden
54	Metallerzeugung
55	NE-Metalle, -gießereien
56	Metallbearbeitung
57	Maschinenbau
58	Fahrzeugbau
59 60	Sonstige Wirtschaftszweige
60 61	Bergbau, Gew. Steine u. Erden, Verarbeit. Gewerbe Schienenverkehr
62	Straßenverkehr
63	Luftverkehr
64	Küsten- und Binnenschifffahrt
65	Verkehr insgesamt
66	Haushalte
67	Gewerbe, Handel, Dienstleistungen
68	Haushalte, Gewerbe, Handel und Dienstleistungen

Spalte (S)	Bez	zeichnung Energieträger (i)		
1	Steinkohlen	Kohle		
2		Briketts		
3		Koks		
4		Andere Steinkohlenprodukte		
5	Braunkohlen	Kohle (roh)		
6		Briketts		
7		Andere Braunkohlenprodukte		
8		HartBraunkohle		
9		Erdől		
10		Ottokraftstoffe		
11		Rohbenzin		
12		Flugturbinenkraftstoff		
13		Dieselkraftstoff		
14	Mineralöle	Heizöl, leicht		
15		Heizöl, schwer		
16		Petrolkoks		
17		Flüssiggas		
18		Raffineriegas		
19		Andere Mineralölprodukte		
20		Kokereigas		
21	0	Gichtgas		
22	Gase	Erdgas		
23		Grubengas		
24	Erneuerbare	Wasserkraft, Windenergie, Photovoltaik		
25		Biomasse, erneuerbare Abfälle		
26	Energien	Solarthermie, Geothermie, Umweltwärme		
27	Elektrischer Strom	Fossile Abfälle, Sonstige		
28	und sonstige	Strom		
29		Kernenergie		
30	Energieträger	Fernwärme		
31	Energieträger	Primärenergieträger		
32	Energieträger	Sekundärenergieträger		
33	insgesamt	Summe		

Quelle: Eigene Darstellung EEFA und ZSW.

B Anhang B

Tabelle B1: Daten zu Abbildung 3

Endenergieverbrauch der Industrie, in TJ

	beobachtet	geschätzt*
2012	2613086	2568932
2023	2589366	2560941
2014	2561563	2536642
2015	2572849	2573316
2016	2636715	2634372
2017	2656795	2674044
2018	2629272	2599211
2019	2536596	2550627
2020	2432206	2467709
2021	2606560	2621208

Eigene Berechnungen. *) Ergebnis einer dynamischen Modell-Prognose

Tabelle B2: Daten zu den Abbildungen 4 und 16

Endenergieverbrauch der Industrie nach Energieträgern, in TJ

		Steink.	Braunk.	Min.öl	Gase	EE	Sonst.	Strom	Fernw.
2012	b	325549	71913	132162	893243	111159	76990	814396	187674
	g	339215	64075	130772	864063	117739	69912	812715	170442
2013	b	328891	72351	117950	901782	110266	61168	807368	189589
	g	332308	63552	119517	887695	116971	61388	801272	178237
2014	b	336307	70802	97500	880375	113753	65029	823590	174207
	g	347966	68122	105474	845645	120981	63089	818590	166775
2015	b	363483	69436	98959	885775	109659	62544	809561	173432
	g	368933	69245	109103	862134	121291	65557	812215	164836
2016	b	368408	73188	109621	908924	116149	65763	815749	178912
	g	370814	71837	119617	892273	121881	68397	823103	166450
2017	b	358344	73754	108355	941433	115460	66228	821128	172093
	g	358086	72140	119192	932843	124249	73433	828250	165851
2018	b	352914	71556	84834	924282	113148	77201	813942	191395
	g	344124	70759	93124	897349	124589	72320	824316	172629
2019	b	336371	66825	85033	896508	112737	77478	786413	175231

		Steink.	Braunk.	Min.öl	Gase	EE	Sonst.	Strom	Fernw.
	g	322787	69290	92709	892032	124144	74570	807111	167983
2020	b	274990	78409	101763	886242	111874	71641	744031	163258
	g	269764	77792	106552	880609	123914	78585	770691	159802
2021	b	372819	73129	96603	922535	118164	78395	771744	173171
	g	360622	80893	101565	922049	127386	79943	774072	174677
2022	b	0	0	0	0	0	0	0	0
	g	323165	73469	102210	760720	120400	71877	723436	198406

Tabelle B3: Daten zu den Abbildungen 5 und 17

Endenergieverbrauch Sektor Papiergewerbe (EBZ 48) nach Energieträgern, in TJ

		Steink.	Braunk.	Min.öl	Gase	EE	Sonst.	Strom	Fernw.
2012	b	7667	6257	2220	76974	26165	842	73433	29150
	g	8223	5366	2192	74424	30411	738	72630	27245
2014	b	6972	6628	1861	79083	26489	2995	71143	31339
	g	6954	5487	1858	85248	28539	3011	70969	29399
2013	b	7267	6491	1281	80444	28142	2875	70258	28456
	g	6853	5577	1580	72523	27962	3959	70559	27574
2015	b	7516	6507	1901	79047	25928	3108	68357	27293
	g	7065	5471	2179	76155	28525	4127	69458	25972
2016	b	7120	6466	1310	79416	25108	3417	67666	25421
	g	6910	5557	1726	80854	28409	4101	68539	26376
2017	b	6708	5704	1430	81585	30266	3317	67802	25300
	g	6672	5449	1713	81897	28659	4072	68470	27807
2018	b	6336	5400	1694	73617	28432	5576	65945	27271
	g	5656	5241	2012	78365	28223	4429	67273	29083
2019	b	4581	5269	1377	73406	28588	6377	63803	26216
	g	4848	5368	1556	72209	26975	5290	64555	28826
2020	b	3840	4682	1393	73543	28686	6906	63045	22753
	g	4226	5620	1465	70774	25512	6311	62803	23457
2021	b	4209	4285	1364	78496	25377	6085	66428	26719
	g	4483	5477	1389	82040	26630	5905	65650	25370
2022	b	0	0	0	0	0	0	0	0

		Steink.	Braunk.	Min.öl	Gase	EE	Sonst.	Strom	Fernw.
	g	3694	5454	1113	53489	24103	7433	61444	33143

Tabelle B4: Daten zu den Abbildungen 6 und 18

Endenergieverbrauch Sektor Verarbeitung v. Steine und Erden (EBZ 53) nach Energieträgern, in TJ

		Steink.	Braunk.	Min.öl	Gase	EE	Sonst.	Strom	Fernw.
2012	b	16779	45200	14058	42664	15685	31786	26701	421
	g	16352	40393	14956	44321	18436	31304	26854	408
2013	b	14021	41572	14115	42057	18310	33618	26089	470
	g	14661	39820	13595	42961	18766	29181	26432	404
2014	b	15454	42386	12434	41581	18395	34144	26402	442
	g	15844	41169	13902	41250	19738	32194	26925	426
2015	b	15480	41234	12993	41832	18584	33508	26996	476
	g	14384	41303	13710	40054	19640	33559	27217	450
2016	b	14569	41771	13489	41626	17226	31330	27202	494
	g	15050	41848	14132	41003	19379	31779	27905	487
2017	b	14264	44716	14092	42489	21027	33765	28296	506
	g	13509	42548	13178	42712	19696	35891	28471	502
2018	b	13786	41289	13181	42904	20953	37919	28303	505
	g	13891	41233	12108	41769	19809	36969	28691	518
2019	b	13602	40229	12722	42920	22115	38522	27889	531
	g	13495	43559	12310	41419	20052	39097	28686	537
2020	b	11738	56990	21573	43857	21602	38753	27800	555
	g	12490	55529	20543	47554	21786	41825	28502	565
2021	b	12478	43478	11733	43622	21779	38658	28423	576
	g	12484	47485	12540	42837	21186	40815	28525	592
2022	b	0	0	0	0	0	0	0	0
	g	12815	44043	8705	40742	16583	31861	27422	438

 $\label{thm:constraint} \mbox{Eigene Berechnungen. b=beobachtet, g=gesch\"{a}tzt \mbox{ (Ergebnis einer dynamischen Modell-Prognose)}.$

Tabelle B5: Daten zu den Abbildungen 7 und 19

Endenergieverbrauch Sektor Metallerzeugung (EBZ 54) nach Energieträgern, in TJ

		Steink.	Braunk.	Min.öl	Gase	EE	Sonst.	Strom	Fernw.
2012	b	277507	3439	7601	168587	0	0	75244	2078

		Steink.	Braunk.	Min.öl	Gase	EE	Sonst.	Strom	Fernw.
	g	288711	1719	11085	172340	0	0	73699	1358
2013	b	287420	6560	8024	159353	0	0	72792	1495
	g	284872	2380	11230	163385	0	0	72679	1199
2014	b	288172	5524	506	159882	187	0	73084	1704
	g	300471	3737	3237	153637	187	0	72303	881
2015	b	297719	6266	522	166419	62	0	72014	1237
	g	303143	5173	2824	164056	62	0	72065	568
2016	b	304104	6275	9552	158390	0	0	75791	1028
	g	298920	6469	11441	150953	0	0	74335	690
2017	b	293054	7298	11204	158536	0	255	73674	1009
	g	291019	7450	12813	159898	255	0	72616	935
2018	b	303255	8707	167	172406	0	0	72583	1118
	g	286697	8492	1747	172084	0	0	71443	1175
2019	b	287970	7859	1731	160778	0	0	67356	751
	g	271261	6471	2726	163684	0	0	68241	1323
2020	b	225615	4662	1599	153493	0	0	63494	628
	g	224113	4021	2576	156615	0	0	63715	1336
2021	b	325711	13624	1539	153441	0	0	68205	545
	g	314888	16077	2416	161579	0	0	68048	2622
2022	b	-	-	-	-	-	-	-	-
	g	276966	11467	2581	142076	0	0	62525	7629

Tabelle B6: Daten zu Abbildung 9 (1)

Endenergieverbrauch ausgewählter Industriesektoren (Teil 1), in TJ

	beobachtet	geschätzt	beobachtet	geschätzt	beobachtet	geschätzt
	Ernährung und Tabak	Ernährung und Tabak	Papier- gewerbe	Papier- gewerbe	Grundstoff- chemie	Grundstoff- chemie
2012	208411	206295	222707	221228	527955	475247
2013	206803	206447	226510	231466	499898	483535
2014	209071	207788	225213	216586	508373	491539
2015	204997	204695	219656	218952	528386	510653
2016	212025	208884	215923	222473	523282	517202
2017	213603	212557	222113	224739	565604	562018

	beobachtet	geschätzt	beobachtet	geschätzt	beobachtet	geschätzt
2018	216778	214493	214270	220282	537977	508228
2019	213311	216150	209615	209627	521779	521869
2020	212791	217427	204849	200166	532865	525163
2021	216801	216969	212963	216945	556083	554585
	sonst. chem. Erzeugnisse	sonst. chem. Erzeugnisse	Gummi- und Kunststoff- waren	Gummi- und Kunststoff- waren	Glas und Keramik	Glas und Keramik
2012	93001	91462	80648	80192	81588	84076
2013	99486	97249	80824	80281	82511	82578
2014	91867	89618	79724	79467	83115	84330
2015	83626	90449	81473	82299	82959	84202
2016	123118	127207	83470	84474	84387	85131
2017	91400	93724	83292	84839	84481	85292
2018	88567	90466	81458	84160	88288	85574
2019	83855	89208	79041	83215	81928	82675
2020	82228	89246	73855	78356	78174	79699
2021	85416	86473	77692	79053	84918	81481

Tabelle B7: Daten zu Abbildung 9 (2)

Endenergieverbrauch ausgewählter Industriesektoren (Teil 2), in TJ

	beobachtet	geschätzt	beobachtet	geschätzt	beobachtet	geschätzt
	Ver. v. Stei- nen u. Erden	Ver. v. Stei- nen u. Erden	Metall- erzeugung	Metall- erzeugung	NE-Metalle, - gießereien	NE-Metalle, - gießereien
2012	193294	193480	534456	548913	115266	118041
2013	190253	184426	535644	535746	110077	120064
2014	191237	191276	529059	534452	112023	118238
2015	191104	191126	544239	547891	125791	126161
2016	187706	193025	555140	542807	127340	127659
2017	199155	200672	545030	544986	128545	127605
2018	198841	197637	558236	541639	127440	127230
2019	198530	198500	526445	513705	121842	123319
2020	222868	224558	449492	452377	112835	114728

	beobachtet	geschätzt	beobachtet	geschätzt	beobachtet	geschätzt
2021	200746	201650	563064	565629	119224	116034
	Metall- bearbeitung	Metall- bearbeitung	Maschinen- bau	Maschinen- bau	Fahrzeugbau	Fahrzeugbau
2012	114481	111077	80009	78759	125415	122793
2013	120728	109594	78213	79544	129897	123750
2014	117940	118029	73807	75048	120127	116543
2015	109011	112233	71300	74745	120478	121359
2016	108417	111148	71622	75373	125833	125771
2017	110626	113871	74812	77232	125647	127490
2018	110602	114603	73334	77056	124564	125200
2019	106810	111009	71698	75853	121353	120339
2020	94981	106592	66173	69650	109725	111509
2021	102134	107967	68981	71196	112647	110417

Tabelle B8: Daten zu Abbildung 10

Endenergieverbrauch Subsektoren des Papiergewerbes (ex EBZ 48), in TJ

	beobachtet	geschätzt	beobachtet	geschätzt	beobachtet	geschätzt
	EEV HZPP (WZ 17.1)	EEV HZPP (WZ 17.1)	Brennstoff-, Wärme- verbrauch HZPP (WZ 17.1)	Brennstoff-, Wärme- verbrauch HZPP (WZ 17.1)	Strom- verbrauch HZPP (WZ 17.1)	Strom- verbrauch HZPP (WZ 17.1)
2012	177192	179023	119913	122195	57279	56828
2013	167056	171700	111075	116205	55981	55495
2014	182401	174448	127081	119161	55320	55287
2015	181770	179873	126836	125015	54934	54857
2016	178228	183157	124163	128804	54065	54353
2017	184651	185805	130419	131448	54231	54358
2018	177072	181796	124405	128556	52667	53240
2019	174824	172326	123972	120874	50852	51452
2020	167904	163564	118556	114069	49348	49494
2021	175567	181088	122768	128649	52799	52438

	beobachtet	geschätzt	beobachtet	geschätzt	beobachtet	geschätzt
	EEV Herst. v. Waren aus Papier und Pappe (WZ 17.2)	EEV Herst. v. Waren aus Papier und Pappe (WZ 17.2)	Brennstoff-, Wärme- verbrauch Herst. v. Waren aus Papier und Pappe (WZ 17.2)	Brennstoff-, Wärme- verbrauch Herst. v. Waren aus Papier und Pappe (WZ 17.2)	Strom- verbrauch Herst. v. Waren aus Papier und Pappe (WZ 17.2)	Strom- verbrauch Herst. v. Waren aus Papier und Pappe (WZ 17.2)
2012	45516	42205	29362	26402	16153	15802
2013	59454	59766	44292	44292	15162	15474
2014	42813	42138	27875	26867	14937	15272
2015	37886	39079	24464	24479	13423	14600
2016	37694	39316	24094	25130	13601	14186
2017	37462	38933	23891	24822	13571	14112
2018	37198	38486	23920	24454	13278	14033
2019	34791	37301	21840	24198	12951	13103
2020	36944	36602	23248	23294	13697	13308
2021	37396	35857	23767	22645	13629	13212

Tabelle B9: Daten zu Abbildung 11

Endenergieverbrauch Subsektoren Verarb. v. Steine u. Erden (ex EBZ 53), in TJ

	beobachtet	geschätzt	beobachtet	geschätzt	beobachtet	geschätzt
	EEV Zement- industrie (WZ 23.51)	EEV Zement- industrie (WZ 23.51)	Brennstoff-, Wärme- verbrauch Zement- industrie (WZ 23.51)	Brennstoff-, Wärme- verbrauch Zement- industrie (WZ 23.51)	Strom- verbrauch Zement- industrie (WZ 23.51)	Strom- verbrauch Zement- industrie (WZ 23.51)
2012	98004	100064	85051	86729	12952	13335
2013	97848	93588	85154	80209	12693	13378
2014	100102	98708	87041	85209	13062	13500
2015	99582	99691	86667	85964	12915	13727
2016	96402	100822	83163	86844	13239	13978
2017	106155	108337	92324	94119	13830	14218
2018	107956	108239	94201	93763	13755	14476

	beobachtet	geschätzt	beobachtet	geschätzt	beobachtet	geschätzt
2019	107686	108015	93679	93642	14008	14373
2020	107381	107397	93250	93421	14131	13976
2021	107978	106890	93656	92803	14323	14087
	EEV Kalk- industrie (WZ 23.52)	EEV Kalk- industrie (WZ 23.52)	Brennstoff-, Wärme- verbrauch Kalkindustrie (WZ 23.52)	Brennstoff-, Wärme- verbrauch Kalkindustrie (WZ 23.52)	Strom- verbrauch Kalkindustrie (WZ 23.52)	Strom- verbrauch Kalkindustrie (WZ 23.52)
2012	30329	28774	27882	26232	2447	2542
2013	30138	28547	27710	26056	2428	2491
2014	30820	30446	28314	28028	2506	2418
2015	30779	30110	28274	27673	2504	2437
2016	29405	30351	26963	27915	2442	2437
2017	30118	29867	27695	27423	2423	2445
2018	27592	27676	25161	25161	2431	2515
2019	28295	28976	25979	26518	2316	2458
2020	27083	28580	24819	26086	2264	2494
2021	28068	28402	25728	25934	2340	2468

Tabelle B10: Daten zu Abbildung 12

Endenergieverbrauch im Sektor Metallerzeugung nach Produktionsstufen (ex EBZ 54), in TJ

	beobachtet	geschätzt	Beobachtet	geschätzt	beobachtet	geschätzt
	EEV Sinter- anlagen	EEV Sinter- anlagen	EEV Hochofen	EEV Hochofen	EEV Oxygenstahl	EEV Oxygenstahl
2012	57028	59793	299260	309493	8856	8297
2013	58883	60394	310489	305849	9382	8548
2014	55034	55356	303921	316298	9737	8727
2015	54601	54759	321713	328403	9888	9039
2016	47361	52676	339299	329794	10234	9477
2017	49165	54322	332692	326267	10081	9469
2018	50256	54744	334783	313921	10129	9352
2019	53033	54748	314659	296574	9765	9051

	beobachtet	geschätzt	Beobachtet	geschätzt	beobachtet	geschätzt
2020	44063	45605	255151	249200	7957	7890
2021	56490	58141	345592	343450	8667	9261
	EEV Elektrostahl	EEV Elektrostahl	EEV Walzwerke	EEV Walzwerke	EEV Weiter- verarbeitung	EEV Weiter- verarbeitung
2012	35410	33274	73285	72146	41352	42284
2013	31188	31825	76093	75764	31743	31683
2014	30627	31279	76275	74106	35541	30704
2015	28869	29907	76802	75339	30474	31502
2016	33919	34281	79054	73790	35633	34940
2017	35389	35635	74900	78068	32585	32083
2018	29363	29921	72660	74768	32849	31377
2019	27668	27691	72946	70971	28977	29667
2020	26382	26917	70310	71229	27267	27192
2021	27550	27095	72343	71550	30088	30227

Tabelle B11: Daten zu Abbildung 13

Brennstoff- und Reduktionsmittelverbrauch im Sektor Metallerzeugung nach Produktionsstufen (ex EBZ 54), in TJ

	beobachtet	geschätzt	Beobachtet	geschätzt	beobachtet	geschätzt
	Brennstoff- verbrauch Sinter- anlagen	Brennstoff- verbrauch Sinter- anlagen	Brennstoff- verbrauch Hochofen	Brennstoff- verbrauch Hochofen	Brennstoff- verbrauch Oxygenstahl	Brennstoff- verbrauch Oxygenstahl
2012	53574	56374	290903	301037	3543	3698
2013	55362	56903	302211	297695	3854	3646
2014	51500	51894	295618	308075	3865	3630
2015	51118	51186	313370	320022	3776	3702
2016	44128	49422	331446	321972	4153	4127
2017	45790	50880	324396	317943	3860	3950
2018	46598	51228	326788	305715	3800	3852
2019	49332	51185	306235	288572	3725	3721
2020	40751	42174	247615	242012	3565	3534

	beobachtet	geschätzt	Beobachtet	geschätzt	beobachtet	geschätzt
2021	52626	54575	338555	335583	3711	3752
	Brennstoff- verbrauch Elektrostahl	Brennstoff- verbrauch Elektrostahl	Brennstoff- verbrauch Walzwerke	Brennstoff- verbrauch Walzwerke	Brennstoff- verbrauch Weiter- verarbeitung	Brennstoff- verbrauch Weiter- verarbeitung
2012	6377	6208	54912	53666	30852	30852
2013	5726	5908	58194	57605	19861	19861
2014	5609	5690	58386	56124	23276	18959
2015	5406	5428	58418	57549	18428	19204
2016	10007	10010	61105	56445	19029	18793
2017	10636	10636	58144	60372	18465	19587
2018	5316	5440	56215	57515	18955	19101
2019	5210	4814	57227	54469	18181	17920
2020	4843	4845	54783	55758	16269	16212
2021	4426	4592	55639	55432	17781	17969

Tabelle B12: Daten zu Abbildung 21

Endenergieverbrauch der Umwandlungssektoren, Ergebnisse der Ex-post-Prognose, in TJ, b=beobachtet, g=geschätzt (Ergebnis einer dynamischen Modell-Prognose), l=geschätzt nach alter Methode (Indikatorik).

		EBZ 40	EBZ 33	EBZ 35	EBZ 37	EBZ 38
2012	b	525.686	22.969	15.719	8.029	256.582
	g	529.419	22.969	16.679	8.211	256.582
	ı	534.441	23.877	16.944	7.572	264.629
2013	b	538.802	23.628	14.862	8.835	261.856
	g	550.779	24.086	16.829	8.250	266.708
	1	531.158	22.328	17.069	7.343	258.554
2014	b	513.959	25.033	15.397	8.658	240.270
	g	517.939	25.237	16.822	7.917	240.560
	I	522.368	23.588	16.727	6.098	254.920
2015	b	547.429	25.203	17.495	8.677	270.610
	g	547.346	26.621	18.614	8.034	267.107
	I	529.001	24.965	16.420	5.777	262.115

		EBZ 40	EBZ 33	EBZ 35	EBZ 37	EBZ 38
2016	b	552.838	26.780	17.161	7.534	282.390
	g	556.380	26.972	17.765	7.221	282.149
	I	527.630	25.334	16.373	5.536	265.803
2017	b	542.847	26.844	19.138	8.317	276.707
	g	542.831	28.162	19.617	7.594	272.488
	1	520.874	25.348	15.994	5.150	267.001
2018	b	573.611	27.614	18.130	7.136	267.888
	g	574.630	27.679	18.612	6.784	267.027
	1	546.595	25.264	15.691	4.370	253.056
2019	b	564.655	26.496	16.862	7.366	273.953
	g	562.428	26.436	17.044	7.391	267.649
	1	532.228	23.808	13.048	4.178	254.670
2020	b	506.006	24.916	14.841	6.642	272.318
	g	500.832	23.938	15.034	7.586	262.336
	1	461.787	21.247	11.014	3.674	242.807
2021	b	503.436	25.898	13.013	7.580	259.570
	g	511.014	25.619	13.888	7.938	261.996
	1	476.969	22.259	12.371	3.629	242.789

Tabelle B13: Daten zu Abbildung 22

Energieverbrauch der Umwandlungssektoren, Ergebnisse der Ex-post-Prognose, in TJ, b=beobachtet, g=geschätzt (Ergebnis einer dynamischen Modell-Prognose), I=geschätzt nach alter Methode (Indikatorik).

		Kohle	Mineralöl	Gase	Strom	Fernwärme	EE
2012	b	15.314	212.620	81.513	187.121	10.749	19.072
	g	15.025	211.401	82.859	189.486	12.198	19.142
	1	16.088	224.475	78.179	189.782	11.324	15.296
2013	b	10.298	215.426	88.668	188.910	11.384	19.806
	g	10.358	222.859	86.115	193.967	13.292	19.891
	1	11.242	224.299	75.097	189.541	11.405	15.263
2014	b	9.681	189.741	95.725	182.380	11.453	20.630
	g	9.735	195.701	89.874	184.993	12.601	20.700
	I	10.736	220.636	76.156	184.123	11.180	15.188
2015	b	8.849	215.810	97.010	187.661	11.358	22.227

		Kohle	Mineralöl	Gase	Strom	Fernwärme	EE
	g	9.524	216.279	93.513	189.060	12.955	21.553
	1	10.659	220.738	78.682	188.070	11.093	15.244
2016	b	7.348	226.016	99.878	179.341	12.500	21.870
	g	7.718	229.617	95.817	182.508	13.294	21.612
	1	10.243	223.203	80.981	181.542	10.958	14.818
2017	b	8.025	223.437	99.387	171.936	14.168	22.324
	g	8.034	220.992	98.005	175.024	15.323	21.970
	1	10.226	225.690	80.919	174.492	11.153	14.825
2018	b	7.766	209.900	149.185	170.079	15.265	20.674
	g	7.982	219.023	141.207	171.718	14.305	19.904
	1	10.007	216.287	123.677	170.417	10.826	14.803
2019	b	7.608	220.602	151.243	151.393	13.651	20.005
	g	7.566	219.971	146.870	155.270	13.137	19.678
	1	7.950	218.132	128.429	152.697	10.217	14.804
2020	b	6.888	202.940	125.055	137.873	12.625	20.502
	g	6.960	197.185	122.852	142.393	11.657	19.824
	1	6.562	208.024	84.604	138.509	9.312	14.776
2021	b	5.127	206.779	114.093	144.745	12.962	19.612
	g	5.135	204.303	121.627	148.871	12.199	18.942
	1	7.686	207.979	89.669	147.317	9.537	14.778

Tabelle B14: Daten zur Abbildungen 23

Energieverbrauch im Umwandlungsbereich nach Energieträgern, in TJ

		Steink.	Braunk.	Min.öl	Gase	EE	Sonst.	Strom	Fernw.
2012	b	2.495	12.819	212.620	81.513	19.072	1.792	187.121	10.749
	g	2.495	12.530	211.401	82.859	19.142	1.792	189.288	12.123
2013	b	115	10.183	215.426	88.668	19.806	4.426	188.910	11.384
	g	115	10.243	222.859	86.115	19.891	4.426	193.660	12.622
2014	b	0	9.681	189.741	95.725	20.630	4.351	182.380	11.453
	g	0	9.735	195.701	89.874	20.700	4.351	184.588	11.945
2015	b	0	8.849	215.810	97.010	22.227	4.515	187.661	11.358
	g	0	9.524	216.279	93.513	21.553	4.515	190.567	12.560

		Steink.	Braunk.	Min.öl	Gase	EE	Sonst.	Strom	Fernw.
2016	b	0	7.348	226.016	99.878	21.870	5.884	179.341	12.500
	g	0	7.718	229.617	95.817	21.612	5.884	182.929	13.224
2017	b	0	8.025	223.437	99.387	22.324	3.569	171.936	14.168
	g	0	8.034	220.992	98.005	21.970	3.569	174.943	15.338
2018	b	0	7.766	209.900	149.185	20.674	743	170.079	15.265
	g	0	7.982	219.023	141.207	19.904	580	171.387	13.937
2019	b	0	7.608	220.602	151.243	20.005	154	151.393	13.651
	g	0	7.566	219.971	146.870	19.678	0	154.939	12.712
2020	b	0	6.888	202.940	125.055	20.502	124	137.873	12.625
	g	0	6.960	197.185	122.852	19.824	0	142.375	11.593
2021	b	0	5.127	206.779	114.093	19.612	118	144.745	12.962
	g	0	5.135	204.303	121.627	18.942	4	148.830	11.335
2022	b	-	-	-	-	-	-	-	-
	g	0	5.359	216.423	128.620	19.659	112	148.167	11.900