TEXTE

02/2017

Optimierung der Separation von Bauteilen und Materialien aus Altfahrzeugen zur Rückgewinnung kritischer Metalle (ORKAM)

Endbericht

TEXTE 02/2017

Umweltforschungsplan des Bundesministeriums für Umwelt, Naturschutz, Bau und Reaktorsicherheit

Forschungskennzahl 3713 33 337 UBA-FB 002394

Optimierung der Separation von Bauteilen und Materialien aus Altfahrzeugen zur Rückgewinnung kritischer Metalle (ORKAM)

von

Matthias Groke, Wolfgang Kaerger Callparts Recycling GmbH, Ketzin

Knut Sander Ökopol GmbH Institut für Ökologie und Politik, Hamburg

Maik Bergamos ELPRO Elektronik-Produkt Recycling GmbH, Braunschweig

Im Auftrag des Umweltbundesamtes

Impressum

Herausgeber:

Umweltbundesamt Wörlitzer Platz 1 06844 Dessau-Roßlau Tel: +49 340-2103-0

Fax: +49 340-2103-2285 info@umweltbundesamt.de

Internet: www.umweltbundesamt.de

f /umweltbundesamt.de **y** /umweltbundesamt

Durchführung der Studie:

Callparts Recycling GmbH Gewerbegebiet Etzin 14669 Ketzin

Abschlussdatum:

Juli 2015

Redaktion:

Fachgebiet III 1.6 Produktverantwortung Regina Kohlmeyer, Inga Niederhausen

Publikationen als pdf:

http://www.umweltbundesamt.de/publikationen

ISSN 1862-4804

Dessau-Roßlau, Januar 2017

Das diesem Bericht zu Grunde liegende Vorhaben wurde mit Mitteln des Bundesministeriums für Umwelt, Naturschutz, Bau und Reaktorsicherheit unter der Forschungskennzahl 3713 33 337 gefördert. Die Verantwortung für den Inhalt dieser Veröffentlichung liegt bei den Autorinnen und Autoren.

Kurzbeschreibung

In modernen Automobilen wird im zunehmenden Maße Elektronik eingesetzt, die steigende Mengen an kritischen und umweltrelevanten Metallen (z.B. Gold, Silber, Palladium, Indium, Neodym und weitere Seltene Erden) enthält. In der herkömmlichen Behandlungspraxis werden Restkarossen nach dem Entfernen von Schadstoffen und der teilweisen Demontage von Gebrauchtteilen und Wertstoffen in der Regel geschreddert. Eine gezielte Separation der Komponenten mit relevanten Gehalten an kritischen Metallen mit dem Ziel des Materialrecyclings erfolgt meist nicht, obwohl das Recycling zur Ressourcenschonung beitragen könnte. In diesem Projekt wurden aufbauend auf einer Literaturauswertung 30 elektr(on)ische Komponenten ausgewählt, die jeweils in einem Demontageversuch aus 11 jungen Altfahrzeugen separiert und von denen einige anschließend zur Bestimmung der Materialzusammensetzung weiter zerlegt wurden. Um Kosten und Erlöse der Separation bestimmen zu können, wurde ein Kalkulationsinstrument entwickelt.

Im Ergebnis zeigt sich, dass einige Komponenten wirtschaftlich separiert werden können. Allerdings ergeben sich bei gleichen Komponenten aus unterschiedlichen Altfahrzeugen recht große Spannweiten, bedingt u.a. durch abweichende Demontagezeiten oder unterschiedliche Metallgehalte. Zusätzlich benötigte Arbeitszeiten wirken sich kritisch auf die Wirtschaftlichkeit aus, wobei das Potential, den Separationsaufwand zu senken, gering ist. Als wichtige Empfehlung zur Optimierung der Separation von Fahrzeugelektronik wird daher die branchengerechte Informationsbereitstellung über Art und Menge der in bestimmten Komponenten der Fahrzeugelektronik enthaltenen kritischen bzw. umweltrelevanten Metalle genannt.

Abstract

Electronics containing increasing amounts of critical and environmentally relevant metals (e.g. gold, silver, palladium, indium, neodymium and other rare earth metals) are increasingly used in modern automobiles. In practice of conventional treatment it is common to shredder end-of-life vehicles (ELV) after depollution and partial separation of spare parts. A selective separation of components containing relevant amounts of critical metals aiming at material recycling is usually not implemented, even though resources could be saved. Based on a literature analysis, in this project 30 electric and electronic components were selected and dismantled from each car of a sample of 11 young ELVs. Some components were disassembled further to analyze their composition. In order to calculate costs and revenues of dismantling, a special calculation tool has been developed.

The outcome is that the dismantling of some components turned out to be economically feasible. Regarding the same components in different ELVs, the results may differ, e.g. due to varying metal content or time needed for dismantling. In case additional time is needed for dismantling, this may have negative consequences in terms of profitability. The potential to reduce the dismantling effort is limited. As a consequence, it is recommended to provide the dismantlers with appropriate information about which components are beneficial to separate, their identification and localization to be able to optimize the dismantling of automobile electronics.

Inhaltsverzeichnis

Abbil	dungsverz	zeichnis	10
Tabe	llenverzei	chnis	13
Abkü	rzungsver	zeichnis	19
Zusa	mmenfass	sung	22
Sumi	mary		36
1	Einleitun	g	49
	1.1	Problemstellung und Motivation	49
	1.2	Aufbau des Berichts	50
2	Kritische	umweltrelevante Metalle in der Autoelektrik und -elektronik	51
	2.1	Relevante kritische Metalle und Systematik der Elemente eines Fahrzeugs	51
	2.2	Anwendungsbereiche	54
3	Mengen	an ORKAM-Elementen je funktionaler Einheit bzw. Komponente	60
	3.1	Leiterplatten	60
	3.1.1	Kondensatoren	61
	3.1.2	Widerstände	61
	3.1.3	Integrierte Schaltungen (IC), Mikrochips	62
	3.1.4	Lote	62
	3.1.5	Leiterplatten unbestückt	63
	3.1.6	Bestückte Leiterplatten	64
	3.2	Magnete	69
	3.3	Flüssigkristallanzeigen-Bildschirme	71
	3.4	LED	73
	3.5	Sensoren	74
	3.5.1	Magnetsensoren/Bewegungssensoren	76
	3.5.2	Sauerstoffsensoren	76
	3.5.3	Radar	76
	3.5.4	Temperatursensoren	77
	3.5.5	Fazit	77
	3.6	Zündkerzen	78
	3.7	Sonstiges	79
	3.7.1	Kabelverbindungen	79

	3.7.2	Stecker	79
	3.7.3	Relais	79
	3.7.4	Sicherungen	80
	3.7.5	Schalter und Kontakte	80
	3.7.6	Kunststoffe mit Antimon	80
	3.7.7	Andere Geräte der Unterhaltungselektronik	80
4	Kategoris	sierung von Fahrzeugkomponenten	81
	4.1	Kategorisierungen in anderen Untersuchungen	81
	4.1.1	Komponenten-Kategorisierung im EU-Projekt SEES	81
	4.1.2	Komponenten-Kategorisierung im Schweizer Projekt zur Automobilelektronik	82
	4.1.3	Komponentenkategorisierung nach Alonso et al. 2012	83
	4.1.4	Komponenten-Kategorisierung einer japanischer Altfahrzeug-Zerlegestudie	84
	4.2	Kategorisierung der Komponenten für das vorliegende Projekt	84
5	Anzahl/N	Nengen der Komponenten je Fahrzeug	86
	5.1	Leiterplatten	86
	5.2	Magnetanwendungen	86
	5.2.1	Anzahl und Lokalisierung	86
	5.2.2	Mengen ORKAM-Elemente	87
	5.3	LCD	90
	5.4	Licht	91
	5.5	Sensoren	91
	5.6	Aktuatoren	91
	5.7	Steuergeräte	92
	5.8	Verteiler	94
	5.9	Sonstige	95
6	Ableitun	g einer "30er-Liste" der zu demontierenden Komponenten	96
	6.1	Vorgehen bei der Auswahl der "30er-Liste", Auswahlkriterien	96
	6.2	Auswahl der zu demontierenden Komponenten	97
	6.2.1	Motoren, weitere Magnetanwendungen	97
	6.2.2	Bildschirme	99
	6.2.3	Licht (LED)	99
	6.2.4	Sensoren	100

	6.2.5	Aktuatoren	102
	6.2.6	Steuergeräte	102
	6.2.7	Verteiler	103
	6.2.8	Sonstiges	104
	6.2.9	Auswahl der zu separierenden Komponenten aus 117 potentiell relevanten Komponenten	105
	6.3	Prüfung der Auswahl	120
	6.4	Ergebnis: "30er-Liste" (mit Ersatzkomponenten) der zu demontierenden Komponenten	121
7	Altfahrz	eugstichprobe	124
	7.1	Ziel und Vorgehen	124
	7.2	Kriterien für die Fahrzeugauswahl	124
	7.2.1	PKW-Segmentierung	124
	7.2.2	Platzierung eines Fahrzeugtyps im Segment	125
	7.2.3	Baujahr des Fahrzeuges	126
	7.2.4	Markenvielfalt	126
	7.2.5	Verfügbarkeit	126
	7.3	Ergebnis: "11-er-Liste" Altfahrzeugauswahl	127
	7.4	Abgleich Fahrzeugwahl und Komponenten	128
	7.4.1	Ziel und Vorgehen	128
	7.4.2	Komponentenverfügbarkeit in der Altfahrzeugstichprobe	128
8	Zerlegel	conzept	129
	8.1	Altfahrzeugbehandlung gemäß Altfahrzeugverordnung	129
	8.2	Arbeitsplatzgestaltung und Ausrüstung im Demontagebetrieb	130
	8.3	Lokalisierung der Komponenten im Fahrzeug und Dokumentation	131
	8.4	Vorgehen bei der Separation und bewertungsrelevante Zeit	132
	8.5	Dokumentation der Zerlegung	134
	8.5.1	Komponentenlage in Auf- und Seitenansicht	134
	8.5.2	Zerlegeprotokoll	135
	8.5.3	Fotodokumentation, Kennzeichnen und Sammeln	135
9	Durchfü	hrung der Separation und Datenablage	135
	9.1	Beispiel für die Lage, Mengen und Massenverteilung von Komponenten	136
	9.2	Zusätzlich separierte Komponenten	138

	9.3	Werkzeuge und Methoden bei der Separation	.141
	9.4	Beispiel des Ablaufs und der Vorgänge einer Zerlegung	.141
	9.5	Zeit zum Separieren von Komponenten	.144
	9.6	Ergebnisse des Separationsversuchs	.147
	9.7	Einflussfaktoren auf Aufwand und Wirtschaftlichkeit der Separation	.150
10	Entwickl	ung eines Werterechners zur Wirtschaftlichkeitsbetrachtung	.151
11	Zerlegun	g von Komponenten und Wirtschaftlichkeitsbetrachtung	.152
	11.1	Vorgehensweise	.152
	11.1.1	Auswahl der Komponenten zur Zerlegung	.152
	11.1.2	Vorgehen bei der Komponentenzerlegung	.154
	11.1.3	Wirtschaftlichkeitsbetrachtung	.155
	11.2	Komponenten- und Materialpreise für die Erlösberechnung	.157
	11.2.1	Komponentenpreise	.157
	11.2.2	Mögliche Materialerlöse des Elektroverwerters	.158
	11.2.3	Metallpreise und andere Wertstoffe	.159
	11.2.4	Metallgehalte von Leiterplatten	.160
	11.2.5	Sauerstoffsensor (Lambdasonde)	.161
	11.3	$\label{thm:condition} \textbf{Ergebnisse der Zerlegeversuche: Materialgehalte und Wirtschaftlichkeitsbetrachtung}$.162
	11.3.1	Gruppe Motoranwendungen	.162
	11.3.2	Gruppe Steuerungen und Verteiler	.171
	11.3.3	Gruppe Bildschirmanwendungen	.179
	11.3.4	Gruppe Licht	.183
	11.3.5	Gruppe Sensoren	.186
	11.3.6	Gruppe Aktuatoren	.190
	11.4	Szenarien für die Separation von Komponenten aus dem Motorraum	.190
	11.5	Zusammenfassung der Ergebnisse aus Kapitel 11.3 und Schlussfolgerungen	.191
12	Empfehl	ungen und Optimierungsvorschläge zur Separation von Fahrzeugelektronik	.195
	12.1	Komponentenverwertung: Szenario 2025	.195
	12.1.1	Vermarktungsvarianten	.195
	12.1.2	Variantenvergleich und Handlungsoptionen	.196
	12.2	Anmerkungen zur Logistik von Fahrzeugelektronik zur Verwertung	.198

	12.3	Empfehlungen für die Separation von Komponenten mit kritischen und umweltrelevanten Metallen bei der Altfahrzeugdemontage	199
	12.4	Informationen zur Planung der Separation von Fahrzeugelektronik für Auto- und Elektroverwerter	203
13	Ausblick		205
14	Quellenv	verzeichnis	206
15	Anhang.		212
	15.1	Anhang 1: Leiterplattenqualitäten	212
	15.2	Anhang 2: Programmbeschreibung des Werterechners	213
	15.2.1	Hinweise zur Excel-Datei und der Sicherung des Programms	213
	15.2.2	Verwendung des Werterechners	214
	15.2.2.1	Die Startseite und Optionen der Datenlöschung (Programmseite 1 und 2)	214
	15.2.2.2	Das Hauptmenü (Programmseite 3)	216
	15.2.2.3	Dateneingabe: Programmseite 4	217
	15.2.2.4	Dateneingabe: Programmseite 5	219
	15.2.2.5	Dateneingabe: Programmseite 6	219
	15.2.2.6	Dateneingabe: Programmseite 7	221
	15.2.2.7	Ergebnisse und Auswertung (Programmseite 8-11)	222
	15.2.2.8	Gesamtübersicht & Bilanzierung (Programmseite 12)	224
	15.2.2.9	Auswahl der graphischen Darstellungen (Programmseite 13)	226
	15.3	Anhang 3: Zerlegung der Altfahrzeuge	230
	15.3.1	Zerlegeprotokoll	230
	15.3.2	Zerlegedaten	231
	15.4.1	Abbildungen separierter Komponenten	261
	15.4.2	Abbildungen zerlegter Komponenten	267

Abbildungsverzeichnis

Abbildung 1:	Ablauf der Altfahrzeugbehandlung und Einbettung der Separation der Fahrzeugelektronik	29
Figure 2:	Procedures of treatment and imbedding of the dismantling of the vehicle electronics	42
Abbildung 3:	Ablauf der Untersuchung in Kapitel 3 bis 5 am Beispiel einer elektrischen Servolenkung	51
Abbildung 4:	Im Projekt untersuchte Elemente ("ORKAM-Elemente") im Periodensystem der Elemente	53
Abbildung 5:	Systematik der Bezeichnung der Elemente eines Autos	54
Abbildung 6:	Verteilung von Seltenen Erden in den Segmenten einer 2012er US- Mittelklasselimousine (Datengrundlage Alonso et al. 2012)	57
Abbildung 7:	Anteil an Seltenen Erden in einer 2012er US- Mittelklasselimousine (Datengrundlage Alonso et al. 2012)	58
Abbildung 8:	Verteilung von Seltenerdoxiden in Neodym-Eisen-Bor-Magneten in 2008 (Goonan 2011)	69
Abbildung 9:	Anwendungen von Seltenen Erden in Autos (Alonso et al. 2012)	69
Abbildung 10:	Beispiel Beschichtung eines Neodymmagneten (Bildquelle Ökopol)	71
Abbildung 11:	Seltenerdmengen in Autos (Datengrundlage: Alonso et al. 2012)	90
Abbildung 12:	Nachfrage nach Autobildschirmen je Anwendungsbereich weltweit (Quelle: DisplaySearch 2012)	90
Abbildung 13:	Verteilung der Komponenten in der "30er-Liste" auf die Komponentengruppen	119
Abbildung 14:	Altfahrzeug-Demontage-System (Al-jon 2013)	131
Abbildung 15:	Explosionszeichnung eines VW Passat: mit Steuergeräten und Sensoren (VW ETKA 2013)	132
Abbildung 16:	Ablauf der Altfahrzeugbehandlung und Einbettung der Separation der Fahrzeugelektronik	133
Abbildung 17:	Fahrzeug in der Auf- und Seitenansicht	135
Abbildung 18:	Komponentenlage im Fahrzeug des Segments Großraumlimousine in der Auf- und Seitenansicht	137
Abbildung 19:	Separationszeiten (Freilegen, Separation 30er- und Zusatzkomponenten) nach Altfahrzeugen	147
Abbildung 20:	Hauptmenü des ORKAM-Wertrechners	151
Abbildung 21:	Servomotor - Kleinwagen	155
Abbildung 22:	Navigationsgerät - Mini Van	155

Abbildung 23:	Massenverteilung von Materialien in Motoren	163
Abbildung 24: H	eizungsgebläse	163
Abbildung 25:	Anlasser	165
Abbildung 26:	Massenanteile im Anlasser	165
Abbildung 27:	Neodymmagnet eines Lautsprechers (links) und einer Verkleidung (rechts)	167
Abbildung 28	Lichtmaschine – Großraumlimousine	168
Abbildung 29:	Ø Materialanteile in 5 - Lichtmaschinen	168
Abbildung 30:	Massenverteilung von Materialien in Steuerungen und Verteiler	172
Abbildung 31:	Kombiinstrument – Kleinstwagen	180
Abbildung 32:	Navigationsgerät - Geländewagen Medium	180
Abbildung 33:	Massenverteilung von Materialien in Bildschirmanwendungen	181
Abbildung 34: Ko	ombileuchte - Obere Mittelklasse	184
Abbildung 35: Ri	ückleuchte - Obere Mittelklasse	184
Abbildung 36: LE	ED Beleuchtung	184
Abbildung 37:	Abstandssensor - Obere Mittelklasse	189
Abbildung 38:	Nahdistanzradar - Obere Mittelklasse	189
Abbildung 39:	Großhandelserlöse in Relation zu Aufwand für Demontage- und Aufbereitung	191
Abbildung 40:	Nummerierung der Haupt-Programmseiten des Werterechners	214
Abbildung 41:	Startseite (Programmseite 1)	214
Abbildung 42:	Bestätigung der Datenlöschung (Programmseite 2)	216
Abbildung 43:	Das Hauptmenü (Programmseite 3)	217
Abbildung 44:	Dateneingaben durch den Altfahrzeugverwerter (Programmseite 4)	218
Abbildung 45:	Auswahl der zu demontierenden Komponenten (Programmseite 5)	219
Abbildung 46:	Dateneingaben durch den Elektronikverwerter (Programmseite 6)	220
Abbildung 47:	Definition der Materialinhalte (Programmseite 7)	221
Abbildung 48:	Materialdatenblatt der Komponente Nr. 1 "Heizungsgebläse" (oberer Ausschnitt)	222
Abbildung 49:	Ergebnis- und Auswertungsseite des Fahrzeugverwerters 1/2 (Programmseite 8)	223
Abbildung 50:	Detaillierte Auswertung Fahrzeugverwerter 2/2 (Programmseite 9)	223
Abbildung 51:	Ergebnis- und Auswertungsseite des Elektronikverwerters 1/2 (Programmseite 10)	224
	, , , , , , , , , , , , , , , , , , , ,	

Abbildung 52:	Detaillierte Auswertung der Ergebnisse des Elektronikverwerters 2/2 (Programmseite 11)	224
Abbildung 53:	Gesamtübersicht und Bilanzierung (Programmseite 12)	225
Abbildung 54:	Auswahl der graphischen Darstellungen des Wertrechners (Programmseite 13)	226
Abbildung 55:	Übersicht über die demontierten Elemente (Programmseite 14)	227
Abbildung 56:	Wirtschaftlichkeit der Demontage (Programmseite 15, oberer Teil der Darstellung)	227
Abbildung 57:	Aufteilung der Fraktionen nach Masse (Programmseite 16, oberer Teil der Darstellung)	228
Abbildung 58:	Aufteilung der Fraktionen nach Kosten-/Erlös-Situation (Programmseite 17, mittlerer Teil der Darstellung)	228
Abbildung 59:	Programmseite 18 (Absatzpreise der einzelnen ORKAM-Elemente vs. entstehende Demontagekosten)	229
Abbildung 60:	Separierte Komponenten	261
Abbildung 61:	Zerlegte Komponenten	267

Tabellenverzeichnis

Tabelle 1:	Magnetische Materialien in Schwedischen Fahrzeugen (Cullbrand & Magnusson 2012)	23
Tabelle 2:	ORKAM-Elemente [mg/kg] in bestückten Leiterplatte und ihren funktionalen Einheiten	24
Tabelle 3:	Beispiele für kritische Metalle in LCD-Anzeigen in Fahrzeugen (Massen pro Flächeneinheit, eigene Berechnungen)	25
Tabelle 4:	"30er-Liste" inklusive Ersatzkomponenten	26
Tabelle 5:	Ausgewählte Fahrzeuge für Demontageversuche	27
Tabelle 6:	Verteilung von Menge und Masse der Komponenten auf Fahrzeugbereiche	30
Tabelle 7:	Wirtschaftlichkeitsbetrachtung für die Komponenten der "30er-Liste"	31
Table 8:	Magnetic materials in Swedish vehicles (Cullbrand & Magnusson 2012)	37
Table 9:	Exemplary metal content of printed circuit boards (mg/kg)	38
Table 10:	Exemplary content of critical metals of LCD displays in vehicles (values per display unit, own calculation)	38
Table 11:	List of 30 priority vehicle components containing strategic metals for dismantling trials including additional components ("List of 30")	40
Table 12:	ELV sample for dismantling trials	41
Table 13:	Number and mass of the components in the different vehicle areas	43
Table 14:	Economic evaluation for the components of the "List of 30"	44
Tabelle 15:	Verwendung von ORKAM-Elementen in der Autoelektrik und -elektronik	55
Tabelle 16:	Zuordnungsmatrix zwischen ORKAM-Elementen und den funktionalen Einheiten in der Autoelektrik und -elektronik	58
Tabelle 17:	Inhaltsstoffe von Widerständen auf der Leiterplatte von Luftmengensensoren (ungefähre Werte geschätzt nach Du et al. 2014)	62
Tabelle 18:	Ausnahmen für bleihaltige Lote in Anhang II der Europäischen Altautorichtlinie (Stand 2013)	63
Tabelle 19:	Antimongehalte in Leiterplatten verschiedener Elektronikgeräte (Blaser et al. 2012b)	63
Tabelle 20:	Antimongehalte in Leiterplatten verschiedener Fahrzeuge (Sakai et al. 2013)	64
Tabelle 21:	Zusammensetzung von bestückten Leiterplatten aus Elektronikkomponenten verschiedener Herkunft nach Hagelüken (2010)	65
Tabelle 22:	Zusammensetzung von bestückten Leiterplatten aus Autos nach Arnaiz et al. (2006)	65

Tabelle 23:	Zusammensetzung von bestückten Leiterplatten von Kontrollinstrumenten aus einem Fahrzeug mit Verbrennungsmotor, Baujahr 1997, in Japan nach Sakai et al. (2013) (ORKAM-Elemente, Angaben in mg/kg)	65
Tabelle 24:	Zusammensetzung von bestückten Leiterplatten nach Schmid (2014)	66
Tabelle 25:	Zusammensetzung von bestückten Leiterplatten (nicht Fahrzeugspezifisch) nach Rodrigo/Castells (2004)	66
Tabelle 26:	ORKAM-Elemente in bestückten Leiterplatte und ihren funktionalen Einheiten	67
Tabelle 27:	Mögliche Zusammensetzungen von Seltenerd-Magneten (Quelle: MMPA o. J.)	70
Tabelle 28:	Beispielhafte Anteile Seltener Erden in Seltenerd-Magneten (Datengrundlagen Du 2011 et al. und Goonan 2011)	70
Tabelle 29:	Indium bzw. ITO-Gehalte in LCD (Böni et al. 2011)	72
Tabelle 30:	Schätzungen durchschnittlicher Gehalte an Seltenen Erden in LCD mit LED Hintergrundbeleuchtung (Buchert et al. 2012)	72
Tabelle 31:	Schätzungen von Absolutmengen verschiedener ORKAM-Elemente in verschiedenen Displays mit LED Hintergrundbeleuchtung in Autos (eigene Berechnungen)	72
Tabelle 32:	Zusammensetzung einer Modell-LED nach Spengler et al. (2012)	73
Tabelle 33:	Materialien in Referenz-LED-Lampe (E27, ca. 650 lm, ca. 10 W) nach Spengler et al. (2012)	73
Tabelle 34:	Sensorarten und ihre Anwendungsgebiete in KFZ (Quelle: Bosch 2013a)	75
Tabelle 35:	Inhaltsstoffe von Sauerstoffsonden (Wäger et al. 2013, Rodrigo/Castells 2004)	76
Tabelle 36:	Zu erwartende Inhaltsstoffe von Sensoren nach verschiedenen Quellen (siehe oben)	78
Tabelle 37:	Zusammenstellung der Angaben zum Metallgehalt von Zündkerzen	79
Tabelle 38:	Zusammenstellung der Angaben zum Metallgehalt von DVD-Player (RePro 2012)	80
Tabelle 39:	Kategorisierung der elektrischen und elektronischen Systeme im EU- Projekt SEES	81
Tabelle 40:	Kategorisierung der Bauteile im Schweizer Projekt zu seltenen Metallen in Automobilelektronik (Widmer & Wäger 2013) (siehe auch Blaser et al. 2012a)	82
Tabelle 41:	Kategorisierung der Bauteile in Alonso et al. (2012)	83
Tabelle 42:	Zuordnung von funktionalen Einheiten zu Komponentengruppen	85

Tabelle 43:	Gewichtsanteile von Leiterplatten in Autos nach verschiedenen Quellen	86
Tabelle 44:	Beispielhafte Magnetanwendungen in Autos (TDK 2011, TDK 2013a)	87
Tabelle 45:	Magnetwerkstoffe in einem Volvo-Mittelklasse-Pkw aktuellen Modelljahres mit Serienausstattung (CML "Conventional Midsize car, Low Specified") (Cullbrand & Magnusson 2012)	88
Tabelle 46:	Magnetwerkstoffe in einem Volvo-Mittelklasse-Pkw aktuellen Modelljahres mit hohem Ausstattungsgrad (CMH "Conventional Midsize car, High Specified") (Cullbrand & Magnusson 2012)	88
Tabelle 47:	Magnetwerkstoffe in einem Volvo-Oberklasse-Pkw eines Modelljahres vor einigen Jahren mit mittlerem Ausstattungsgrad (CLM "Conventional Large Car, Medium Specified") (Cullbrand & Magnusson 2012)	89
Tabelle 48:	Beispielhafte Magnetanwendungen in Sensoren (TDK 2011, TDK 2013a)	91
Tabelle 49:	Anzahl an Steuergeräten in VW Golf I bis V und Demontageaufwand (Knode 2009), (Knode 2007)	92
Tabelle 50:	In VW Golf I bis VW Golf V verbaute Steuergeräte, gestaffelt danach, ab welchem Modell das Steuergerät eingesetzt wurde (Knode 2008)	92
Tabelle 51:	Zusammensetzung Steuergerät zur Sitzverstellung, Angaben in Gew.% (Rodrigo/Castells 2004)	94
Tabelle 52:	ORKAM-relevante Zusammensetzung von Verteilerboxen (Rodrigo/Castells 2004)	95
Tabelle 53:	Motoren, Magnetanwendungen: Komponenten mit möglicher Relevanz für die "30er-Liste"	98
Tabelle 54:	Bildschirme: Komponenten mit möglicher Relevanz für die "30er-Liste"	99
Tabelle 55:	Licht (LED): Komponenten mit möglicher Relevanz für die "30er-Liste"	100
Tabelle 56:	Sensoren: Komponenten mit möglicher Relevanz für die "30er-Liste"	101
Tabelle 57:	Aktuatoren: Komponenten mit möglicher Relevanz für die "30er-Liste"	102
Tabelle 58:	Steuergeräte: Komponenten mit möglicher Relevanz für die "30er-Liste"	102
Tabelle 59:	Verteiler: Komponenten mit möglicher Relevanz für die "30er-Liste"	104
Tabelle 60:	Zusammenfassung der Komponenten der Kapitel 6.2 bis 6.2.8	105
Tabelle 61:	Bündelung der Komponenten mit Relevanz für die "30er-Liste"	110
Tabelle 62:	Prioritätensetzung zur weiteren Reduktion auf die "30er-Liste"	113
Tabelle 63:	Vorschlag für die "30er-Liste" inklusive Ersatzkomponenten	117
Tabelle 64:	Prüfung zur Abdeckung der ORKAM-Elemente in der "30er Liste"	120
Tabelle 65:	"30er-Liste" der zu demontierenden Komponenten inklusive Ersatzkomponenten	122
Tabelle 66:	Pkw-Neuzulassungen in Deutschland nach Segmenten (AUTOHAUS 2013)	125

Tabelle 67:	Neuzulassungen von Fahrzeugtypen im Segment "Untere Mittelklasse" (AUTOHAUS 2013)	126
Tabelle 68:	Fahrzeugstichprobe "11er-Liste"	127
Tabelle 69:	Basisinformationen über die zerlegten Fahrzeuge	136
Tabelle 70:	Unterscheidung der Teilsysteme mit farblicher Kennzeichnung	136
Tabelle 71:	Verteilung von Menge und Masse der Komponenten auf Fahrzeugbereiche der ausgewählten Segmente	138
Tabelle 72:	Zusätzlich separierte Komponenten	138
Tabelle 73:	Informationen aus der Zerlegung eines Fahrzeuges (Beispiel Großraumlimousine) gemäß Zerlegeplan und Protokoll (Zerlegekonzept, Kapitel 8)	141
Tabelle 74:	Zeit der Separation [min] am Beispiel einiger Komponenten (ohne störende Komponenten)	145
Tabelle 75:	Zeit der Separation [min] für ausgewählte Komponenten (inkl. störende Komponenten)	145
Tabelle 76:	Ausschnitt des Zerlegevorgangs einer Großraumlimousine in der Reihenfolge der Ausführung und mit Zerlegezeit	146
Tabelle 77:	Anzahl separierter Komponenten und Zerlegezeit bei einer Großraumlimousine	146
Tabelle 78:	Summe der Anzahl, Separationszeit und Masse der Komponenten je Segment	149
Tabelle 79:	Begründete Auswahl der weiter zu zerlegenden Komponenten	152
Tabelle 80:	Aufwand, Erlöse und Wirtschaftlichkeitsbetrachtung des Altfahrzeug- und Elektroverwerters	156
Tabelle 81:	Erlösbare Komponentenpreise [€/kg]	158
Tabelle 82:	Großhandelspreise für Altmetalle und relevante Materialien [€/kg]	159
Tabelle 83:	Börsennotierte Metallpreise (April/Mai 2014)	160
Tabelle 84:	Zusammensetzungen Leiterplatten unterschieden in Kategorien (Angaben in mg/kg) (Quelle: Scheideanstalt 4/2014)	161
Tabelle 85:	Annahmen zum Materialinhalt eines Sauerstoffsensors mit einem Gewicht von 73 g	162
Tabelle 86:	Materialdaten und Kennzahlen von Heizungsgebläsen	164
Tabelle 87:	Materialdaten und Kennzahlen von Servomotoren	164
Tabelle 88:	Materialdaten und Kennzahlen von Anlassern	165
Tabelle 89:	Materialdaten und Kennzahlen von Lüftermotoren	166
Tahelle 90.	Materialdaten und Kennzahlen von senarierten Lautsprechern	166

Tabelle 91:	Materialdaten und Kennzahlen von separierten Türverschlüssen	167
Tabelle 92:	Materialdaten und Kennzahlen von Lichtmaschinen	168
Tabelle 93:	Materialdaten und Kennzahlen von Motoren der Sitzverstellung	169
Tabelle 94:	Materialdaten und Kennzahlen von Scheibenwischermotoren	169
Tabelle 95:	Materialdaten und Kennzahlen von Scheibenhebern	170
Tabelle 96:	Materialdaten und Kennzahlen von Stellmotoren Getriebe	170
Tabelle 97:	Materialdaten und Kennzahlen von Motor- und Getriebesteuerungen	173
Tabelle 98:	Materialdaten und Kennzahlen von Fahrtsteuerungen	173
Tabelle 99:	Materialdaten und Kennzahlen von separierten Klimasteuerungen	174
Tabelle 100:	Materialdaten und Kennzahlen von separierten Airbagsteuerungen	175
Tabelle 101:	Materialdaten und Kennzahlen von Verteilerboxen	175
Tabelle 102:	Materialdaten und Kennzahlen vom Infotainment	177
Tabelle 103:	Materialdaten und Kennzahlen von Fahrwerksteuerung, Niveauausgangsregelung, Lenkungskontrolle	177
Tabelle 104:	Materialdaten und Kennzahlen von Multimediaanwendungen	178
Tabelle 105:	Materialdaten und Kennzahlen des Inverters	178
Tabelle 106:	Materialdaten und Kennzahlen sonstiger Steuerungen	179
Tabelle 107:	Metallgehalte [μg/cm²] und resultierender Metallwert [€/ cm²] je Komponente	180
Tabelle 108:	Materialdaten und Kennzahlen von Navigationssystemen	182
Tabelle 109:	Materialdaten und Kennzahlen von Kombiinstrumenten	182
Tabelle 110:	Bauteile einer Kette von LED in einer Kombileuchte	184
Tabelle 111:	Masse und Wert in 15 LED-Modulen einer Kombileuchte	185
Tabelle 112:	Materialdaten und Kennzahlen der Komponente 30 (Kombileuchte) und der Komponente 29 (Rückleuchte)	
Tabelle 113:	Materialdaten und Kennzahlen von Sauerstoffsensoren	187
Tabelle 114:	Materialdaten und Kennzahlen von Abstandssensoren	188
Tabelle 115:	Zusammenfassende Komponentenbewertung	193
Tabelle 116:	Vermarktungsvarianten für Fahrzeugelektronik aus Altfahrzeugen	196
Tabelle 117:	Preisbeispiele [€] für gebrauchte Kfz-Elektronik	197
Tabelle 118:	Separationsempfehlung (vergleiche Tabelle 115)	200
Tabelle 119:	Wirtschaftlichkeitsbewertung anhand eines Modellfahrzeuges	201
Tabelle 120:	Beschreibung der Schaltflächenfunktionen zur Datenlöschung	215

Tabelle 121:	Im Wertrechner standardmäßig hinterlegte Liste der Werkstoff- /und Output-Fraktionen des Elektroaltgeräteverwerters	220
Tabelle 122:	Auf Programmseite 12 angewandte Berechnungsformeln	225
Tabelle 123:	Kurzbeschreibung der Programmseiten 14 bis 20	226
Tabelle 124:	Zerlegedaten Untere Mittelklasse	231
Tabelle 125:	Zerlegedaten Kleinwagen	233
Tabelle 126:	Zerlegedaten obere Mittelklasse	236
Tabelle 127:	Zerlegedaten Untere Mittelklasse II	240
Tabelle 128:	Zerlegedaten Kleinstwagen	241
Tabelle 129:	Zerlegedaten Geländewagen Medium	243
Tabelle 130:	Zerlegedaten Minivan	246
Tabelle 131:	Zerlegedaten Geländewagen groß (Hybrid)	249
Tabelle 132:	Zerlegedaten Hochdachkombi	253
Tabelle 133:	Zerlegedaten Großraumlimousine	254
Tabelle 134:	Zerlegedaten Geländewagen groß	257

Abkürzungsverzeichnis

30	Index für Komponenten der "30er-Liste", siehe Tabelle 63
30er Komp.	Komponente(n) der "30er-Liste" der relevanten Komponenten, siehe Tabelle 63
ABS	Antiblockiersystem
a. n. g.	anderweitig nicht genannt (bei Abfallschlüsseln)
ASR	Antriebsschlupfregelung
ATF	Automotive Treatment Facility / Altfahrzeugdemontagebetrieb
В	Brutto
BAFU	Bundesamt für Umwelt (Schweiz)
CAN-BUS	Controller Area Network
CD	Compactdisc
dc	direct current, Gleichstrom
DVD	Digital Videodisc, Digital Versatile Disc
E	Index für extra Komponenten
E/A	Verhältnis von Erlös zu Aufwand
ElektroG	Elektro- und Elektronikgerätegesetz
ELV	end of life vehicle
EMPA	Eidgenössische Materialprüfungs- und Forschungsanstalt
ESP	Elektronisches Stabilitätsprogramm
GADSL	Global Automotive Declarable Substance List
Geländew. G	Geländewagen Groß (Segment)
GPS	Global Positioning System
Großraumlim.	Großraumlimusine (Segment)
HID	High intensity discharge lamp
Hochdachk.	Hochdachkombi (Segment)
IC	Integrierte Schaltkreise, Mikrochips
IDIS	International Dismantling Information System

IKT/UE	Informations- und Kommunikationstechnik / Unterhaltungselektronik
IMDS	International Material Data System
ITO	Indium-Zinn-Oxid
KBA	Kraftfahrt-Bundesamt
KMU	kleine und mittlere Unternehmen
KrWG	Kreislaufwirtschaftsgesetz
LCD	Liquid crystal display
LED	Light emitting diode
Lilon	Lithium-Ionen
MLCC	Multi Layer Ceramic Capacitor
n.b.	Nicht bekannt, auch "keine Daten"
NiMH	Nickel-Metallhydrid
N	Anzahl; im Zusammenhang mit E/A: Netto
NPO	Kondensatoren, deren Temperaturkoeffizient annähernd neutral ist (negative-positive-zero).
n.r.	nicht relevant
OEM	Original Equipment Manufacturer
O. Mittelkl.	Obere Mittelklasse (Segment)
PVC	Polyvinylchlorid
ORKAM	Projektakronym: Optimierung der Separation von Bauteilen und Materialien zur Rückgewinnung kritischer und umweltrelevanter Altfahr- zeugmetalle
RE	Rare earth
RePro	Weiterentwicklung der abfallwirtschaftlichen <u>Pro</u> duktverantwortung unter- <u>Re</u> ssourcenschutzaspekten am Beispiel von Elektro- und Elekt- ronikgeräten. Laufendes Forschungsvorhaben im Auftrag des Umweltbundesamtes, UFOPLAN, FKZ 3711 95 318
ReStra	Ermittlung von Substitutionspotenzialen von primären strategischen Metallen durch Sekundärmaterialien. Kurztitel: <u>Re</u> cyclingpotenzial <u>strat</u> egischer Metalle. Laufendes Forschungsvorhaben im Auftrag des Umweltbundesamtes, UFOPLAN, FKZ 3711 93 339

S	Index für störende Komponenten
Т	Zeit
U. Mittelkl.	Untere Mittelklasse (Segment)
VW	Volkswagen
WEEE	waste electronic and electrical equipment

Zusammenfassung

Fahrzeuge werden mit einem zunehmenden Anteil elektronischer Bestandteile ausgestattet, die strategische und/oder kritische Rohstoffe mit teilweise hohe Umweltrelevanz enthalten. Das im Auftrag des Umweltbundesamtes durchgeführte Projekt hat die relevantesten Bestandteile in diesem Zusammenhang identifiziert sowie Separationsversuche zur Ermittlung des Aufwandes für die Separation relevanter Komponenten und Wirtschaftlichkeitsbetrachtungen durchgeführt. Es wurde ein Kalkulationsinstrument entwickelt, um die Kosten der Separation und Behandlung von Komponenten sowie die Erlöse bei Vermarktung der separierten Materialien zu berechnen. Aus den Untersuchungen zur Separation ausgewählter Komponenten ergeben sich Empfehlungen für das Separieren bestimmter der zuvor zur Betrachtung ausgewählten 30 Komponenten, bei denen eine wirtschaftliche Demontage mit dem Ziel der stofflichen Verwertung erwartet werden kann.

Einführung in das Projekt ORKAM

Fahrzeuge werden zunehmend mit elektronischen Bestandteilen ausgestattet, die teilweise strategische und/oder kritische Metalle mit der hohen Umweltrelevanz wie Gold, Silber, Palladium, Tantal und seltene Erden enthalten. Solche Metalle werden zurzeit im Altfahrzeugdemontagebetrieb oder nach dem Schreddern der Restkarossen gewöhnlich nur in einem sehr beschränkten Umfang oder gar nicht zurück gewonnen. In Deutschland existieren bezüglich der Rückgewinnung kritischer und umweltrelevanter Metalle aus Altfahrzeugen noch keine Zielvorgaben, spezialisierte Demontagemethoden und ausreichende logistische Systeme und Reststoffmärkte, um einen hohen Grad von Rückgewinnung der weiter wachsenden Beträge von wirtschaftlich strategischen Metallen aus Altfahrzeugen in der Zukunft zu erreichen.

Herkömmliche Behandlungsmethoden für Altfahrzeuge (Schreddern von Restkarossen nach dem Entfernen von Störstoffen und teilweiser Demontage von Gebrauchtteilen) sind nicht darauf ausgerichtet, die meisten der strategischen Metalle zu separieren. Systematische Informationen über die Trennung von relevanten Komponenten aus Altfahrzeugen mit dem Ziel der stofflichen Verwertung von strategischen Metallen sind nur im begrenzten Umfang verfügbar.

Das Projekt, das im Auftrag des Umweltbundesamtes (UBA) durchgeführt wurde, hatte das Ziel, Empfehlungen für die Separation von Komponenten und Materialien aus Altfahrzeugen zu erarbeiten, um die Rückgewinnung von strategischen und/oder kritischen Rohstoffen (Projektakronym ORKAM) zu erhöhen. Kern der Untersuchungen ist auch, ob das zerstörende Trennen von Komponenten eine anwendbare und zweckmäßige Methode ist, die insbesondere den Aufwand im Vergleich zum Demontieren von Komponenten für den Gebrauch als Ersatzteile reduziert.

"Komponente" bezeichnet in dieser Systematik einen Zusammenbau von Teilen. Teile sind beispielsweise Stator oder Rotor eines Motors. Der Fokus wurde auf solch relevante strategische Metalle wie Gold, Silber, Palladium, Platin, Seltene Erden, Zinn, Kobalt, Gallium, Indium, Tantal, Antimon, Beryllium, Rhodium und Germanium in elektrischen und elektronischen Komponenten von herkömmlichen Personenkraftfahrzeugen gesetzt. Auch wurden Komponenten eines Hybrid-Fahrzeugs im Rahmen der Untersuchungen separiert. Elektrofahrzeuge wurden von der Forschung ausgeschlossen.

Identifizierung strategischer und kritischer Metalle

Auf Grundlage einer Literaturstudie wurden strategische und kritische Metalle ermittelt. Für eine Zuordnung zu den Anwendungsfeldern in der Fahrzeugelektronik wurde die folgende Systematik angewendet:

- Identifizierung der Anwendungsfelder von ausgewählten strategischen Elementen auf dem Niveau von funktionellen Einheiten (z.B. Neodym in Magneten).
- Entwickeln einer Matrix, die beschreibt, in welchen Teilen eines Fahrzeuges die funktionellen Einheiten auch oft als Bauelemente bezeichnet verwendet werden und anschließend eine andere Matrix mit Teilen, die in den Komponenten (z.B. Rotoren in Kompressoren) verwendet werden. Um die Komponenten im Fahrzeug zu lokalisieren, wurden in einem zusätzlichen Schritt die Komponenten Fahrzeugsubsystemen (z.B. Kompressoren in der Klimaanlage) zugeordnet.

Informationen über den Gebrauch von strategischen Metallen in Fahrzeugen sind auf einer systematischen Basis selten verfügbar und verfügbare Informationen basieren gewöhnlich auf einer kleinen Zahl von Komponenten und/oder Fahrzeugen.

Magnete

Die wichtigsten Anwendungsfelder für Seltenerdoxide in Magneten sind nach Alonso et al. (2012) Elektromotoren, Kompressoren in Hybridfahrzeugen, Schaltungen, Kraftübertragung, Bremsen, Lautsprecher, Diebstahlssicherung, Türen und Steuerung. Blaser et al. (2012a S. 20) nennen 20 als durchschnittliche Anzahl von Elektromotoren in einem aktuellen Mittelklassewagen. Inwiefern diese Neodym relevant sind, ist nicht genannt.

Strategische Materialien für Magnete, hauptsächlich das seltene Erdelement Neodym (Nd) und Dysprosium (Dy), tragen einen hohen Anteil zur Summe der im Fokus des Projektes stehenden Elemente bei.

Die Beträge von magnetischen Materialien und die Zahl von Anwendungen gemäß Cullbrand & Magnusson (2012) werden in Tabelle 1 gezeigt. Die Größe des Autos scheint weniger wichtig zu sein als seine spezifische Ausrüstung und das Produktionsjahr. Der höchste Gehalt des magnetischen Materials pro Anwendung wurde in einem hochwertigen Audiosystem gefunden.

Tabelle 1: Magnetische Materialien in Schwedischen Fahrzeugen (Cullbrand & Magnusson 2012)

	Neodym Masse je Fzg. (g)	Neodym Anwen- dungen je Fzg. (Anzahl)	Dysprosium Masse je Fzg. (g)	Dysprosium An- wendungen je Fzg. (Anzahl)
Mittelklasse-PKW (einfache Ausstattung)	43	28	0,8	7
Mittelklasse-PKW (ge- hobene Ausstattung)	206	70	27	21
Oberklassewagen (Mittlere Ausstattung)	28	26	2	9
Mittelklasse-PKW (einfache Ausstattung)	43	28	0,8	7

Alonso et al. (2012) identifizieren 297 g Nd in neun Teilsystemen eines nordamerikanischen Fahrzeuges des Segments Mittelklasse, ohne die Ausstattung des Fahrzeuges anzugeben. Die meisten massenrelevanten Anwendungsbereiche, die in den Fokus des Projektes passen, sind Getriebe, Getriebesteuerung, Bremspedale, Lautsprecher, Diebstahlwarnsystem, Motoren in Türen, Lenksäule und Generator.

Für magnetische Anwendungen können verschiedene magnetische Materialien verwendet werden: Neodymmagnete oder z.B. herkömmliche Ferrite-Magnete. Es gibt keine für herkömmliche Fahrzeuge verfügbare Datenbasis, die den Magnettyp in einer bestimmten Anwendung in einem bestimmten Fahrzeugmodell beschreibt.

Leiterplatten

Laut Blaser et al. (2012a) werden in einem aktuellen Mittelklassewagen 50 bis 100 Steuergeräte genutzt. Rodrigo/Castells (2004) geben an, dass ein Kleinwagen im Schnitt 9 bis 14 Steuergeräte enthält, die die Kraftübertragung, Bremsen, Karosseriefunktionen, Airbagsysteme und andere Systeme überwachen. Hella (2013) nennt als Durchschnitt 60 Steuergeräte für gut ausgestattete Mittelklassewagen. Schmid (2014) separierte in Studien 60 Steuerungen mit Leiterplatte aus Volkswagen Golf VII.

Unter dem Stichwort "Verteiler" werden Verteilerboxen und Sicherungskästen zusammengefasst. Sie enthalten die funktionalen Einheiten bestückte Leiterplatten, Verbinder, Terminals, Kontakte, Relais und Sicherungen.

Der höchste Gehalt von Edelmetallen (besonders Gold, Silber, Palladium) befindet sich in Leiterplatten in verschiedensten Anwendungen. Tabelle 2 zeigt Größenordnungen von Konzentrationen von Edelmetallen und anderen relevanten Metallen in Leiterplatten in Fahrzeugen, die in der Literatur genannt werden.

Tabelle 2: ORKAM-Elemente [mg/kg] in bestückten Leiterplatte und ihren funktionalen Einheiten

Produkt	Datenquelle	Sb	Ce	Ga	Au	In	Со	Nd	Pd	Pr	Ag	Та	Sn
WEEE	Hagelüken (2010)				250				100		1,00		30,00
Unspezifisch	Rodrigo/Castells (2004)				300				100		500		
Altfahrzeug oder Kfz	Arnaiz et al. (2006)				54				54		149		12,00
	Sakai et al. (2013)	1,30	3	2	94	120	15	120	130	2	220	14	73.000
	Schmid (2014)	800			120				20		1,17	400	

Die Konzentration ist teilweise sehr breit gestreut (bis zu einer Größenordnung), welches die Heterogenität des Metallinhalts in Leiterplatten in Fahrzeugen verschiedenen Alters, verschiedener Herstellern und aus verschiedenen Anwendungen zeigt. Die wertvollsten bestückten Leiterplatten, die den höchsten Gehalt von Edelmetallen aufweisen, können gemäß Schmid (2014) innerhalb der Steuerungen für Motor, Infotainment, Kombiinstrument, Anzeige und Bedieneinheit, Airbag und Zusatzbremsleuchte gefunden werden.

LCD- / LED-Anzeigen

LCD finden sich bei aktuellen Altautos vor allem in der Anzeige und Bedieneinheit, im Navigationssystem, Anzeige im Kombiinstrument und zusätzlichen Bildschirmen. In LCD-Anwendungen in Fahrzeugen hat das Indium-Zinn-Oxid (ITO) den größten Anteil der kritischen Metalle. Weitere ORKAM-Elemente sind Yttrium, Europium, Lanthan, Cer, Terbium und Gadolinium mit einem Gehalt von wenigen Milligramm je cm² Bildschirmfläche (Tabelle 3), z.B. Indium mit ca. 0,08 mg/cm².

Je nach Anwendung und Literaturquelle schwankt der Gehalt der ORKAM-Metalle deutlich. Für gesicherte Aussagen ist eine detaillierte Betrachtung einzelner Komponenten hinsichtlich Konstruktion der Komponente und Metallgehalt zu empfehlen.

Tabelle 3: Beispiele für kritische Metalle in LCD-Anzeigen in Fahrzeugen (Massen pro Flächeneinheit, eigene Berechnungen)

	Fläche (cm²)	Y (mg)	Eu (mg)	La (mg)	Ce (mg)	Tb (mg)	Gd (mg)	In (mg)
Infotainment	60	1,06	0,08	0,06	0,04	0,02	0,01	4,73
Navigation	150	0,20	0,01	0,01	0,01	0,004	0,001	11,82
Mittelkonsole	324	0,49	0,04	0,03	0,02	0,01	0,00	25,53

Sensoren

Sensoren erfassen physikalische Zustände, z.B. Geschwindigkeit, Beschleunigung, Sauerstoffkonzentration, Helligkeit, Temperatur, messen Schleuderbewegungen, Stöße und erfassen Schwingungen und übertragen sie in elektrische (analoge oder digitale) Informationen, die von der Bordelektronik umgesetzt werden. Als relevante Sensoren wurden gemäß der Literatur Sauerstoff-, Airbag-, Nockenwellen- und Kurbelwellensensoren sowie Radarelektronik ausgewählt.

Bewegungssensoren enthalten oftmals Magnete. Cullbrand & Magnusson (2012) beschreiben, dass das Teilsystem "Sicherheitselektronik" in einem Fahrzeug der Mittelklasse ca. 5 g Neodym enthielt.

In Radarelektronik, die in Fahrassistenzsystemen eingesetzt wird, wird Germanium oder Gallium genutzt.

Angaben zu Temperatursensoren liegen nur sehr begrenzt vor. Thermometric (2014) beschreibt Silber als Hauptmetall für metallisierte Oberflächenkontakte von Thermistoren. Auch Gold-, Platin- oder Palladiumlegierungen sollen angewendet werden. Für Sauerstoffsensoren liefert die Literatur Daten zum Gehalt von Platin, Palladium und Yttrium.

Die 30 relevantesten Komponenten ("30er-Liste")

Aus Zusammenstellungen von Komponenten in der Literatur und Expertengesprächen resultierten 117 Komponenten mit möglicher Relevanz für die Separation in diesem Projekt. Diese Vorauswahl wurde hinsichtlich des Rahmens der abzudeckenden Komponenten gefiltert. Da nur wenig quantifizierende Daten vorlagen, wurde auch hier die weitere Auswahl über Schätzungen im Rahmen von Expertengesprächen vorgenommen. Hierdurch ergab sich eine Liste von 68 Komponenten.

Unter Einbeziehung von Erfahrungen über den zu erwartenden Demontageaufwand sowie die Menge an ORKAM-Elementen, wurden Komponenten mit Prioritäten von 1-4 eingestuft, wobei 1 die höchste Priorität darstellt. Komponenten, die eine unklare Relevanz für ORKAM-Elemente aufwiesen, wurden mit einer geringen Priorität versehen.

Gestützt auf die Forschung sind mehrere relevante Komponenten identifiziert worden, denen hohe Prioritäten in Expertengesprächen zugeteilt wurden, um sie in den nachfolgenden Arbeitsschritten zu separieren. Die resultierende Liste mit 41 Komponenten (Tabelle 4), enthält 30 bevorzugte Komponenten und 11 alternative Komponenten, falls bevorzugte Komponenten in einem Fahrzeug nicht vorhanden sind. Vom Hybrid-Fahrzeug wurde der elektrische Inverter ausgewählt.

Tabelle 4: "30er-Liste" inklusive Ersatzkomponenten

Grup pe	#	Komponente	Pri o *)		Grup pe	#	Komponente	Prio *)
	1	Heizlüfter	2			22	Steuergerät Fahrwerk	1
	2	Lenkung Servomotor	2		äte	23	Steuergerät Lenkung	1
lungen	3	Anlasser	1		Steuergeräte	24	Steuergerät Alarm/Dieb- stahl	2
veno	4	Kühlerlüfter	2		Ste	25	Steuergerät Klima	2
tanv	5	Lautsprecher	2			26	Steuergerät Airbag	1
agne	6	Türverschluss	2		Ver-	27	Smarte Verteilerboxen	1
Motoren und vergleichbare Magnetanwendungen	7	Lichtmaschine	2		teiler	28	Passive Verteilerboxen mit Leiterplatten	2
sichk	8	Heckklappenschließmotor	3			29	Leuchte hinten	1
ergle	9	elektrische Sitzverstellung	zverstellung 3	Licht	30	Kombileuchte vorn	2	
pu ×	10	Kraftstoffpumpe	3			31	Blinker	1
n ua	11	Pumpe Scheibenwäscher	3	3		32	ABS-/Raddrehzahlsensor	3
otor	12	Wischermotor	2			33	Nockenwellensensor	2
Š	13	Scheibenheber	2			34	Kurbelwellensensor	3
	14	Spiegeljustierung	3		Sensoren	35	Lambdasonde/Sauer- stoffsensor	1
Ę	15	Navigationssystem	2		Sens	36	Ultraschall, Nahdistanzra- dar	1
Bildschirm	16	Instrumente	1			37	Radar	1
Bild	17	Multifunktionsanzeige	1			38	Airbagsensor	1
ite	18	Inverter/Controller	1			39	Klimasensor	3
gerë	19	Steuergerät Motor	1		ue	40	Zündkerze	1
Steuerungsgeräte	20	Steuergerät elektronische Getriebesteuerung	2		Aktuatoren	41	Einspritzeinheit	3
Ste	21	Steuergerät ABS	2		Ā			

^{*)} Priorität für die Separation (bezogen auf das zugehörige Subsystem)

Altfahrzeugstichprobe

Die Fahrzeugauswahl erfolgte mit dem Ziel, 11 repräsentative Fahrzeuge aus den Segmenten zu finden, so dass sich möglichst die mengenmäßig stärksten Segmente in der Stichprobe wiederfinden. Den Segmenten sind die Marken und Fahrzeugtypen der verfügbaren Fahrzeuge zugeordnet wie in Autohaus (2013)

nach Zulassungshäufigkeit gelistet. Für eine möglichst aussagekräftige Stichprobe ist es wünschenswert, die wichtigsten Vertreter dieser zukünftigen Altfahrzeuge zu identifizieren.

Es wird angenommen, dass die Segmentierung der heutigen Neuzulassungen sich in späteren Jahren im Rücklauf der zu erwartenden Altfahrzeuge in durchschnittlich 14-15 Jahren (UBA / BMU 2013) in etwa widerspiegelt und somit als Basis für eine repräsentative Auswahl dienen kann.

Folgende fünf Auswahlkriterien mussten für die Auswahl der Altfahrzeuge erfüllt sein:

- 1. eine gleichmäßige Verteilung der Fahrzeugstichprobe über die mengenmäßig stärksten Segmente
- 2. eine möglichst gute Platzierung im Marktsegment
- 3. das Baujahr (nicht älter als sechs Jahre)
- 4. Markenvielfalt
- 5. kostenfreie Beschaffung der Fahrzeuge

11 Altfahrzeuge mit einem Alter von maximal 6 Jahren wurden für Demontageversuche ausgewählt (Tabelle 5).

Tabelle 5: Ausgewählte Fahrzeuge für Demontageversuche

	Segment (Quelle Autohaus 2013)	Neuzulassungen in Deutschland 2013	Anteil Segment an Neuzulassun- gen Gesamt	Platzierung des ausgewählten Fzg im Segment	Modell- jahr
1	Untere Mittelklasse	705.955	35%	1	2013
	(2 Altfahrzeuge)	703.933	3%	> 10	2012
2	Kleinwagen	417.015	14%	1	2014
3	Mittelklasse	400.410	14%	1	2014
4	Kleinstwagen	266.412	9%	8	2013
5	Geländewagen medium	210.861	7%	1	2013
6	Minivan	179.212	6%	1	2013
7	Geländewagen groß	63.915	2%	1	2012
8	Hochdachkombi	56.626	2%	1	2009
9	Großraumlimousine	43.619	1%	1	2013
1	Oberklasse (Geländewagen mit gehobener Ausstattung)	25.170	1%	3	2013

Aspekte der Separation von Komponenten

Der Ablauf der Behandlung von Altfahrzeugen erfolgt in einem standardisierten Umfang und Ablauf nach Altfahrzeugverordnung in Altfahrzeugdemontagebetrieben. Der Ablauf gliedert sich in die vier Behandlungsschritte Annahme, Vorbehandlung, Gebrauchtteil-/Reststoffdemontage und Verdichtung.

Die Zerlegung von Altfahrzeugen erfolgt in Altfahrzeugdemontagebetrieben in einer Arbeitsumgebung und an Arbeitsplätzen, die mit der Struktur und Ausrüstung von Werkstätten vergleichbar sind. Es handelt sich dabei um eine Einzelplatzdemontage auf Hebebühnen oder Demontageböcken, die eine hohe Flexibilität bezüglich der Unterschiede im Demontageablauf und der Demontagezeit hinsichtlich verschiedener Modelle, Typen, Tiefe der Zerlegung oder Zustand von Fahrzeugen aufweist. Für die Separation der Komponenten werden Handwerkzeuge mit mobilen Werkzeugwagen an den Hebebühnen oder Demontageböcken in Griffnähe bereitgestellt. Als Sammelbehälter werden Kisten, Boxen oder Paletten in unmittelbarer Nähe zum Arbeitsplatz bereitgestellt.

Die Auswahl von Werkzeugen erfolgt unter dem Augenmerk, eine schnelle Separation zu erreichen, bei der Verbindungsstellen oder -elemente bei Bedarf auch zerstörend aufgetrennt werden, da das Ziel eine stoffliche Verwertung ist und keine Nachnutzung als Ersatzteil erfolgt. Brechstange und Montiereisen können zum Aufbrechen von plastischen Verbindungen verwendet werden, indem das verbindende Element (Schraube, Niete) oder das Gehäuse einer Komponente zerstört wird. Schneidende Werkzeuge, wie Bolzenschneider, Zange und Seitenschneider, sind zum Trennen von elastischen Halterungen aus Kunststoff, z.B. Kabelbindern, oder zum Trennen von Steckern und elektrischen Verbindungen oder Abtrennen von Leitungen für Betriebs-Medien geeignet.

Der Transport erfolgt vorwiegend mit Gabelstapler.

Die Kenntnis über vorhandene Komponenten und deren Lage in spezifischen Fahrzeugen ist ein wichtiger Aspekt, um in der kürzest möglichen Zeit zu separieren. Kfz-Mechaniker im Unternehmen, die umfangreiche praktische Erfahrungen haben, bieten den größten Vorteil. Zur Gewinnung neuer Kenntnissen bei unbekannten Fahrzeugen sind in Einzelfällen Informationen aus Ersatzteilkatalogen von Herstellern nützlich – beispielsweise der Online-Ersatzteilkatalog von Volkswagen (ETKA 7.4).

Vorgehen bei der Separation und bewertungsrelevante Zeit

Gemessen wurde nur die Zeit für die unmittelbare Separation elektronischer Komponenten, ein Teilbereich innerhalb des Abschnitts c. der Demontage (Abbildung 1). Alle Tätigkeiten der Vor- und Nachbehandlung insbesondere die Trockenlegung und Separation von Schadstoffen im Fahrzeug, wie durch die Altfahrzeugverordnung gefordert wird, wurden zeitlich nicht bewertet. Sofern für die Separation der Zielkomponenten zunächst störende Komponenten entfernt werden mussten, wurde diese Zeit separat erfasst. Aufgrund einer "idealen" Situation bei der Zerlegung (bekannte Modelle, hochqualifizierter Mechaniker, "neue" Altfahrzeuge ohne erschwerten Zerlegeaufwand) wurde die gemessene Zerlegezeit stets mit einem Faktor von 1,5 multipliziert.

Altfahrzeugbehandlung b. Vorbehandlung d. Verdichten a. Annahme c. Demontage Ersatzteile Batterien Betriebs-Kat. flüssigkeiten Fahrzeug-Pressen elektronik / Lagern Wertstoffe **Pyrotechnik** Schadstoffhaltige Räder (Metall, Glas, Bauteile **Kunststoff**)

Abbildung 1: Ablauf der Altfahrzeugbehandlung und Einbettung der Separation der Fahrzeugelektronik

Dokumentation der Zerlegung

Die Dokumentation der Separation der 30 Komponenten aus den 11 ausgewählten Fahrzeugen erfolgt mit dem Eintragen der Komponentenlage in der Auf- und Seitenansicht einer schematischen Abbildung eines Fahrzeuges als Punkt, der mit einer Ziffer versehen ist. Die Ziffer verweist auf die Bezeichnung der Komponente.

Über den Ablauf der Zerlegung wurde je Fahrzeug ein Zerlegeprotokoll erstellt. Dieses enthält Angaben über Ablauf, Lage, Nummer der "30er-Liste", Bezeichnung des Teilsystems und der Komponente und Information über Zugehörigkeit der Komponente zur "30er-Liste" oder zu einer zusätzlichen Komponente sowie die Separationszeit und Masse. Die separierten Komponenten wurden auch fotografisch dokumentiert.

Verteilung von Lage, Anzahl und Masse der Komponenten in Fahrzeugen

In der Front und dem Motorraum mit angrenzenden Bereichen befinden sich 47 % der Komponenten mit einem Massenanteil von 65 % (Tabelle 6) gezeigt. Grund für den hohen Gewichtsanteil sind große und schwere Komponenten, wie Anlasser, Lichtmaschine, Lüftermotor, Motor Servolenkung. Im Innenraum sind 45 % der Komponenten zu finden, deren Massenanteil 29 % beträgt. Dies sind leichte elektronische Komponenten, wie Steuerungen, kleine Elektromotoren, Bedienelemente oder Bildschirme. Hinten im Fahrzeug befinden sich 9 % der Komponenten mit einem Massenanteil von 5 %. Beispielsweise sind dies Rückleuchten, Parksensoren, ein kleiner Scheibenwischermotor und einige Steuerungen.

Unter der in Tabelle 6 dargestellten Verteilung befinden sich auch 70 verschiedene zusätzliche Komponenten, die in Ergänzung zur "30er-Liste" separiert wurden. Die Entscheidung zur zusätzlichen Separation erfolgte bei geringem zusätzlichem Aufwand, nicht vorhandenen störenden Komponenten, der Möglichkeit zum parallelen Separieren im vorgesehenen Ablauf und bei vergleichbaren Merkmalen mit den in der "30er-Liste" enthaltenen Komponenten.

Tabelle 6: Verteilung von Menge und Masse der Komponenten auf Fahrzeugbereiche

Segment		Anzah	I	Masse [kg]			
	Front	Innen	Hinten	Front	Innen	Hinten	
Untere Mittelklasse	36	43	10	25	15	1	
Untere Mittelklasse II	15	19	5	17	12	2	
Kleinwagen	60	36	9	36	14	1	
Obere Mittelklasse	28	38	8	18	10	3	
Kleinstwagen / Mini	37	25	4	24	10	0	
Geländew. Medium	59	48	6	43	19	0	
Mini Van	43	35	7	29	13	0	
Geländew. Groß	46	57	11	39	20	9	
Hochdachkombi	30	17	7	24	7	0	
Großraumlimousine	45	61	6	36	31	4	
Geländew. Groß (Hybrid)	52	55	12	90	20	9	
Anteil je Bereich	47%	45%	9%	65%	29%	5%	

Bewertung der Zeit zur Separation von Komponenten

Um Komponenten zu separieren, ist häufig zuerst das Entfernen störender Komponenten erforderlich. Bei günstiger räumlicher Lage kann dabei der Zugang zu mehreren Komponenten erreicht werden.

Zum Freilegen von Komponenten der "30er-Liste" (durch Entfernen der störenden Komponenten) wird über alle Segmente im Mittel 45 % der gesamten Zeit für die Separation aufgewendet. Für die reine Separation der Komponenten der "30er-Liste" wird 40 % der Zeit für die gesamte Separation aufgewendet. Für zusätzliche Komponenten wird 14 % der Zeit am Fahrzeug aufgewendet. Das bedeutet, dass ein beträchtlicher Teil des Aufwandes unproduktiv verwendet wird. Zusätzlich Komponenten zu separieren, bedarf relativ wenig Aufwand, wie bei der Planung der Zerlegung beabsichtigt wurde.

Einflussfaktoren auf Aufwand und Wirtschaftlichkeit der Separation

- 1. Konstruktionsmerkmale der Fahrzeuge
- 2. Räumliche Lage von Komponenten
- 3. Orientierung und Bewegungsfreiheit im Fahrzeug
- 4. Fahrzeugalter

Wirtschaftlichkeitsbetrachtung

Die Wirtschaftlichkeitsbetrachtung der Separation der Komponenten wird sowohl aus Sicht des Altfahrzeugverwerters als auch in Form einer Gesamtwirtschaftlichkeitsbetrachtung der Separation und Verwertung der Komponenten für Altfahrzeug- und Elektroaltgeräteverwerter gemeinsam vorgenommen. Für den Altfahrzeugverwerter ergeben sich die Kosten für eine Komponente aus dem Separationsaufwand

(Separationszeit x Werkstattkosten) und den Logistikkosten, Einnahmen können bei der Vermarktung der separierten Komponenten an den Elektroverwerter erzielt werden. Für die Gesamtbetrachtung werden die Kosten sowohl des Altfahrzeugverwerters als auch des Elektroverwerters (Behandlungskosten + Logistikkosten) in Verhältnis zu den Materialerlösen bei Vermarktung der Metalle/anderer Fraktionen aus der Komponentenaufbereitung gesetzt.

Auf Basis eines komponentenweisen Abgleichs von Erlösen und Kosten wurde die Erlösüber- oder -unterdeckung je Komponente bestimmt. Tabelle 7 zeigt die Zusammenfassung der Ergebnisse der Wirtschaftlichkeitsbetrachtung. Als Kennzahl für die Wirtschaftlichkeit beim Altfahrzeugverwerter (ATF) bzw. insgesamt wird das Verhältnis von Erlös zu Aufwand (E/A) netto (ohne Störkomponentenentfernung) oder brutto (mit Störkomponentenentfernung) gebildet.

Tabelle 7: Wirtschaftlichkeitsbetrachtung für die Komponenten der "30er-Liste"

Lfd. Nr.	Grup- pe	Komponente	An- zahl	E/A (B) ATF	E/A (N) ATF	E/A Ges. (B)	Ur- teil
1	Bild- Motoren, Lautsprecher schirme	Heizungsgebläse	6	0,24-1,94	0,28-1,94	0,3-1,17	+
2		Lenkung Servomotor	4	0,1-0,9	0,11-3,38	0,21-1,04	+/-
3		Anlasser	5	0,47-0,77	0,75-6,1	0,33-0,61	+/-
4		Lüftermotor	2	< 0,5	> 0,89	-	+/-
5		Lautsprecher	3	0,01-0,99	n.r.	-	-
6		Türverschluss	3	0,1-0,4	n.r.	-	-
7		Lichtmaschine	5	0,7-1,1	1,6-3,2	-	+
8		Heckklappenschließmo- tor	-	-	-	-	-
9		Sitzverstellung	9	0,15-0,45	n.r.	-	-
10		Kraftstoffpumpe	-	-	-	-	-
11		Pumpe Scheibenwä- scher	-	-	-	-	-
12		Scheibenwischermotor	4	0,34-0,48	0,63-2,87	0,21-0,43	+/-
13		Scheibenheber	4	0,1-0,44	n.r.	-	-
14		Spiegeljustierung	-	-	-	-	-
15		Navigationssystem	6	0,29-1,18		0,2-1,7	-
16		Kombiinstrument	6	0,17-0,52		0,43-1,0	-
17		Multifunktionsanzeige	-	-	-	-	-
18	Steuerung	Inverter	1	7,45	11,18	-	+
19		Motorsteuerung	6	0,7-7,4	0,85-6,92	0,27-2,39	+
20		Getriebesteuerung	3	0,97-4,79	1,29-1,49	0,53-1,23	+
21		Fahrtsteuerung	6	0,5-1,5	1,4-2,7	0,26-0,81	+
22		Fahrwerksteuerung	2	0,1-3	-	-	+/-

Lfd. Nr.	Grup- pe	Komponente	An- zahl	E/A (B) ATF	E/A (N) ATF	E/A Ges. (B)	Ur- teil
23		Lenkungssteuerung	1	0,15	-	0,07	-
24		Steuerung Alarm/Dieb- stahl	1	0,74	-	-	-
25		Klimasteuerung	6	0,5-2,7	0,5-2,71	0,23-1,07	-
26		Airbagsteuerung	6	0,1-0,98	-	0,01-1,1	-
83- 85		CD-Wechsler, TV-Tuner, Radiosteuerung	3	0,11-0,23	-	5,79-7,14	+/-
67		Komfortsteuerung	1	0,25	0,25	0,28	-
82		Infotainment	2	1,05-1,46	1,28-1,46	0,42-0,92	+/-
111		Start/ Stopp Motor	2	1,4-4,82	1,76-1,94	0,62-1,63	+
27	_	Smarte Verteilerboxen	7	0,1-1,6	0,12-0,87	0,08-0,76	-
28	Verteiler	Passive Verteilerboxen	2	0,13-0,9	n.b.	0,21-0,39	-
29		Leuchte hinten	6	n.b.	n.b.	0,1-1,22	-
30	뇓	Kombileuchte vorn	4	n.b.	n.b.	0,5-0,9	-
31	Licht	Blinker	0	n.b.	n.b.	n.b.	n.b.
32	Sensoren	ABS-/Raddreh- zahlsensor	0	n.b.	n.b.	n.b.	n.b.
33		Nockenwellensensor	0	n.b.	n.b.	n.b.	n.b.
34		Kurbelwellensensor	0	n.b.	n.b.	n.b.	n.b.
35		Sauerstoffsensor	0	2-6	n.b.	n.b.	+
36		Side Assist	1	0,97	2,65	0,59	+/-
37		Ultraschall, Nahdistanz- radar	2	0,39-0,58	1,42-3,72	0,17-0,22	+/-
38		Airbagsensor	0	n.b.	n.b.	n.b.	n.b.
39		Klimasensor	0	n.b.	n.b.	n.b.	n.b.
40	Aktua- toren	Zündkerze	-	n.b.	n.b.	n.b.	n.b.
41		Einspritzeinheit	-	n.b.	n.b.	n.b.	n.b.

Anzahl: Menge bewerteter separierter und zerlegter Komponenten

Bewertung der Ergebnisse:

Die Schlussfolgerung hinsichtlich einer Demontageempfehlung für die einzelnen Komponenten erfolgt auf Grundlage des Verhältnisses von Erlös zum Aufwand unter Beurteilung von drei Faktoren:

• für den Autoverwerter mit Störkomponenten (E/A (B) ATF),

- für den Autoverwerter ohne Störkomponenten (E/A (N) ATF) und
- für den Auto- und Elektroverwerter gemeinsam (E/A Ges. (B))

Liegt das Verhältnis von Erlös zu Aufwand E/A über 1, ist die Separation wirtschaftlich. Eine Demontageempfehlung (+) wird für acht Komponenten festgestellt. Dazu gehören aus der Gruppe Motoren das Heizungsgebläse und die Lichtmaschine, aus der Gruppe der Steuerungen Motor-/ Getriebesteuerung, Inverter, Fahrtsteuerung, Start-Stopp-Steuerung und aus der Gruppe der Sensoren der Sauerstoffsensor.

Bei neun Komponenten erscheint eine Bewertung für oder gegen die Demontage nicht eindeutig möglich (+/-). Dazu gehören aus der Gruppe Motoren der Servomotor, Anlasser, Lüfter- und Wischermotor, aus der Gruppe Steuerungen das Infotainment, Fahrwerksteuerung und die Multimediaanwendungen CD-Wechsler, TV-Tuner, Radiosteuerung sowie die Sensoren Side Assist, Ultraschall und Nahdistanzradar.

Bei 19 Komponenten kann auf eine Wirtschaftlichkeit nicht geschlossen werden (-), beispielsweise kleine Motoren, Navigationsgerät, Klimasteuerung, Verteilerbox, Beleuchtung.

Signifikant unterschiedliche E/A-Verhältnisse für eine Komponente sind teilweise erkennbar. Deren Ursachen liegen beispielsweise in den verschiedenen Fahrzeugmodellen mit verschiedenartigen Komponenten hinsichtlich Materialien und Materialmengen, in den verschiedenen Demontagezeiten, dem unterschiedlichen Verteilen von Zeit zum Entfernen störender Komponenten oder verschiedenen Demontageabläufen.

Insgesamt ergeben sich aus der Wirtschaftlichkeitsbetrachtung folgende Schlussfolgerungen:

- Der Komponenten- bzw. Materialwert wird vor allem durch die Bestandteile Kupfer, Aluminium und Leiterplatten geprägt, die bezüglich des Gesamtgewichtes einer Komponente i.d.R. keinen wesentlichen Massenanteil ausmachen. Der Materialerlös beträgt über alle zerlegten 121 Komponenten (ohne Lambdasonden) im Mittel 0,96 € je Komponente. Dem steht der Separationsaufwand mit Personalkosten in Höhe von 0,58 €/min entgegen. Bei der Bewertung der Ergebnisse muss daher beachtet werden, dass nur ein kleiner Puffer existiert, um zusätzliche Zeit für die Separation aufzufangen. Bereits eine oder wenige zusätzliche Minuten Separationszeit können die Wirtschaftlichkeit gefährden.
- Das Potential zur Verringerung des Aufwandes der Separation bei der manuellen Demontage wird in Expertenkreisen als gering eingeschätzt. Eine Mechanisierung oder gar Automatisierung und einheitliche Prozessabläufe für die Separation sind unwahrscheinlich, denn ständige Wechsel von Modellen oder Typen von Fahrzeugen erfordern permanente Anpassungen im Recyclingprozess. Zudem erlaubt eine nur geringe Anzahl von Altfahrzeugen in den Demontagebetrieben gegenwertig keine industriellen Standards in Prozessen.
- Altfahrzeuge im Alter von über 15 Jahren befinden sich in der Realität durch ihre Nutzung in verschiedenen Zuständen. Im Vergleich zu den sehr jungen Altfahrzeugen dieser Studie werden sich zusätzliche Verzögerungen im Demontageprozess ereignen, welche nicht abgeschätzt, vorhergesagt oder kalkuliert werden können. Dies macht eine allgemeine Aussage hinsichtlich der Wirtschaftlichkeit schwierig.

Empfehlungen zur Verbesserung des Recyclings von Altfahrzeugen mit strategischen Metallen

Die Studie hat gezeigt, dass die Separation bestimmter elektrischer und elektronischer Komponenten aus Altfahrzeugen wirtschaftlich ausführbar sein kann.

Im Laufe der nächsten Jahre wird die Anzahl elektronischer Bestandteile in Fahrzeugen zunehmen und damit auch das Potenzial für den Gehalt strategischer und kritischer Metalle in Altfahrzeugen wachsen.

Das Ausbauen und die nachfolgende Wiederverwertung dieser Bestandteile aus Altfahrzeugen können zur Versorgung mit kritischen Rohstoffen beitragen.

Die folgenden Empfehlungen werden vorgeschlagen, um die Rückgewinnung kritischer Metalle zu erhöhen:

- 1. Informationsdatenbank: Die Datenbasis zum Gehalt strategischer und kritischer Metallen in Fahrzeugmodellen und Fahrzeugbestandteilen ist nicht ausreichend, besonders wenn sich die Ausrüstung mit elektronischen Komponenten und ihrem Metallgehalt von einer Fahrzeuggeneration zur folgenden Generation dauerhaft ändert. Verschiedene Technologien basieren auf unterschiedlichen Komponentenzusammensetzungen (z.B. Magnete mit oder ohne Seltene Erden). Um die Datenbasis zu verbessern, sollte ein systematischer Datenfluss von der Automobilindustrie zu Autoverwertern über die Gehalte strategischer und kritischer Metalle in ihren Fahrzeugbestandteilen aufgebaut werden, um die effiziente Trennung und Wiederverwertung zu ermöglichen. Eine Möglichkeit kann die Aufnahme solcher Informationen in vorhandene Informationsinstrumente, wie IDIS, sein. Ein anderer Weg ist das Kennzeichnen bestimmter Komponenten. Um passende Abbauinformationen zu geben, könnten die Automobilhersteller unter anderem ihre IMDS Informationen ausnutzen.
- 2. Recyclingkapazitäten: Es kann mittelfristig erwartet werden, dass Prozesse und Wiederverwertungsmöglichkeiten für Seltene Erden und weitere kritische Metalle entwickelt und eingeführt werden. Um den Prozess zu beschleunigen, wird empfohlen, dass die öffentliche Hand weiter Forschung zur Wiederverwertung unterstützen und anschließend Investitionen in solche Anlagen sichern sollte.
- 3. Sammlung und Wiederverwertungslogistik: Eine wirksame Wiederverwertung der getrennten Fahrzeugelektronik kann durch eine enge Zusammenarbeit zwischen dem Autoverwertern und Elektroverwertern erreicht werden. Die Errichtung eines Sammel- und Logistiksystems für die getrennten Komponenten ist schwierig, weil nur kleine Mengen von Elektronik in jedem Altfahrzeug ausgebaut werden können. Die Masse von einer Tonne Sauerstoffsensoren (80 g pro Einheit) kann beispielsweise eine geeignete Masse für den Transport zu einem Elektronikrecycler sein. Dazu müssen 12.500 Altfahrzeuge demontiert werden, was bei einen durchschnittlichen Input in Altfahrzeugdemontagebetrieben (500 Altfahrzeuge pro Jahr) mehr als 20 Jahre dauern würde. Aber beispielsweise kann durch die Integration in vorhandene Sammlungssysteme, wie die Werkstattentsorgung, die Optimierung von Sammlung und Logistik der getrennten elektronischen Komponenten erfolgen. Eine andere viel versprechende Optimierung kann durch Kombination der Logistik von Fahrzeugbestandteilen mit anderen Abfallströmen ähnlicher Zusammensetzung erreicht werden, wie beispielsweise die Logistik für Elektroaltgeräte mit Systemen zur Zwischenlagerung und dem Sortieren, um die angesammelten Materialien an spezialisierte Verwerter zur Behandlung und Wiederverwertung zu leiten.
- 4. Demontageinformationen für Autoverwerter: Mit dem zunehmenden Potenzial der Fahrzeugelektronik sollten praktische Informationen über die Trennung von elektronischen Bestandteilen den Autoverwertern mitgeteilt werden. Die Informationen sollten umfassen, welche Komponenten vorteilhaft sind, wie diese identifiziert und lokalisiert werden können und praktische Ratschläge für eine effiziente Trennung enthalten, die so komprimiert sind, dass sie von mittelständischen Betrieben im Rahmen der zeitlichen und sonstigen Möglichkeiten handhabbar sind.
- 5. Rechtlicher Rahmen: Besonders für Komponenten mit einem negativen Saldo von Kosten und Erlösen bei der Demontage und dem Recycling, die aber Stoffe und Materialien mit einer hohen strategischen und langfristigen volkswirtschaftlichen Bedeutung oder Umweltrelevanz enthalten, können beispielsweise zusätzliche Ausbauvorgaben die Rückgewinnung der Metalle und ihre hochwertige Verwertung

stärken. Voraussetzung hierfür ist, dass der zusätzliche Aufwand des Altfahrzeug- und Elektroverwerters gedeckt wird.

Summary

Vehicles are equipped with an increasing amount of electronic components which contain strategic and/or critical raw materials partly with high environmental relevance. The project performed on behalf of the German Federal Environment Agency identified the most relevant components in that context and performed dismantling trials in order to determine efforts needed to dismantle the selected components. An IT tool has been developed to calculate costs of dismantling the selected components and revenues from recovery of the separated materials. Research and trials resulted in recommendations to dismantle a certain number of the 30 components investigated for which a positive economic balance can be stated.

Introduction into project ORKAM

Vehicles are increasingly equipped with electronic components which contain strategic and/or critical raw materials partly with high environmental relevance like gold, silver, palladium, tantalum and rare earths. Currently such raw materials are usually not reclaimed to a large extent and no routines are implemented in Germany to ensure reclamation approaches in the future, when higher amounts of economically strategic raw materials are expected in end of life vehicles (ELV).

Conventional treatment methods for ELV (shredding after depollution) are not designed to separate most of those strategic metals. Systematic information about the separation of relevant components from ELVs with the aim of reclamation of strategic metals is not available. If necessary, dismantling may be destructive for that purpose. Thus, efforts might be reduced compared to dismantling of components for use as spare parts.

The project performed on behalf of the German Federal Environment Agency (UBA) aimed at developing recommendations to improve the separation of components and materials from end-of-life vehicles in order to enhance reclamation of strategic and/or critical raw materials (project acronym ORKAM).

The focus was set on gold, silver, palladium, platinum, rare earth elements (REE), tin, cobalt, gallium, indium, tantalum, antimony, beryllium, rhodium and germanium in electric and electronic parts of conventional passenger vehicles. Electric vehicles have been excluded from the research and the inverter of a hybrid vehicle has been included.

Identification of relevant components

The objective of the first working step was to identify 30 components with relevant content of the above mentioned strategic metals which should then be subject to dismantling trials in the subsequent working step. Information about the use of strategic metals in vehicles is rarely available on a systematic basis and available information is usually based on a small number of components and/or vehicles. In order to identify the relevant components and to allocate them the following approach was taken:

- Identification of the areas of application of the selected strategic elements on the level of functional units (e.g. neodymium in magnets).
- Developing a matrix on functional units vs. vehicle parts which describes in which parts of a vehicle the functional units are used (e.g. magnets in rotors) and subsequently another matrix on parts vs. components (e.g. rotors in compressors). In order to localize the components in the vehicle an additional step was taken by assigning the components to vehicle subsystems (e.g. compressors in air conditioner).

Magnet application

The most important applications for rare earth oxide in magnets are electric motor, compressors in hybrid vehicles, circuits, power transference, braking, loudspeaker, theft protection, doors and control units (Alonso et al. 2012). Blaser et al. (in 2012a p. 20) calls 20 as an average number of electric motors in a topical middle-of-the-market car. There is no information to what extent neodymium is relevant.

Strategic materials for magnets, mainly the rare earth elements neodymium (Nd) and dysprosium (Dy), contribute a high share to the total amount of the focal elements of the project. They are used in numerous applications like motors (and similar applications like generators), speakers and in sensors (e.g. for measuring rotation speed).

The amounts of magnetic materials and the number of applications according to Cullbrand & Magnusson (2012) are shown in Table 8. The size of the car seems to be less important than its specific equipment and production year. The highest amount of magnetic material per application was found in a high end audio system.

Table 8: Magnetic materials in Swedish vehicles (Cullbrand & Magnusson 2012)

	Neodymium amount per vehicle(g)	Neodymium ap- plications per ve- hicle (number)	Dysprosium amount per ve- hicle(g)	Dysprosium applica- tions per vehicle (Number)
Conventional midsize car (low specified)	43	28	0.8	7
conventional midsize car (high specified)	206	70	27	21
conventional large car (medium specified)	28	26	2	9

Alonso et al. (2012) allocate 297 g Nd in 9 vehicle subsystems of a North American mid-size sedan without specifying the equipment of the vehicles. The most mass relevant application areas which fit into the scope of the project study are gear, transmission, brake pedals, speakers, antitheft system, door hardware, steering column, alternator and liftgate.

For magnetic applications different magnetic materials may be used: neodymium magnets or, e.g., conventional ferrite magnets. There is no data basis available for conventional vehicels which describes the magnet type in a certain application in a certain vehicle model.

Printed circuit boards (PCBs)

From 50 to 100 control devices are used in a topical middle-of-the-market car according to Blaser et al. (2012a). A small car contains on an average from 9 to 14 control devices which supervise the power transmission, braking, car body functions, air bag systems and other systems (Rodrigo/Castells 2004). Hella (2013) calls 60 control devices for well-equipped middle-of-the-market cars as an average. Schmid (2014) separated 60 controls with leading record from Volkswagen Golf VII in studies.

Under the headword of "distributors" are distributor boxing and fuse boxes merged. They contain the functional units equipped leading records, links, terminals, contacts, relays and protections.

The highest amount of precious metals (especially gold, silver, palladium) is allocated in printed circuit boards in numerous applications. Table 9 shows ranges described in literature on concentration of precious metals and other relevant elements in printed circuit boards in vehicles. In addition, values for WEEE are shown because consumer electronics in cars have similar construction characteristics.

Table 9: Exemplary metal content of printed circuit boards (mg/kg)

Product	Data source	Sb	Ce	Ga	Au	In	Co	Nd	Pd	Pr	Ag	Ta	Sn
WEEE	Hagelüken (2010)				250				100		1,00		30, 00
Unspe- cified	Rodrigo/Castells (2004)				300				100		500		
ELV or vehicle	Arnaiz et al. (2006)		1		54				54		149		12, 00
	Sakai et al. (2013)	1,30	3	2	94	120	15	120	130	2	220	14	73. 000
	Schmid (2014)	800			120				20		1,17	400	

The concentration ranges are partially very wide (up to one order of magnitude) which illustrates the heterogeneity of metal contents in the PCBs in vehicles of different ages, producers and applications. The most valuable printed circuit boards in vehicles containing the highest amount of precious metals can be found according to Schmid (2014) within the control units for the engine and infotainment, display and control unit, control panel, airbag control and auxiliary stop light.

LCD / LED Displays

LCD are found in typical ELV above all in the display and control unit, navigation systems, additional screens. In LCD-applications in vehicles the indium tin oxide (ITO) has the highest portion. Other ORKAM elements are yttrium, europium, lanthanum, cerium, terbium and gadolinium with an amount of some milligram per cm² screen surface (Table 10), e.g., indium with approx. 0.08 mg / cm².

According to use and literature spring the content of the ORKAM metals clearly sways. For secure statements a detailed consideration of single components is to be recommended concerning construction of the component and metal amount.

Table 10: Exemplary content of critical metals of LCD displays in vehicles (values per display unit, own calculation)

	Surface (cm ²)	Y (mg)	Eu (mg)	La (mg)	Ce (mg)	Tb (mg)	Gd (mg)	In (mg)
Infotainment	60	1.06	0.08	0.06	0.04	0.02	0.01	4.73
Navigation	150	0.20	0.01	0.01	0.01	0.004	0.001	11.82
Central con- sole	324	0.49	0.04	0.03	0.02	0.01	0.00	25.53

Sensors

Sensors measure physical states, e.g. speed, acceleration, oxygen concentration, brightness, temperature, catapult movements, pushes and oscillations and transfer them into electric (analogous or digital) information which are moved by controllers.

A very broad variety of sensors containing strategic elements is used in vehicles.

Based on our research into their compositions magnet sensors (neodymium or ferrite), oxygen sensors (platinum or palladium, yttrium, e.g. lambda sensor), radar controls (gallium or germanium) and temperature sensors (e.g. silver) are found as most relevant sensor application in the context of the objective of the project. For oxygen sensors literature delivers data to the amount of platinum, palladium and yttrium.

List of 30 mainly relevant components

Based on the research, a number of most relevant components have been identified and priorities have been assigned by expert interviews for dismantling steps in the subsequent working steps. The resulting list of 41 components (Table 11) contains 30 priority components for dismantling and 10 alternative components which could be subject to dismantling if other parts of the list are not present in a vehicle, and in addition the electric inverter of hybrid vehicles.

Table 11: List of 30 priority vehicle components containing strategic metals for dismantling trials including additional components ("List of 30")

Sub- sys- tem	#	Component	Prio *)	Sub- sys- tem	#	Component	Prio *)
	1	heating fan	2		22	chassis control	1
	2	power assisted stee- ring	2	ices	23	steering control	1
	3	starter	1	devi	24	anti theft control	2
	4	air fan motor	2	Control devices	25	air conditioning control	2
	5	Speaker	2	Con	26	airbag control	1
	6	door closing motor	2	Junc-	27	smart junction box	1
	7	generator	2	tion boxes	28	passive junction box with printed circuit boards	2
tion	8	closing motor of hatch	3		29	backlight	1
plica	9	seat adjustment	2	+ -	30	headlight	2
Motor/ magnetic application	10	fuel pump	3	Light	31	blinker	1
gneti	11	washer system pump	3		32	wheel rotation sensor	3
тав	12	window washer motor	2		33	camshaft sensor	3
tor/	13	window lifter	2		34	crank shaft sensor	3
Σ	14	mirror adjusting motor	3		35	oxygen sensor	1
	15	navigation system	1		36	radar sensor	1
Screens	16	combination screen	2		37	long distance radar sensor	1
Scre	17	LCD	2	γs	38	airbag sensor	1
ses	18	inverter (hybrid ve- hicle)	1	Sensors	39	HVAC sensor	3
devic	19	motor control	1	rs	40	spark plug	1
rolc	20	gear control	2	-ato	41	injection device	3
Control devices	21	drive control	2	Actu-ators			

^{*)} Priority for dismantling (related to respective subsystem)

Sample of end of life vehicles

With the purpose of a general description of the car fleet with its different car models and sizes or equipment, vehicles are classified in vehicle segments, as practiced by KBA of Germany (Federal Motor Transport Authority) or AUTOHAUS (business magazine about vehicle market).

The vehicle sample was selected with the aim to find 11 representative vehicles which represent the major segments. The brands and vehicle types of the available vehicles are assigned to the segments as listed

in AUTOHAUS (2013) according to registration numbers. For a significant sample it is desirable to identify the most important representatives of these future end-of-life vehicles.

It is assumed that the segmentation of the today's newly registered cars will be reflected in the future ELV fleet returning in about 14 to 15 years (UBA / BMU 2013). Therefore today's registration of new vehicles can serve as a basis for a representative sample.

The following 5 selection criteria had to be fulfilled for the choice of ELVs:

- 1. a homogenous distribution of the vehicle sample among the major segments
- 2. a very good position in the market segment
- 3. year of construction (car not older than 6 years)
- 4. variety of brands
- 5. free procurement of the vehicles

11 end-of-life vehicles with a maximum age of 6 years were selected for dismantling trials, see Table 12.

Table 12: ELV sample for dismantling trials

	Segment (Source AUTO- HAUS 2013)	New registrations in Germany 2013	Share of segment of all new registrations in Germany	Sales rank of se- lected vehicles within the seg- ment	Model year
1	Lower middle size class	705,955	35%	1	2013
1	(2 vehicles)	703,933	3%	> 10	2012
2	Small vehicles	417,015	14%	1	2014
3	Middle size class	400,410	14%	1	2014
4	Microcar	266,412	9%	8	2013
5	SUV medium	210,861	7%	1	2013
6	Minivan	179,212	6%	1	2013
7	SUV large	63,915	2%	1	2012
8	High roof station wagon	56,626	2%	1	2009
9	Saloon car	43,619	1%	1	2013
1 0	SUV with extended equip- ment (hybrid vehicle)	25,170	1%	3	2013

Aspects of the dismantling of components

The treatment procedures for ELVs are standardized by the German ELV Ordinance (Altfahrzeugver-ordnung) and carried out in automotive treatment facilities (ATF). The process consists of four treatment steps - acceptance, depollution, dismantling of used spare parts and materials and compression of the car body.

ELVs are disassembled in automotive treatment facilities in a work environment comparable with the structure and equipment of car repair workshops. There are single workplaces for dismantling on car lifts.

These show a high flexibility with regard to the differences in the dismantling procedure and the dismantling time concerning different models and types of cars, the depth of the decomposition or condition of vehicles. For the dismantling of the components hand tools are provided with mobile tool cars close to the car lifts. As collecting containers for components and materials, boxes or palettes are provided in close vicinity to the workplace.

Tools are chosen for a quick dismantling. Junctions or connecting elements are separated, if required also by destroying them, because in this project materials are to be recycled and not to be reused as spare parts. Crowbar and tire lever can be used for breaking open malleable connections, while the connecting element (screw, rivet) or the case of a component is destroyed. Sharp tools, like bolt cutter, tongs, side cutter, are suitable to separate elastic fixtures of plastic, e.g., cable tie, or to cut plugs and electric connections or pipes for operating fluids.

The transport is mainly done by forklift.

The knowledge of available components and their location in specific vehicles is important to separate them in the shortest time possible. Car mechanics having extensive practical experience are of high advantage. To achieve new knowledge about unknown vehicles, information from spare part catalogues of manufacturers may be useful – e.q. the online spare part catalogue of Volkswagen (ETKA 7.4).

Procedure of dismantling and time relevant for assessment

Only the time needed to directly separate the electronic components was measured. The separation of "vehicle electronics" is one step within the "dismantling" shown in Figure 2. All other activities of pretreatment and follow-up work, especially depollution and separation of hazardous material as required by the German ELV Ordinance, were not included in the time measured.

The time needed to separate blocking parts was measured separately. Due to "ideal" dismantling conditions (familiar car models, highly qualified mechanics, "new" ELVs that could be dismantled easily), the time measured was multiplied by a factor of 1.5.

Treatment of End of Live Vehicles acceptance pre-treatment batteries liquids cat. vehicle Spare parts electronics compression / storage recyclables hazardous parts pyrotechnics tyre (metal, glass, plastics)

Figure 2: Procedures of treatment and imbedding of the dismantling of the vehicle electronics

Documentation of dismantling

The dismantling of the 30 components from the 11 selected vehicles was recorded as follows: The positions of the components were marked with dots in a schematic illustration from both, top and lateral view. The numbers next to the dots refer to the name of the component.

For every vehicle, a dismantling record sheet has been generated (including photo documentation) and combined with a data base structure to collect data systematically.

Position, amount and mass distribution of components

47% of the components are in the front and the engine compartment with adjoining areas having a mass proportion of 65%, as shown in Table 13. Large heavy components, like starter, generator, fan engine, engine power steering are the reason for the high weight proportion. 45% of the components are located in the interior with a mass proportion of 29%. These are light electronic components, like controls, small electric motors, operating elements or screens. The rear space of the vehicle contains 9% of components with a mass proportion of 5%, like back lights, parking sensors, a small windshield wiper engine and some controls.

The table below shows where the separated components are located in the vehicles studied, including 70 additional components which were separated in addition to the components of the "List of 30". Additional components were dismantled if only little further effort was needed and blocking parts were absent, if the additional dismantling could be integrated into the planned procedure and if these components' characteristics were comparable to those of the "List of 30".

Table 13: Number and mass of the components in the different vehicle areas

Segment		Number	r		Mass [kg]
	front	interior	rear	front	inte- rior	rear
Lower middle size class	36	43	10	25	15	1
Lower middle size class II	15	19	5	17	12	2
Small vehicle	60	36	9	36	14	1
Middle size class	28	38	8	18	10	3
Microcar	37	25	4	24	10	0
SUV medium	59	48	6	43	19	0
Minivan	43	35	7	29	13	0
SUV large	46	57	11	39	20	9
High roof station wa- gon	30	17	7	24	7	0
Saloon car	45	61	6	36	31	4
SUV with extended equipment (hybrid vehicle)	52	55	12	90	20	9
Share per area	47%	45%	9%	65%	29%	5%

Evaluation of time for separating of components

To separate components it is often necessary to remove blocking parts first. If the spatial situation is favorable it is possible to gain access to several components simultaneously.

Gaining access to the components of the "List of 30" (by removal of blocking parts) takes on average about 45% of the whole time needed for dismantling. For separating the components of the "List of 30", 40% of the entire time for dismantling are needed. 14% of the entire time are needed to separate additional components. This means that a substantial part of time is used unproductively. As intended when planning the dismantling, it takes rather little effort to separate additional components.

Factors influencing effort and profitability of dismantling

- 1. Construction characteristics of the vehicles
- 2. Spatial location of components
- 3. Orientation and freedom of movement in the vehicle
- 4. Vehicle age

Economic evaluation

The economic efficiency of dismantling is considered from the point of view of the ATF as well as in the form of an overall evaluation of the economic efficiency of separating and recycling electric components. The overall evaluation includes costs and revenues of both, the ATF and the WEEE-recycler. The ATF's costs for components arise from the effort needed for separation (time for dismantling x garage costs) and logistical costs, revenues can be obtained by selling separated components to the WEEE-recycler. To overall evaluate the economic efficiency, the costs of both, ATF and WEEE-recycler (costs of processing + logistical costs) were related to material revenues obtained when selling metals/other fractions from the processing of components.

A positive or negative balance for each component was determined on the basis of a comparison of revenues and costs. Table 14 shows the results of the economic evaluation. As index of the economic feasibility, the ratio between revenue and costs (E/A) net "N" (without separation of blocking parts) or gross "B" (including separation of blocking parts) is calculated.

Table 14: Economic evaluation for the components of the "List of 30"

no.	sub- sys- tem	component	num- ber	E/A (B) ATF	E/A (N) ATF	E/A sum (B)	con clu- sio n
1	_	heating fan	6	0,24-1,94	0,28-1,94	0,3-1,17	+
2	atio	power assisted steering	4	0,1-0,9	0,11-3,38	0,21-1,04	+/-
3	application	starter	5	0,47-0,77	0,75-6,1	0,33-0,61	+/-
4		air fan motor	2	< 0,5	> 0,89	-	+/-
5	magnetic	loudspeaker	3	0,01-0,99	n.r.	-	-
6	mag	door closing motor	3	0,1-0,4	n.r.	-	-
7	or/	generator	5	0,7-1,1	1,6-3,2	-	+
8	motor/	closing motor of hatch	-	-	-	-	-

no.	sub- sys- tem	component	num- ber	E/A (B) ATF	E/A (N) ATF	E/A sum (B)	con clu- sio
9		seat adjustment	9	0,15-0,45	n.r.	_	n -
10		fuel pump	_	-	-	_	_
11		washer system pump	-	-	-	-	_
12		window washer motor	4	0,34-0,48	0,63-2,87	0,21-0,43	+/-
13		window lifter	4	0,1-0,44	n.r.	-	-
14		mirror adjusting motor	_	-	_	_	_
15		navigation system	6	0,29-1,18		0,2-1,7	_
16	5	combination screen	6	0,17-0,52		0,43-1,0	_
17	screen	LCD	_	-	-	-	-
18	o o	inverter (hybrid vehicle)	1	7,45	11,18	-	+
19		motor controls	6	0,7-7,4	0,85-6,92	0,27-2,39	+
20		gear controls	3	0,97-4,79	1,29-1,49	0,53-1,23	+
21		drive controls	6	0,5-1,5	1,4-2,7	0,26-0,81	+
22		chassis controls	2	0,1-3	-	-	+/-
23		steering control s	1	0,15	-	0,07	-
24		anti theft controls	1	0,74	-	-	-
25		air conditioning controls	6	0,5-2,7	0,5-2,71	0,23-1,07	-
26		airbag controls	6	0,1-0,98	-	0,01-1,1	-
83- 85		CD-changer, TV-tuner, radio controls	3	0,11-0,23	-	5,79-7,14	+/-
67		comfort controls	1	0,25	0,25	0,28	-
82	S	infotainment	2	1,05-1,46	1,28-1,46	0,42-0,92	+/-
11 1	controls	start/ stopp engine	2	1,4-4,82	1,76-1,94	0,62-1,63	+
27	X	smart junction box	7	0,1-1,6	0,12-0,87	0,08-0,76	-
28	junction box	passive junction box with printed circuit boards	2	0,13-0,9	n.b.	0,21-0,39	-
29	light	backlight	6	n.b.	n.b.	0,1-1,22	-
30		headlight	4	n.b.	n.b.	0,5-0,9	-
31		indicator	0	n.b.	n.b.	n.b.	n.b.
32	sor	wheel rotation sensor	0	n.b.	n.b.	n.b.	n.b.
33	sensor	camshaft sensor	0	n.b.	n.b.	n.b.	n.b.

no.	sub- sys- tem	component	num- ber	E/A (B) ATF	E/A (N) ATF	E/A sum (B)	con clu- sio n
34		crank shaft sensor	0	n.b.	n.b.	n.b.	n.b.
35		oxygen sensor	0	2-6	n.b.	n.b.	+
36		side assist	1	0,97	2,65	0,59	+/-
37		long distance radar sensor	2	0,39-0,58	1,42-3,72	0,17-0,22	+/-
38		airbagsensor	0	n.b.	n.b.	n.b.	n.b.
39		climatesensor	0	n.b.	n.b.	n.b.	n.b.
40	actua-	spark plug	-	n.b.	n.b.	n.b.	n.b.
41	tor	injection device	-	n.b.	n.b.	n.b.	n.b.

Evaluation of results:

Conclusions regarding recommendations for dismantling of components are drawn based on the relations between revenue and effort under evaluation of three factors:

- For the dismantler with blocking parts (E/A (B) ATF),
- For the dismantler without blocking parts (E/A (N) ATF) und
- For the dismantler and WEEE-recycler together (E/A sum (B))

If the ratio between revenue and costs is above 1, components can be separated economically feasible. Separation is recommended (+) for 8 components. Those are in the group of engines the heating fan and generator, in the group of controller the engine/gear control, inverter, drive control, start-stop-control and in the group of sensors an oxygen sensor.

No definite decision for or against dismantling could be made for 9 components (+/-). Those are in the group of engines the power assisted steering, starter, air fan and window washer motor, in the group of controller the infotainment, chassis control and multimedia as CD-changer, TV-tuner, radio control as well as sensors like side assist, ultrasonic and radar.

Economic efficiency cannot be seen for 19 components (-), as small engines, navigation system, climate control, smart and passive junction boxes and lights.

Significantly different E/A relations for components can partially be observed. This results for example from different car models with components of different size or construction, differences in time needed for separation, differences in allocation of time to remove blocking parts.

All in all, the following conclusions can be drawn based on the economic evaluation:

• The revenue for components and materials is low, since they contain only of a low amount of valuable materials (mainly cooper, aluminum, printed boards). The revenue amounts on average of all considered and further disassembled 121 components (without oxygen sensors) 0.96 € for each component.

However the costs of separation increase with 0.58 €/min due to salary costs. There is only a low margin to buffer extra work for separation. The relation of revenues and costs is in such a close range, that already one minute of extra work is able to endanger the economic efficiency.

- The potential to decrease the effort for dismantling is limited. Specific mechanization and development of standardized process flows for separation are unlikely, as frequent changes of models or types of cars require permanent adjustments in the dismantling procedure.
 The mainly small sized ATFs are only able to treat a low number of ELVs which hampers the application of industrially standardized processes.
- ELVs older than 15 years will probably be in a worse condition compared to the very young ELVs studied. This may delay the dismantling process. These delays cannot be estimated, forecasted or calculated. Therefore general conclusions regarding profitability are difficult.

Recommendations to enhance recycling of vehicle electronics with strategic metals

In the study, the dismantling of certain electric and electronic components from ELVs proved to be economically feasible.

Over the next years, the amount of vehicle electronic components and thus the potential of strategic and critical metals in ELVs will increase. Dismantling and subsequent recycling of these components from ELVs can contribute to the supply of critical raw materials.

The following recommendations are proposed to enhance the separation of components and materials from ELVs aiming at the recovery of critical metals:

- 1. Information database: The data basis on the contents of strategic and critical metals in vehicle models and vehicle components is not sufficient, especially as the equipment with electronic components and their metal content are permanently changing from one vehicle generation to the next generation. Different technologies base on varying component compositions (e.g. magnets with or without rare earth elements). To improve the data basis, a systematic information flow from the automotive industry to the dismantling facilities should be established on the contents of strategic and critical metals of their vehicle components in order to enable the efficient separation and recycling. One possible approach is to include such information in existing information instruments like IDIS, another is the labelling of certain components. To provide appropriate dismantling information, the car producers might provide data from their IMDS information system.
- 2. Recycling capacities: It is expected that in a medium term perspective treatment processes and recycling facilities for rare earth elements and further critical metals will be developed and established. In order to speed up the process it is recommended that the public sector should further support research on recycling approaches and, subsequently, secure investments into such plants.
- 3. Collection and recycling logistics: An effective recycling of the separated vehicle electronics can be achieved by a close cooperation between the ELV dismantlers and WEEE recyclers. The establishment of a collection and logistics system for the separated components is challenging, as only small amounts of electronics waste arise in each ELV dismantling facility. To collect one ton, which is an appropriate mass for transporting to the WEEE recycler, of, e.g., oxygen sensors (80 g per unit), 12,500 ELVs have to be dismantled, which would take an average dismantler (500 ELVs per year) more than 20 years. Therefore, an approach to optimize the collection and logistics of the separated electronic components is the integration into existing collection systems like the repair workshop waste disposal systems. Another promising approach may be the grouping of the vehicle components with other waste

- streams of similar composition, like WEEE or waste/rejects of vehicle (component) manufacturing plants, with subsequent interim storing and sorting to direct the accumulated waste fractions to the appropriate treatment and recycling processes.
- 4. Separation information for dismantlers: With the increasing potential of vehicle electronics, practical information on the separation of electronic components should be communicated to ELV dismantlers. The information should comprise, which components are beneficial to separate, their identification and localization and practical advice for an efficient separation.
- 5. Legal framework: Especially for components with a negative cost/revenue balance of the separation, but with a high environmental or long term strategic relevance, for example additional legal dismantling requirements may enhance their separation and high quality recycling. This will only be possible if the additional costs of the ATF and the WEEE-recycler are covered.

1 Einleitung

1.1 Problemstellung und Motivation

In Elektronik- und ähnlichen Anwendungen in Fahrzeugen werden zunehmende Mengen an kritischen, umweltrelevanten Metallen eingesetzt, beispielsweise Silber, Gold, Palladium, Indium und Seltene Erden. So steigt beispielsweise seit Jahren die Anzahl von elektronischen Komponenten in Fahrzeugen kontinuierlich an. Waren in der ersten und zweiten VW Golf-Generation nur bis zu ein bzw. fünf Steuergeräte enthalten, waren es beim VW Golf 5 (2003-2008) bereits bis zu 28 Steuergeräte (Knode 2008). Ein aktueller VW Golf 7 enthält mittlerweile 60 elektronische Bauteile, in denen insgesamt 2,4 kg edelmetallhaltige Leiterplatten enthalten sind (Schmid 2014).

Aktuell etabliert und aus betriebswirtschaftlicher Sicht vorrangig ist die Gewinnung von Elektronikbauteilen aus Altfahrzeugen zur Vermarktung als Ersatzteile. Obwohl ökologisch und ökonomisch vorteilhaft, ist dieses Vorgehen jedoch nicht immer möglich, wenn z.B. Codierungen und Programmierungen auf nur ein bestimmtes Fahrzeug beschränkt sind, das Bauteil nicht mehr funktionsfähig ist oder kein Markt (mehr) dafür besteht.

Für diese Fälle stellt eine vereinfachte Demontage mit dem Ziel der Materialverwertung eine Alternative dar: Eine gezielte Separation der Komponenten mit relativ hohem Gehalt an kritischen bzw. umweltrelevanten Metallen (insbesondere Fahrzeugelektronik) könnte zukünftig einen bedeutsamen Beitrag zu Ressourcenschonung und Rohstoffsicherheit leisten, denn das in aktuellen Fahrzeugen verbaute Gesamtmetallpotenzial steht dem von Elektro- und Elektronikgeräten teilweise nicht nach. Legt man beispielhaft die Metallgehalte eines aktuellen Pkw nach (Cullbrand& Magnusson 2012) und die derzeitigen Altfahrzeugmengen (BMUB, UBA 2014) zu Grunde, können insbesondere die Metalle Gold, Silber, Palladium, Neodym und Tantal in den zukünftigen Altfahrzeugen die Größenordnungen der Elektrogeräte (RePro 2012) erreichen.

Die üblichen mechanischen Behandlungsverfahren für Altfahrzeuge (Autoschredder) sind jedoch mit wenigen Ausnahmen nicht dazu ausgelegt, diese geringen Mengen an Edel- und Sondermetallen quantitativ abzutrennen und das Recycling dieser Metalle zu ermöglichen. Es existieren diesbezüglich noch keine Zielvorgaben, spezialisierte Demontagemethoden und ausreichende logistische Systeme und Reststoffmärkte, um zukünftig einen hohen Rückgewinnungsgrad von wirtschaftlich strategischen Metallen aus Altfahrzeugen zu erreichen.

Für die Altfahrzeugverwerter, für die die Demontage und der Weiterverkauf von Ersatzteilen ein wichtiges wirtschaftliches Standbein ist, kann sich mit zunehmenden Elektronikgehalten in den Altfahrzeugen durch die Erweiterung ihrer Aktivitäten auf die Separation von werthaltigen Komponenten zur stofflichen Verwertung eine mögliche neue Einnahmequelle ergeben. Im Gegensatz zur Demontage mit dem Ziel der Ersatzteilgewinnung kann die Separation bei auch bauteilzerstörend und damit oft schneller durchgeführt werden. Um die Wirtschaftlichkeit der Separation von Komponenten bewerten zu können, werden einerseits Kenntnisse über Aufwand und Dauer der Separation und andererseits über erzielbare Erlöse benötigt. Für Bauteile zur Verwertung sind geringere Erlöse als für Ersatzteile zu erwarten, die maßgeblich vom Gehalt werthaltiger Materialien abhängen. Allerdings ist das Mengenpotential hier größer, da es nicht an die Ersatzteilmärkte gekoppelt ist. Der Fahrzeugabgaskatalysator ist ein Beispiel für ein Bauteil, dessen Demontage nicht nur gesetzlich gefordert ist, sondern sich auch aus wirtschaftlichen Gründen seit langem etabliert hat, da sich je Altkatalysator in der Regel zweistellige Eurobeträge erlösen lassen. Im Gegensatz

dazu sind die Verwertungs- und Absatzwege für separierte Altfahrzeugelektronik häufig noch nicht etabliert.

Anders als hinsichtlich der Dauer der Demontage von Ersatzteilen und des hierbei erzielbaren Erlöses, sind derzeit aus der Literatur noch keine systematischen Informationen über die Separation von Fahrzeugelektronikbauteilen mit dem Ziel des Materialrecyclings, d.h. einer Entnahme vor dem Schreddern, bekannt.

Von Interesse ist daher, welche Fahrzeugbauteile, die derzeit noch nicht standardmäßig zum Zweck des Materialrecycling separiert werden, einen relativ hohen Gehalt an kritischen bzw. umweltrelevanten Metallen aufweisen und wie hoch der Aufwand für die Separation dieser Bauteile ist. Das vorliegende Projekt befasst sich mit der Optimierung der Separation von Bauteilen und Materialien aus Altfahrzeugen zur Rückgewinnung kritischer Metalle (Projektakronym ORKAM). Ziel ist es, basierend auf praktischen Demontageversuchen und einer Wirtschaftlichkeitsbetrachtung Empfehlungen für die Separation von Komponenten und Materialien aus Altfahrzeugen zu erarbeiten, um die Rückgewinnung von strategischen und/oder kritischen Rohstoffen zu erhöhen. Kern der Untersuchungen ist auch, ob das zerstörende Trennen von Komponenten eine anwendbare und zweckmäßige Methode ist, die insbesondere den Aufwand im Vergleich zum Demontieren von Komponenten für den Gebrauch als Ersatzteile reduziert.

Auch wenn die Gehalte an kritischen bzw. umweltrelevanten Metallen in den zurzeit anfallenden Altfahrzeugen noch nicht so hoch sind, ist es sinnvoll, schon jetzt die Verwertungspotenziale zukünftig zunehmend anfallender Altfahrzeuge zu untersuchen, um rechtzeitig die Grundlagen für die Etablierung ressourcenschonender Materialkreisläufe für kritische bzw. umweltrelevante Metalle aus Altfahrzeugen zu schaffen.

1.2 Aufbau des Berichts

In einem ersten Schritt werden die zu betrachtenden relevanten kritischen Metalle ausgewählt und ihre Anwendungen in der Autoelektronik dargestellt (Kapitel 2). In Kapitel 3 wird beschrieben, welche Mengen der im Folgenden "ORKAM-Elemente" genannten Metalle in den funktionalen Einheiten der Fahrzeugelektronik in der Literatur dokumentiert sind. Nach einer Kategorisierung der Komponenten in Teilsysteme (Kapitel 4), wird ebenfalls basierend auf einer Literaturrecherche auf die verfügbaren Informationen zu Menge und Anzahl der Komponenten in Fahrzeugen eingegangen (Kapitel 5). Abbildung 3 zeigt das Vorgehen in den Kapiteln 3 bis 5 exemplarisch.

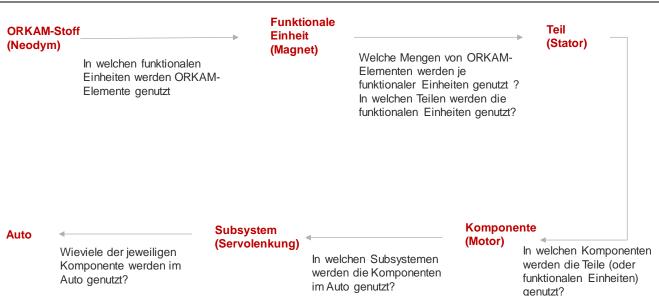


Abbildung 3: Ablauf der Untersuchung in Kapitel 3 bis 5 am Beispiel einer elektrischen Servolenkung

Aus den zuvor identifizierten Komponenten mit möglichem hohem Gehalt an kritischen Metallen sollen 30 im praktischen Versuch zu separierende Komponenten ausgewählt werden. In Kapitel 6 erfolgt die Auswahl dieser Komponenten der sogenannten "30er-Liste". Im Anschluss wird eine Stichprobe von 11 Altfahrzeugen ausgewählt, aus denen im Demontageversuch die Komponenten der "30er-Liste" separiert werden sollen (Kapitel 7). Mittels eines Abgleichs wird sichergestellt, dass die zu separierenden Komponenten in der Altfahrzeugstichprobe verfügbar sind. In Kapitel 8 werden ein Konzept zum Zerlegen der Altfahrzeuge entwickelt sowie das Vorgehen und die Dokumentation der Zerlegung beschrieben. Kapitel 9 beschreibt schließlich die Durchführung und Ergebnisse des Separationsversuchs, auch werden erste Hinweise auf Faktoren, die die Wirtschaftlichkeit der Separation beeinflussen, gegeben. Um die Wirtschaftlichkeit der Separation von Komponenten bewerten zu können, wurde im Rahmen des Projekts ein Wertrechner entwickelt (Kapitel 10). Damit Aussagen über die mit den separierten Komponenten erzielbaren Erlöse möglich sind, mussten diese, um Informationen über den Wertstoffgehalt zu erlangen, weiter zerlegt werden. In Kapitel 11 werden neben der Vorgehensweise beim Zerlegen sowohl exemplarische Materialpreise für Komponenten als auch die Materialien und ihre Gehalte in den Komponenten dargestellt. Basierend auf den vorangegangenen Untersuchungen werden Empfehlungen und Optimierungsvorschläge zur Separation von Fahrzeugelektronik unterbreitet (Kapitel 12), bevor abschließend in Kapitel 13 ein Ausblick gegeben wird.

2 Kritische umweltrelevante Metalle in der Autoelektrik und -elektronik

2.1 Relevante kritische Metalle und Systematik der Elemente eines Fahrzeugs

Gegenstand der Kapitel 3 bis 6 ist die Auswahl von 30 besonders relevanten Komponenten für die weiteren Untersuchungen anhand verfügbarer Angaben zu Gehalten an kritischen bzw. umweltrelevanten Metallen in elektrischen und elektronischen Komponenten von Fahrzeugen.

Daher wurden als Ausgangspunkt für die Bauteilauswahl die als umweltrelevant bzw. strategisch identifizierten Metalle der Projekte "Weiterentwicklung der abfallwirtschaftlichen <u>Pro</u>duktverantwortung unter

<u>Re</u>ssourcenschutzaspekten am Beispiel von Elektro- und Elektronikgeräten" (RePro) (2012) und "<u>Re</u>cyclingpotentiale <u>stra</u>tegischer Metalle" (ReStra) (2013) verwendet. Aus dem Gesamtziel der Projekte ergab sich, dass Edelmetalle und kritische Metalle und soweit für die Wirtschaftlichkeitsbetrachtung sinnvoll Kupfer betrachtet werden sollen.

Die folgende Grafik (Abbildung 4) hebt die im Projekt untersuchten chemischen Elemente, im Folgenden "ORKAM-Elemente" genannt, farbig hervor.

Abbildung 4: Im Projekt untersuchte Elemente ("ORKAM-Elemente") im Periodensystem der Elemente

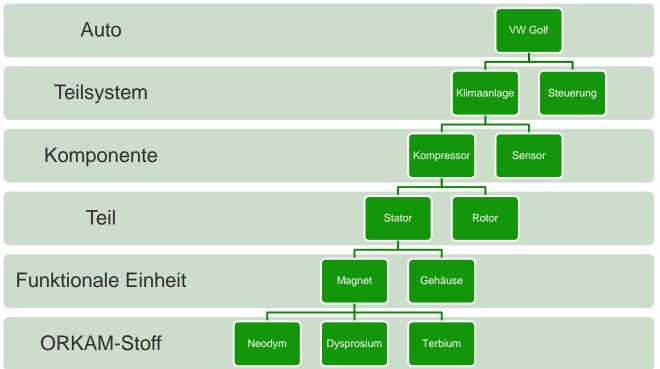
Wasser-																		
stoff																		Helium
Lithium	Berylli- um												Bor	Kohlen- stoff	Stickstoff	Sauer- stoff	Fluor	Neon
Natrium	Magne- sium												Alumi- nium	Silizium	Phosphor	Schwefel	Chlor	Argon
Kalium	Kalzium		Scandi- um	Titanium	Vanadi- um	Chrom	Mangan	Eisen	Kobalt	Nickel	Kupfer	Zink	Gallium	Germani- um	Arsen	Selen	Brom	Krypton
Rubidi- um	Stronti- um		Yttrium	Zirconium	Niob	Molyb- dän	Techne- tium	Ruthe- nium	Rhodi- um	Palladium	Silber	Kadmi- um	Indium	Zinn	Antimon	Tellur	Jod	Xenon
Cäsium	Barium	*	Lutetium	Hafnium	Tantal	Wolfram	Rheni- um	Osmi- um	Iridium	Platin	Gold	Queck- silber	Thallium	Blei	Wismut	Poloni- um	Astat	Radon
Franci- um	Radium	*	Lawren- cium	Ru- therfordi- um	Dubnium	Seabor- gium	Bohrium	Hassi- um	Meitne- rium	Darm- stadtium	Ro- entgeni- um	Coperni- cium	Ununtri- um	Unun- guadium	Ununpen- tium	Unun- hexium	Ununsep- tium	Ununoc- tium

* Lanthanide	Lanthan	Cer	Praseo- dym	Neodym	Prome- thium	Sama- rium	Europi- um	Gadolini- um	Terbium	Dyspro- sium	Holmi- um	Erbium	Thulium	Ytterbi- um
** Actinide	Actinium	Thorium	Protacti- nium	Uran	Neptu- nium	Pluto- nium	Ameri- cium	Curium	Berkeli- um	Califor- nium	Einstei- nium	Fermium	Mendele- vium	Nobeli- um

Legende

Farbig dargestellte Elemente werden in ORKAM untersucht.

Elemente, die bereits in RePro behandelt werden (umweltrelevant für Elektro(nik)geräte)


Elemente, die bereits in ReStra behandelt werden (kritisch für Umwelttechnologien)

Elemente, die bereits in RePro und ReStra behandelt werden

Elemente, die zusätzlich zu den RePro- und ReStra-Elementen im Projekt ORKAM behandelt werden

Die International Material Data System (IMDS) Datenbank, die Bestandteile und Inhaltsstoffe von Autos beschreibt (siehe auch IMDS 2013), strukturiert die Bestandteile von Autos in Form einer Baumstruktur. Zum besseren Verständnis wurde im Rahmen dieses Berichtes in Anlehnung an die Struktur von IMDS die in der folgenden Grafik beschriebene Nomenklatur gewählt.

Abbildung 5: Systematik der Bezeichnung der Elemente eines Autos

Bei einem ORKAM-Element kann es sich um einen Werkstoff (z.B. Legierung), eine Verbindung (z.B. Yttriumoxid) oder einen Reinstoff (z.B. Gold) handeln.

Die funktionale Einheit wird oft auch als "Bauelement" bezeichnet. So definieren Blaser et al. (2012a) ein Bauelement als den "kleinsten grundlegenden, als Einheit betrachteten Bestandteil eines Bauteils. Beispiele: Kondensator auf Leiterplatte, Kolben in ABS-Hydraulikeinheit, etc." Im Rahmen des ORKAM-Projektes wird es als sinnvoll angesehen, den Begriff "funktionale Einheit" zu verwenden, da z. B. die funktionale Einheit "Leuchtschicht" nicht unter die Definition von "Bauelement" fällt.

"Komponente" bezeichnet in dieser Systematik einen Zusammenbau von Teilen. Der Begriff "Bauteil" wird in der Literatur oftmals synonym zum Begriff "Komponente" genutzt.

2.2 Anwendungsbereiche

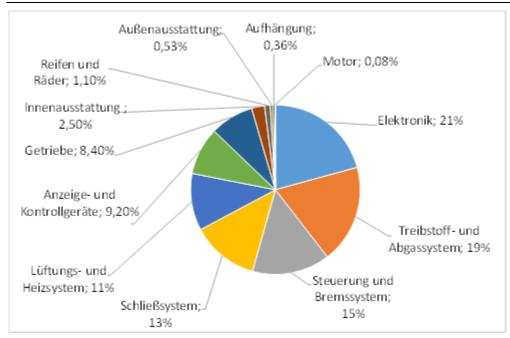
Dieses Kapitel gibt eine Übersicht, in welchen Funktionen bzw. funktionalen Einheiten ORKAM-Elemente in Autoelektronik verwendet werden. Dabei werden in Tabelle 15 auch exemplarische Verwendungen dargestellt. Tabelle 16 ordnet die ORKAM-Elemente den funktionalen Einheiten in einer Matrix zu.

Tabelle 15: Verwendung von ORKAM-Elementen in der Autoelektrik und -elektronik¹

Flamout	Fundationale Finheit
Element	Funktionale Einheit
Anti- mon	Sb wird als Flammhemmer (bzw. Synergist) in Form von Antimontrioxid in elektronischen Anwendungen eingesetzt (z. B. Leiterplatten und Gehäuse).
Beryl- lium	Be wird als Legierungselement vor allem in Kupferlegierungen eingesetzt. Durch Beryllium werden die Festigkeit der Kupferlegierungen und die Widerstandsfähigkeit gegen mechanische und thermische Belastungen erhöht. Solche Legierungen werden mengenrelevant vor allem in Schaltern, Kontakten und Federn eingesetzt. Mögliche Anwendungsfälle in Autos sind Elektromotoren und Schalter.
Cer	Ce wird in Leuchtstoffen genutzt.
Dyspro- sium	Dy wird in Neodymmagneten eingesetzt. Dabei wird durch die Beimengung von Dysprosium eine höhere Hitzebeständigkeit über 80°C hinaus erreicht.
Erbium	Er wird als aktive Substanz in Leuchtstoffen eingesetzt.
Euro- pium	Eu wird als aktive Substanz in Leuchtstoffen eingesetzt.
Gadoli- nium	Gd wird potenziell als Leuchtstoff eingesetzt.
Gallium	Ga wird als Halbleiter in integrierten Schaltkreisen in Mikrochips genutzt. Relevantes Anwendungsfeld sind auch light emitting diodes (LED). Darüber hinaus wird Gallium in Lichtelektroden angewendet.
Germa- nium	Ge wird in Transistoren/Mikrochips und Gleichrichtern verwendet. SiGe-Mikrochips werden in Fahrassistenzsystemen (Radar) verwendet*.
Gold	Au wird in elektronischen Produkten mengenrelevant vor allem als Kontaktmaterial verwendet. Darüber hinaus wird Gold in besonderen Fällen für Drähte eingesetzt (z. B. Bonddrähte bei integrierten Schaltkreisen bzw. Transistoren und Dioden).
Hol- mium	Es wurde keine Anwendung dieses Elements in den elektrischen und elektronischen Komponenten im Rahmen dieser Untersuchung identifiziert.
Indium	In wird als Indium-Zinn-Oxid (ITO) als Elektrodenmaterial eingesetzt (z.B. Flachbildschirme). Indium wird zudem in LED-Chips verwendet.
Iridium	Ir wird als Bestandteil von Zündkerzenelektroden sowie in elektrischen Kontakten verwendet.
Kobalt	Co wird als Magnetmaterial und in Widerständen genutzt. Darüber hinaus enthalten Kathoden in Lithium-Ionen-, in NiMH- und in NiCd-Batterien Kobalt. Letztere sind jedoch nicht Gegenstand des vorliegenden Projektes.

¹ Die Inhalte dieser Tabelle sind aus einer Vielzahl von Quellen zusammengestellt. Wesentliche Fundstellen waren: Alonso et al. (2012), Angerer et al. (2009), Arnaiz et al. (2006), Batteryuniversity (2013), Blaser et al. (2012a), Böni et al. (2011), Bosch (2013a), Bosch (2013b), bvi (2013), Cullbrand & Magnusson (2012), Du et al. (2011), Elbaz (2008), Fraunhofer-Institut für Angewandte Festkörperphysik (2012), Geraghty et al. (2006), Goonan (2011), Greif et al. (2006), Guberman (2008-2011), Hellmann/Teusch (2006), Infineon (2008), IPA (2013), Kempf (2005), kfztech (2013), Li et al. (2004), Moskalyk (2004), NGK (2012a), NGK (2012b), NGK (2013a), NGK (2013b), RePro (2012), ReStra (2013), Rieger (2009), Sakai et al. (2013), Scharp (2009), SEES (2007), Sigma-Aldrich (2010), Skinner (1979), Spengler et al. (2012), Stephan et al. (2010), USGS (2006), USGS (2007), Wäger et al. (2011), Wäger et al. (2013), Widmer & Wäger (2013), Yano (2013)

Element	Funktionale Einheit
Lanthan	La wird zur Stabilisierung von Komponentenmaterialien und zur Zusammenstellung bestimmter dielektrischer Eigenschaften eingesetzt. Darüber hinaus können Hartferritmagnete Lanthan enthalten.
Lute- tium	Es wurde keine Anwendung dieses Elements in den elektrischen und elektronischen Komponenten im Rahmen dieser Untersuchung identifiziert.
Neodym	Nd wird als Magnetwerkstoff eingesetzt. Es wird auch in negative-positive-zero-Kondensatoren (NPO-Kondensatoren) verwendet (Keramikanwendung).
Osmium	Os wird in elektrischen Kontakten als osmiumhaltige Legierungen der Platinmetalle verwendet.
Palla- dium	Eine wichtige Anwendung von Palladium im Elektronikbereich sind Vielschichtkondensatoren (MLCC = Multi Layer Ceramic Capacitor), die in großer Stückzahl als Entkopplungselemente in Halbleiterbauelementen eingesetzt werden. MLCCs sind praktisch auf allen Leiterplatten in unterschiedlich großer Anzahl zu finden: je komplexer das elektronische Gerät, desto höher die Zahl der benötigten MLCCs. Außerdem wird Palladium in Kontakten eingesetzt.
Platin	Pt wird in Sensoren und als Kontaktmaterial sowie in Zündkerzen angewendet.
Praseo- dym	Pr wird in Hochleistungsmagneten eingesetzt. Neben Neodymmagneten findet es sich ebenfalls in SmCo-Magneten. Praseodym wird zudem ggf. in Hintergrundbeleuchtungen von Flachbildschirmen genutzt und zur Stabilisierung von Komponentenmaterialien eingesetzt sowie zur Zusammenstellung bestimmter dielektrischer Eigenschaften.
Prome- thium	Es wurde keine Anwendung dieses Elements in den elektrischen und elektronischen Komponenten im Rahmen dieser Untersuchung identifiziert.
Rho- dium	Rh kommt bei der Herstellung von Flachbildschirmen und bestimmten Festplatten zum Einsatz. Es wird in Schleifkontakten in Elektromotoren und als Elektrodenbestandteil von Zündkerzen verwendet.
Ruthe- nium	Ruthenium dient als Legierungsbestandteil zur Erhöhung der Härte bzw. der Korrosionsbeständigkeit. Ruthenium wird z.B. in elektrischen Kontakten (Schleifringe, Relais) eingesetzt. Relevante Anwendungen aus dem Bereich der Fahrzeugelektronik sind in der Literatur nicht beschrieben.
Sama- rium	Sm wird in Samarium-Kobalt-Magneten eingesetzt. Es wird auch zur Stabilisierung und zur Zusammenstellung bestimmter dielektrischer Eigenschaften genutzt. Zudem ist es aktive Substanz in Leuchtstoffen.
Scandiu m	Es wurde keine Anwendung dieses Elements in den elektrischen und elektronischen Komponenten im Rahmen dieser Untersuchung identifiziert.
Silber	Ag wird in elektronischen Autoanwendungen in Kontakten und anderen leitenden Elementen (z.B. Lote), in einzelnen Batterietypen und ggf. als Bestandteil von Bildschirmbeschichtungen genutzt. Silber ist auch Bestandteil von AgPd-Elektroden in MLCC-Kondensatoren (siehe Palladium).
Tantal	Ta wird in der Autoelektronik in Kondensatoren verwendet.
Terbium	Tb wird potenziell in Neodymmagneten eingesetzt. Nach Cullbrand&Magnusson (2012 S. 21) wurde Terbium jedoch nur im Motor von Hybridfahrzeugen gefunden. Andere Neodym-Magnet-Motoren der Untersuchung enthielten nur sehr geringe Spuren. Terbium wird zudem als aktive Substanz in Leuchtstoffen verwendet.
Thulium	Es wurde keine Anwendung dieses Elements in den elektrischen und elektronischen Komponenten im Rahmen dieser Untersuchung identifiziert.


Element	Funktionale Einheit
Ytter- bium	Es wurde keine Anwendung dieses Elements in den elektrischen und elektronischen Komponenten im Rahmen dieser Untersuchung identifiziert.
Yttrium	Y wird in Leuchtstoffen eingesetzt. Yttrium ermöglicht darüber hinaus eine Stabilisierung der Strukturen von Komponentenmaterialien. Es wird in Vielschichtkondensatoren genutzt sowie in Sensoren (z. B. Sauerstoffsensor).
Zinn	Sn wird in elektronischen Geräten vor allem in Loten bzw. als Kontaktmaterial genutzt.

^{*} Germanium wird in Autos laut Angerer et al. (2009) in IC in Automobilen verwendet. Die in Angerer et al. (2009) genutzte Literatur (Elbaz 2008; Kempf 2005; USGS 2006; USGS 2007; Wikipedia 2008) ebenso wie Guberman (2008-2011) betrachten neben LED auch Radar als Fahrassistenzsystem in Autos als Einsatzgebiet.

Alonso et al. (2012) gehen von etwa 440 g Seltenen Erden in einer 2012er Mittelklasse US-Limousine aus. 400 g wurden dabei als elementar wichtig für die Funktionsweise des Fahrzeuges (Sicherheitskomponenten, Radio/Lautsprechersystem) bewertet und 40 g wurden eher als Zubehör angesehen (Navigationssystem, DVD Player, elektronisch-kontrollierte Sitze).

Abbildung 6 gibt eine Übersicht über den Anteil von Seltenen Erden in den verschiedenen Systemen.

Abbildung 6: Verteilung von Seltenen Erden in den Segmenten einer 2012er US- Mittelklasselimousine (Datengrundlage Alonso et al. 2012)

Im Segment "Treibstoff- und Abgassystem" ist der Katalysator enthalten, der im vorliegenden Projekt nicht betrachtet wird. Die verbleibende Menge an Seltenen Erden (ohne Katalysator) verteilte sich auf 60 Anwendungen, die jedoch in der Quelle nicht einzeln spezifiziert sind. Das Segment "Elektronik" kann wahrscheinlich zum Teil den anderen Segmenten zugeordnet werden. Damit ist das Teilsystem "Steuerung und Bremssystem" das relevanteste Anwendungsfeld von Seltenen Erden vor dem Schließsystem und der Lüftung/Heizung. Es ist davon auszugehen, dass hier vor allem die Magnetwerkstoffe und dabei

überwiegend Neodym relevant ist (siehe auch folgende Abbildung 7). Cer ist nach Alonso et al. (2012) vor allem im Katalysator enthalten.

Abbildung 7: Anteil an Seltenen Erden in einer 2012er US- Mittelklasselimousine (Datengrundlage Alonso et al. 2012)

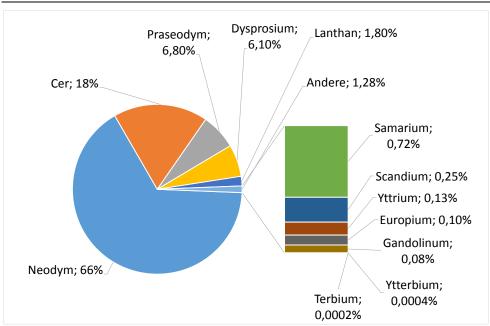


Tabelle 16 zeigt, in welchen funktionalen Einheiten in der Autoelektrik und -elektronik die einzelnen kritischen Metalle enthalten sind.

Tabelle 16: Zuordnungsmatrix zwischen ORKAM-Elementen und den funktionalen Einheiten in der Autoelektrik und -elektronik

	Leiterplatte (unbestückt)	Lichtelektroden	Transistor	Gleichrichter	Widerstand	Kondensator	IC	Lote	Batterie auf Leiterplatte	Kunststoffgehäuse	Kontakte	Magnete	Leuchtstoff	Elektrodenmaterial Bild- schirm	LED	Sensoren	Elektrode Zündkerze
Antimon	Х				Χ					Х							
Beryllium											Х						
Cer													Х				
Dyspro- sium												Х					
Erbium													Χ				

	Leiterplatte (unbestückt)	Lichtelektroden	Transistor	Gleichrichter	Widerstand	Kondensator	IC	Lote	Batterie auf Leiterplatte	Kunststoffgehäuse	Kontakte	Magnete	Leuchtstoff	Elektrodenmaterial Bild- schirm	LED	Sensoren	Elektrode Zündkerze
Europium													X				
Gadoli- nium													Х				
Gallium		Χ					Χ								Χ		
Germa- nium			Х	Х			Х										
Gold			Χ				Χ				Χ				Χ		
Holmium																	
Indium														Χ	Χ		
Iridium																	Χ
Kobalt					Χ							Χ					
Lanthan												Χ	Χ				
Lutetium																	
Neodym												Χ				Χ	
Osmium											Х						Χ
Palladium					Χ	Χ					Х						
Platin											Х					Х	Χ
Praseo- dym												Х	Х				
Prome- thium																	
Rhodium											Х						Χ
Ruthe- nium											Х						
Samarium												Х	Χ				
Scandium																	
Silber		Χ	Χ	Χ	Χ	Χ	Χ	Х			Χ						
Tantal						Χ											
Terbium												Χ	Χ				

	Leiterplatte (unbestückt)	Lichtelektroden	Transistor	Gleichrichter	Widerstand	Kondensator	IC	Lote	Batterie auf Leiterplatte	Kunststoffgehäuse	Kontakte	Magnete	Leuchtstoff	Elektrodenmaterial Bild- schirm	LED	Sensoren	Elektrode Zündkerze
Thulium																	
Ytterbium																	
Yttrium						Χ							Χ			Χ	
Zinn					Χ			Χ			Χ			Х			

3 Mengen an ORKAM-Elementen je funktionaler Einheit bzw. Komponente

Im folgenden Kapitel werden verfügbare Informationen zu den Mengen an ORKAM-Elementen in den funktionalen Einheiten bzw. Komponenten dargestellt.

Bei der Interpretation der dargestellten Ergebnisse ist zu berücksichtigen, dass die verfügbaren Daten in der Literatur lückenhaft sind. Für viele Komponenten ließen sich keine quantitativen Angaben ermitteln. Oftmals sind nur Einzelwerte verfügbar. Teilweise sind die Datengrundlagen und die Wege der Datengenerierung intransparent. Bei den dargestellten Ergebnissen handelt sich teilweise um Schlaglichter, die ein bestimmtes Modelljahr bzw. Untersuchungsjahr referenzieren bzw. eine geringe Spannbreite von Modelljahren. Die Gültigkeit spezifischer Daten für bestimmte Komponenten ist aufgrund schneller Technologiesprünge nur von beschränkter Dauer.

Leiterplatten werden in Kapitel 3.1 auch als bestückte Leiterplatten behandelt und decken dort Kontakte auf den Leiterplatten, integrierte Schaltkreise, Transistoren, Kondensatoren, Widerstände, Gleichrichter, Lote und vergleichbare Bestückungen mit ab.

Kunststoffgehäuse werden nicht als separate funktionale Einheit betrachtet, sondern über die verschiedenen Komponenten abgedeckt (z. B. Steuerungselektronik).

3.1 Leiterplatten

Dieses Kapitel fasst zunächst Informationen zu funktionalen Einheiten zusammen, die Teile von bestückten Leiterplatten sind. Anschließend werden Angaben zu bestückten Leiterplatten insgesamt dargestellt.

3.1.1 Kondensatoren

Die Gesamtmenge Tantal von 5,83 g/Fahrzeug entsprechend Cullbrand&Magnusson (2012) verteilte sich in einem schwedischen Mittelklassewagen (Baujahr ca. 2012) mit geringem Ausstattungsgrad (Serienausstattung) auf 72 funktionalen Einheiten, hauptsächlich bestückte Leiterplatten². In einem schwedischen Mittelklassewagen (in etwa gleiches Baujahr) mit hohem Ausstattungsgrad betrug die Menge 10,93 g in 119 funktionalen Einheiten (hauptsächlich bestückte Leiterplatten). In einem schwedischen Oberklassefahrzeug eines etwas früheren Baujahrs mit mittlerem Ausstattungsgrad betrug die Menge 6,99 g in 60 funktionalen Einheiten, hauptsächlich bestückten Leiterplatten (Cullbrand&Magnusson 2012). Die angegebenen Werte entsprichen rechnerisch zwischen rund 80 und 120 mg pro funktionaler Einheit. Es ist davon auszugehen, dass die größte Menge davon aus Kondensatoren stammt. Im Rahmen des RePro-Projektes im Auftrag des Umweltbundesamtes (RePro 2012) wurden Konzentrationen von 135 mg Ta pro kg in Platinen von Tablet Computern, <100 mg/kg in Platinen von Beamern, MP3-Playern, Smartphones und Multifunktionsdruckern und 469 mg/kg in Platinen von Navigationsgeräten durch chemische Analysen gefunden. Oguchi et al. (2011) haben in Analysen zwischen 7 mg/kg (in PC) und 8.000 mg/kg (in Digitalkameras) gefunden.

Der Ta-Gehalt von Ta-Kondensatoren wird mit einer Spannbreite von 24,4 % bis 42,6 % angegeben (Mittelwert 36,7 %) (ZVEI 2003 zitiert nach Buchert et al. 2012).

Du et al. (2014)³ beschreiben Ta-Konzentrationen von 3 % in gemischten SMD-Kondensatoren aus praktischen Aufbereitungsversuchen von Leiterplatten. Daraus kann in Kombination mit den Daten des ZVEI (siehe vorheriger Absatz) geschlossen werden, dass in der Größenordnung von 90 % andere Kondensatorarten als Ta-Kondensatoren in gemischtem Kondensatormaterial enthalten sind.

Die typische Zusammensetzung von AgPd-Elektroden in MLCC-Kondensatoren liegt bei 70:30 bzw. 95:5 (Stephenson et al. 2004). MLCC-Kondensatoren wiegen je nach Anwendung und Bauweise zwischen 0,00017 g und 0,45 g (ZVEI 2013). In den letzten Jahren war ein stetiger Miniaturisierungsprozess zu beobachten, der zu einem Rückgang der Palladiummengen pro Stück geführt hat. Dieser Prozess wurde jedoch durch die gestiegene Anzahl von MLCCs pro Gerät ausgeglichen (vgl. Johnson Matthey 2012).

Scharnhorst et al. (2005) geben einen Palladiumanteil auf bedruckten Leiterplatinen im Bereich der Elektronikgeräte von 0,15 % des Gesamtgewichts an.

Du et al. (2014)⁴ beschreiben einen Palladiumanteil von 0,2 % und einen Silberanteil von 0,4 % in SMD Kondensatormaterial aus Aufbereitungsversuchen. Weiterhin werden 0,3 % Dysprosium, 0,3 % Lanthan, 1 % Neodym 0,1 % Praseodym, 0,1 % Antimon und 0,1 % Yttrium genannt.

3.1.2 Widerstände

In Widerständen auf Leiterplatten von Luftmengensensoren wurden in einer Analyse der EMPA die in der folgenden Tabelle 17 genannten RePro-Elemente gefunden.

² Tantal wird zudem als Legierungselement genutzt. Über die Anwendung solcher Legierungen in Autos liegen keine Informationen vor.

³ Hierbei handelt es sich um Schätzungen, die aus einer 3D-Grafik einer Präsentation abgelesen wurden und daher eine größere Ungenauigkeit aufweisen.

⁴ Hierbei handelt es sich um Schätzungen, die aus einer 3D-Grafik einer Präsentation abgelesen wurden und daher eine größere Ungenauigkeit aufweisen.

Tabelle 17: Inhaltsstoffe von Widerständen auf der Leiterplatte von Luftmengensensoren (ungefähre Werte geschätzt nach Du et al. 2014)

Metall	Anti- mon	Kobalt	Silber
Konzentration in Widerständen auf der Leiterplatte von Luftmengensensoren	0,2 %	2,6 %	0,7 %
Konzentration in Widerständen auf Leiterplatten aus Fahrzeugen insgesamt	*	*	0,4 %

Anmerkung: Bei den Werten handelt es sich um Schätzungen, die aus einer 3D-Grafik einer Präsentation abgelesen wurden und daher eine größere Ungenauigkeit aufweisen. *: Wert zu klein für eine Schätzung aus der Grafik.

TDK (2009) nennt als Bestandteile von temperaturgesteuerten Widerständen Palladium, Zinn und Silber. Als beispielhaftes Anwendungsgebiet nennt TDK (2009) "Car audio unit Car CD or MD Laser pickup temperature compensated circuit".

Für spannungsabhängige Widerstände sind es ebenfalls Palladium, Silber und Zinn. Als beispielhafte Anwendungsfälle werden Controller Area Network (CAN-BUS), Steuerungselektronik, Klimaanlagenpanel, Audiosystem und Navigationssystem genannt (TDK 2013b).

3.1.3 Integrierte Schaltungen (IC), Mikrochips

Germanium wird in Autos laut Angerer et al. (2009) in Automobilchips verwendet. USGS 2007 beschreibt, dass beginnend ab dem Jahr 2007 Gallium-Arsenide-Chips (GaAs) in kabellosen Kommunikationsgeräten durch Silizium-Germanium Chips (SiGe) ersetzt werden.

Du et al. (2014) nennen als wesentliche Inhaltsstoffe von Halbleitern aus Zerlegeversuchen von Autokomponenten Gold (0,1 %), Antimon (0,6 %) und Tantal (0,2 %)

3.1.4 Lote

Aufgrund der Ausnahmen in Anhang II der Altautorichtlinie⁵ (siehe Tabelle 18) und der Ausnahmen der aktuellen RoHS-Richtlinie⁶ in Bezug auf Elektro-/Elektronikanwendungen im Auto werden in aktuellen und jungen Altfahrzeugen überwiegend konventionelle Lote erwartet. Dabei kann von einem Zinngehalt zwischen 50 % und 70 % und einem Silbergehalt weit unter 10 % ausgegangen werden.

⁵ Richtlinie 2000/53/EG des Europäischen Parlaments und des Rates vom 18. September 2000 über Altfahrzeuge (ABl. L 269 vom 21.10.2000, S. 34).

⁶ Richtlinie 2011/65/EU des Europäischen Parlaments und des Rates vom 8. Juni 2011 zur Beschränkung der Verwendung bestimmter gefährlicher Stoffe in Elektro- und Elektronikgeräten (Neufassung) (ABl. L 174 vom 1.7.2011, S. 88).

Tabelle 18: Ausnahmen für bleihaltige Lote in Anhang II der Europäischen Altautorichtlinie (Stand 2013)

	Werkstoffe und Bauteile	Anwendungsbereich und Ablauf- frist der Ausnahme
8a.	Blei in Lötmitteln zur Befestigung elektrischer und elektronischer Bauteile auf elektronischen Leiterplatten und Blei in Beschichtungen von Anschlüssen von anderen Bauteilen als Aluminium-Elektrolytkondensatoren, auf Bauteilanschlussstiften und auf elektronischen Leiterplatten	Vor dem 1. Januar 2016 typgeneh- migte Fahrzeuge und Ersatzteile für diese Fahrzeuge
8b.	Blei in Lötmitteln in anderen elektrischen Anwendungen als auf elektronischen Leiterplatten oder auf Glas	Vor dem 1. Januar 2011 typgeneh- migte Fahrzeuge und Ersatzteile für diese Fahrzeuge
8c.	Blei in der Beschichtung von Anschlüssen von Aluminium- Elektrolytkondensatoren	Vor dem 1. Januar 2013 typgeneh- migte Fahrzeuge und Ersatzteile für diese Fahrzeuge
8d.	Blei in Lötmitteln zum Löten auf Glas in Luftmassenmessern	Vor dem 1. Januar 2015 typgeneh- migte Fahrzeuge und Ersatzteile für diese Fahrzeuge
8e.	Blei in hochschmelzenden Loten (d. h. Lötlegierungen auf Bleibasis mit einem Bleianteil von mindestens 85 Gewichtspro- zent)	
8f.	Blei in Einpresssteckverbindern (z. B. Compliant-Pin-Technik)	
8g.	Blei in Lötmitteln zum Herstellen einer stabilen elektrischen Verbindung zwischen dem Halbleiterchip und dem Träger in in- tegrierten Flip-Chip-Baugruppen	
8h.	Blei in Lötmitteln zur Befestigung von Wärmeverteilern an Kühlkörpern in Halbleitermodulen mit einer Chipgröße von mindestens 1 cm² Projektionsfläche und einer Nennstromdichte von mindestens 1 A/mm² Siliziumchipfläche	
8i.	Blei in Lötmitteln in elektrischen Anwendungen auf Glas, ausgenommen zum Löten in Verbundglas	Vor dem 1. Januar 2016 typgeneh- migte Fahrzeuge und danach als Er- satzteile für diese Fahrzeuge
8j.	Blei in Lötmitteln zum Löten in Verbundglas	

3.1.5 Leiterplatten unbestückt

Leiterplatten enthalten als Flammschutzmittel Antimontrioxid (Sb_2O_3). Es wirkt als Synergist in Kombination mit halogenhaltigen Flammschutzmitteln. Die folgende Tabelle 19 nennt Antimongehalte von Leiterplatten in Elektronikgeräten, Tabelle 20 Antimongehalte in Leiterplatten verschiedener Fahrzeugen.

Tabelle 19: Antimongehalte in Leiterplatten verschiedener Elektronikgeräte (Blaser et al. 2012b)

Geräteart	Antimonmenge in mg/kg Leiterplatte
PC	2.020

Geräteart	Antimonmenge in mg/kg Leiterplatte
Laptop	1.277
Telefongerät	1.400
Drucker	397
Mobiltelefon	760
Faxgerät	670
TV, CRT	2.693
TV, Plasma	800
TV, LCD	1.800
Videorekorder, VCR	1.300
DVD-Spieler	1.200
Stereoanlage	470
Kassettenradio	3.035
Digitalkamera	1.800
Videokamera	1.889
CD-Spieler, tragbar	1.400
Minidisc-Spieler, tragbar	1.150

Tabelle 20: Antimongehalte in Leiterplatten verschiedener Fahrzeuge (Sakai et al. 2013)

	Konve	ntionelle	r Antrieb (N=5)	Hybridantrieb (N=14)			
	Min	Max	Mittelwert	Min	Max	Mittelwert	
Antimongehalte in mg/kg	540	2100	1300	30	5300	1300	

3.1.6 Bestückte Leiterplatten

Bestückte Leiterplatten zählen in der o. g. Kategorisierung (Abbildung 5) zu den "Teilen". Da nur in den wenigsten Fällen die Mengen der ORKAM-Elemente bezogen auf die funktionelle Einheit (z. B. Bonddraht) angegeben werden und bestückte Leiterplatten in der Regel im Entsorgungsprozess nicht weiter demontiert werden, wird hier als Basiseinheit das Teil betrachtet.

In der Elektronikschrottentsorgung werden verschiedene Leiterplattenqualitäten auf der Basis ihrer Edelmetallgehalte unterschieden (i.d.R. Klassen 1-3). Beispielhaft wird die Unterscheidung nach ESG (2014) im Anhang 15.1 wiedergegeben.

Laut Hagelüken (2010) enthalten bestückte Leiterplatten u. a. typischerweise 20 % Cu, 3 % Sn, 250 ppm Au, 1.000 ppm Ag, 100 ppm Pd sowie Spuren von Sb und Be, siehe Tabelle 21.

Tabelle 21: Zusammensetzung von bestückten Leiterplatten aus Elektronikkomponenten verschiedener Herkunft nach Hagelüken (2010)

Metall	Anti- mon	Beryllium	Gold	Palladium	Silber	Zinn	Kupfer
Metallgehalt	Spuren	Spuren	250 mg/kg	100 mg/kg	1.000 mg/kg	30 g/kg	200 g/kg

Arnaiz et al. (2006) geben nach Labortests von Leiterplatten aus Autos folgende Metallgehalte an⁷, siehe Tabelle 22.

Tabelle 22: Zusammensetzung von bestückten Leiterplatten aus Autos nach Arnaiz et al. (2006)

Metall	Gold	Palladium	Silber	Zinn	Kupfer
Metallgehalt	16,3-	15,6-	77-	0,3-	160-300
	91,6 mg/kg	92,0 mg/kg	220 mg/kg	24,0 g/kg	g/kg

Sakai et al. (2013) fanden bei der Beprobung eines konventionellen Fahrzeugs, Baujahr 1997, folgende Konzentrationen in den bestückten Leiterplatten von Kontrollinstrumenten (Tabelle 23).

Tabelle 23: Zusammensetzung von bestückten Leiterplatten von Kontrollinstrumenten aus einem Fahrzeug mit Verbrennungsmotor, Baujahr 1997, in Japan nach Sakai et al. (2013) (ORKAM-Elemente, Angaben in mg/kg)

Element	Minimum	Maximum	Durch- schnitt
Antimon	540	2.100	1.300
Cer	1	4	3
Dyspro- sium	1	1	0
Gallium	1	3	2
Gold	1	200	94
Indium	22	210	120
Kobalt	7	24	15
Kupfer	15.000	71.000	16.000
Neodym	2	560	120
Palladium	22	310	130
Praseo- dym	5	7	2

⁷ Es wurde nur nach bestimmten Metallen gesucht, so dass einige Metalle eventuell vorhanden waren und nur nicht analysiert wurden.

Silber	2	1.100	220
Tantal	1	67	14
Yttrium	2	22	5
Zinn	36.000	95.000	73.000

Du et al. (2014)⁸ beschrieben einen Gehalt von 0,1 % Neodym auf bestückten Leiterplatten aus Zerlegeversuchen von Fahrzeugen.

In bestückten Leiterplatten des Bremssystems und des Motorsystems wurden <0,01 g Rhodium identifiziert (Cullbrand&Magnusson 2012 S. 37). Cullbrand&Magnusson (2012) nennen als Bestandteile von bestückten Leiterplatten auch Indium, Neodym und Palladium. Die Mengenangaben werden in der Quelle jedoch über mehrere funktionale Einheiten aggregiert und können nicht zurück gerechnet werden.

Schmid (2014) nennt als durchschnittliche Zusammensetzung aller Leiterplatten in acht Fahrzeugmodellen der Baujahre 2010 bis 2013 die in der Tabelle 24 dargestellten Werte. Der Wert für Tantal wurde als gering belastbar eingestuft. Als Grund für festgestellte Schwankungen der Werte bei Kontrollproben wurde vermutet, dass keine ausreichende Homogenisierung der funktionalen Einheiten mit Tantalgehalten in den Proben erfolgt ist.

Tabelle 24: Zusammensetzung von bestückten Leiterplatten nach Schmid (2014)

	Au	Ag	Pt	Pd	Ru	Cu	Sb	Ge	Те	Та
Konzentration in g/kg	0,12	1,17	< 0,01	0,02	< 0,01	240	0,8	-	-	0,4

Zu den Gehalten von bestückten Leiterplatten nennen Rodrigo/Castells (2004) für Kupfer 16 %, für Silber 0,05 %, für Gold 0,03 % und für Palladium 0,01 %, wobei darauf hingewiesen wird, dass es sich bei den Angaben nicht um Auto-spezifische Werte handelt, siehe Tabelle 25.

Tabelle 25: Zusammensetzung von bestückten Leiterplatten (nicht Fahrzeug-spezifisch) nach Rodrigo/Castells (2004)

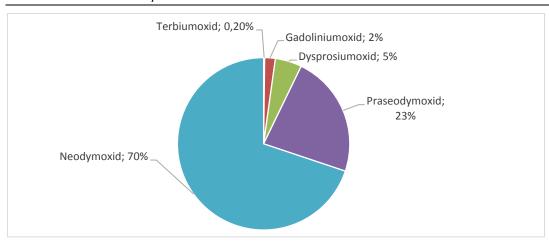
Metall	Gold	Palladium	Silber	Kupfer
Metallgehalt	300 mg/kg	100 mg/kg	500 mg/kg	160 g/kg

Tabelle 26 fasst die vorhandenen Informationen zu bestückten Leiterplatten zusammen.

⁸ Hierbei handelt es sich um Schätzungen, die aus einer 3D-Grafik einer Präsentation abgelesen wurden und daher eine größere Ungenauigkeit aufweisen.

Tabelle 26: ORKAM-Elemente in bestückten Leiterplatte und ihren funktionalen Einheiten

	Kompone	enten							Teil / Funkt	ionale Einh	eit
	Auto (Arnaiz et al. 2006)	Auto (Sakai et al. 2013)	Tablet (RePro 2012)	Beamer (RePro 2012)	Naviga- tionsge- räte (RePro 2012)	PC (Oguchi et al. 2011)	Digital- kamera (Oguchi et al. 2011)	EAG (Hage- lüken 2010)	Ta-Kon- densator (ZVEI 2003 zit. nach Buchert et al. 2012)	Wider- stand (Du et al. 2014)	Leiter- platten unbe- stückt (Sakai et al. 2013)
Anti- mon		1,3g/kg								2 g/kg	1,3 g/kg
Cer		3 mg/kg									
Gal- lium		2 mg/kg									
Gold	54 mg/k g	94 mg/kg						250 mg/ kg			
Indium		120 mg/kg									
Kobalt		15 mg/kg								25 g/kg	
Neo- dym		120 mg/kg									
Palla- dium	54 mg/k g	130 mg/kg						100 mg/ kg			
Praseo- dym		2 mg/kg									
Silber	149 mg/ kg	220 mg/kg						1 g/kg		7 g/kg	
Tantal			135 mg/ kg	100 mg/ kg	469 mg/ kg	7 mg/kg	8 g/kg		370 g/kg		


UBA Texte O.R.K.A.M. – Separation von Fahrzeugelektronik

	Komponenten						Teil / Funktionale Einheit			
Zinn	12 g/kg						30 g/kg			

3.2 Magnete

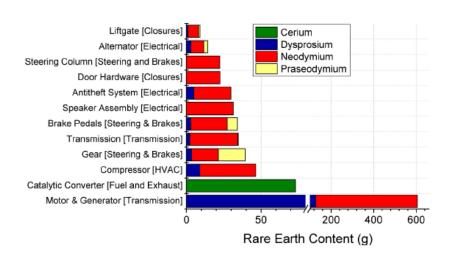

NdFeB-Magnete ($Nd_2Fe_{14}B$) bestehen aus ca. einem Viertel aus Seltenerdoxiden und zu drei Vierteln aus Eisen und Bor (Du et al. 2011). Die folgende Abbildung 8 zeigt die Verteilung von Seltenerdoxiden in NdFeB-Magneten, wie sie in Goonan (2011) dargestellt werden. Danach bildet Neodymoxid den Hauptanteil der Seltenerdoxide gefolgt von Praseodymoxid. Dysprosiumoxid und Gadoliniumoxid machen nur einen sehr geringen Anteil aus.

Abbildung 8: Verteilung von Seltenerdoxiden in Neodym-Eisen-Bor-Magneten in 2008 (Goonan 2011)

Alonso et al. (2012) stellen die verschiedenen Zusammensetzungen von Magneten je Komponente oder Teilsystem dar (siehe folgende Abbildung 9). Neben den Anwendungsfeldern Elektromotoren, Kompressoren in Hybridfahrzeugen und Katalysatoren, die nicht Gegenstand des Berichtes sind, sind Schaltung, Kraftübertragung, Bremsen, Lautsprecher, Diebstahlssicherung, Türen und Steuerung die wichtigsten Anwendungsfelder für Seltenerdoxide in Autos. Das wichtigste Anwendungsfeld für Praseodym ist die Schaltung.

Abbildung 9: Anwendungen von Seltenen Erden in Autos (Alonso et al. 2012)

Magnetwerkstoffe werden außer in Motoren auch in induktiven Sensoren eingesetzt, z. B. zur Messung der Drehzahl verschiedener Systeme wie z. B. des Motors, des Getriebes und der Räder und überwachen auch die Auslösung des Antiblockiersystems (ABS) und das elektronische Stabilitätsprogramm (ESP) (Rieger 2009).

Laut Yano (2013) werden in Fahrzeugen ebenfalls Ferritmagnete genutzt. Ein Anwendungsfeld sind z. B. Standardlautsprecher. Für die Anwendungsfälle Fensterheber, Spiegelverstellung oder Sitzverstellung wurde festgestellt, dass in den von Yano (2013) untersuchten Autos keine Neodymmagnete verwendet wurden⁹. Dies stimmt auch mit den Angaben von Toyota überein, die als Anwendungsgebiete von Neodymmagneten neben dem Motor von Elektro- und Hybridfahrzeugen die Klimaanlage, Steuerungsmotoren der Lenkung und Lautsprecher in high-end Soundsystemen benannt haben (Yano 2013).

Hartferritmagnete können Lanthan enthalten. So beschreibt bvi (2013) als Zusammensetzung von Hartferritmagneten "Eisenoxid, Strontium- bzw. Bariumcarbonat, Kobalt und Lanthan in geringen Mengen (2 bis 4 %)".

Einen Überblick über die Zusammensetzung von Magneten, die Seltene Erden enthalten, gibt MMPA (o. J.), siehe Tabelle 27. Tabelle 28 zeigt weitere beispielhafte Anteile Seltener Erden in Seltenerd-Magneten.

Tabelle 27: Mögliche Zusammensetzungen von Seltenerd-Magneten (Quelle: MMPA o. J.)

Legierung	Mögliches Seltenerdelement
RE Co5	RE = Sm
RE Co5	RE = Sm, Pr
RE2TM17	RE = Sm, TM = Fe, Cu, Co, Zr, Hf
RE2TM14B	RE = Nd, Pr, Dy TM = Fe, Co

Tabelle 28: Beispielhafte Anteile Seltener Erden in Seltenerd-Magneten (Datengrundlagen Du 2011 et al. und Goonan 2011)

	Neo-	Praseo-	Dyspro-	Gadoli-	Ter-	An-
	dym	dym	sium	nium	bium	dere
Anteil in einem Neodym-Eisen- Bor-Magnet	19 %	6 %	1%	0,5 %	0,05 %	26 %

Du et al. (2014)¹¹⁰ beschreiben als Zusammensetzung einer Magnetfraktion aus Zerlegeversuchen von Fahrzeugen Anteile von 0,3 % Kobalt, 0,7 % Lanthan und nur geringe Neodymgehalte. Dies deutet darauf hin, dass überwiegend andere als Nd-Magnete in der untersuchten Magnetfraktion enthalten waren.

Bei Neodymmagneten wird laut TDK (2011) eine 10-20 μ m dicke Luftschutzschicht aus Nickel (Anwendungsgebiete: Festplattenmotoren, Unterhaltungselektronik¹¹, elektrische Haushaltsanwendungen, Sensoren und Motoren im Bereich Automobile) oder Nickel-Zinn (Anwendungsgebiete: Aktuatoren, Sensoren und Motoren im Automobilbereich) verwendet. Abbildung 10 zeigt


⁹ Außer im Hybridfahrzeug.

¹⁰ Hierbei handelt es sich um Schätzungen, die aus einer 3D-Grafik einer Präsentation abgelesen wurden und daher eine größere Ungenauigkeit aufweisen.

¹¹ Z. B. Hochwertige Lautsprecher auch in Autos.

ein Beispiel für eine solche Beschichtung (Festplattenmagnet). In der Praxis kann eine solche Beschichtung als ein Indikator für die Unterscheidung zwischen Ferrit- und Neodymmagneten herangezogen werden.

Abbildung 10: Beispiel Beschichtung eines Neodymmagneten (Bildquelle Ökopol)

3.3 Flüssigkristallanzeigen-Bildschirme

In Flüssigkristallanzeigen-Bildschirmen (liquid crystal displays, LCD) in Fahrzeugen sind drei Komponenten hinsichtlich der ORKAM-Elemente relevant:

- das Indium-Zinn-Oxid (ITO), das in jedem LCD enthalten ist,
- die seltenerdhaltigen Leuchtstoffe, sofern Kompaktleuchtstofflampen die Hintergrundbeleuchtung bilden und/oder
- LEDs, sofern diese die Hintergrundbeleuchtung bilden.

Zu LEDs siehe den nächsten Abschnitt 3.4.

Navigationssysteme in Automobilen weisen Größen ab 5 Zoll (12,7 cm) Bildschirmdiagonale auf, Displays in Kopfstützen oftmals ab 7 Zoll (17,8 cm) und das Infotainment im Cockpit in einem Audi Oberklassefahrzeug besitzt eine Größe ab 10 Zoll (25,4 cm) (z. B. wiwo 2014).

ITO in Bildschirmen besteht zu 90 % aus In_2O_3 und zu 10 % aus SnO_2 (entsprechend einem Massenanteil von 78 % Indium) (Böni et al. 2011). Die in der Literatur genannten Werte für Indium pro Flächeneinheit variieren stark (siehe Tabelle 29. Böni et al. (2011) gehen von ca. 234 mg In pro Quadratmeter aus.

Tabelle 29: Indium bzw. ITO-Gehalte in LCD (Böni et al. 2011)

	(Angerer et al. 2009)	(Socolof, Overly et al. 2005)	(Martin 2009)	(Becker mon-He et al. 20	ettich	(Bogo 2009)	lanski)
mg ITO/m ²	4.000	7.176	700	192	240	72	192
nm/layer	1.667	2.990	292	80	100	30	80
mg In/m ²	3.120	5.597	546	150	187	56	150

Die folgende Tabelle 30 gibt Schätzungen über durchschnitliche Gehalte Seltener Erden in LCD mit LED als Hintergrundbeleuchtung wieder, die nicht spezifisch auf die Verwendung im Auto, sondern auf Bildschirmgeräte bezogen sind.

Tabelle 30: Schätzungen durchschnittlicher Gehalte an Seltenen Erden in LCD mit LED Hintergrundbeleuchtung (Buchert et al. 2012)

	Mittlere Bildschirm- fläche	Yttrium	Europium	Lanthan	Cer	Terbium	Gadoli- nium
	cm ²	mg/Gerät	mg/Gerät	mg/Gerät	mg/Gerät	mg/Gerät	mg/Gerät
Note- book	552	1,8	0,13	0,11	0,076	0,038	0,011
LCD-Mo- nitor	1.126	16	1,2	1	0,68	0,34	0,095
LCD- Fernse- her	3.626	110	8,1	6,8	4,5	2,3	0,63

Du et al. (2014)¹² nennen Antimonkonzentrationen von 0,1 % in LC-Displays.

Die folgende Tabelle 31 gibt Schätzungen über die Absolutmengen verschiedener ORKAM-Elemente in LCD mit LED als Hintergrundbeleuchtung wieder, bezogen auf die Verwendung im Auto.

Tabelle 31: Schätzungen von Absolutmengen verschiedener ORKAM-Elemente in verschiedenen Displays mit LED Hintergrundbeleuchtung in Autos (eigene Berechnungen)

	Bild- schirmflä- che cm²/Gerät	Yttrium mg/Ge- rät	Euro- pium mg/ Gerät	Lan- than mg/ Gerät	Cer mg/ Gerät	Ter- bium mg/ Gerät	Gadoli- nium mg/ Gerät	Indium mg/ Gerät
Infotain- ment	60	1,06	0,08	0,06	0,04	0,02	0,01	4,73
Navigati- onssystem	150	0,20	0,01	0,01	0,01	0,004	0,001	11,82

¹² Hierbei handelt es sich um Schätzungen, die aus einer 3D-Grafik einer Präsentation abgelesen wurden und daher eine größere Ungenauigkeit aufweisen.

	Bild- schirmflä- che cm²/Gerät	Yttrium mg/Ge- rät	Euro- pium mg/ Gerät	Lan- than mg/ Gerät	Cer mg/ Gerät	Ter- bium mg/ Gerät	Gadoli- nium mg/ Gerät	Indium mg/ Gerät
Mittelkon- sole	324	0,49	0,04	0,03	0,02	0,01	0,00	25,53

In einem LCD eines Infotainments wurden von Cullbrand&Magnusson (2012) 0,18 g Erbium identifiziert.

3.4 LED

Je nach Anwendungszweck und Lichtfarbe unterscheiden sich die Zusammensetzungen von LEDs deutlich. Spengler et al. (2012) haben eine Modell-LED als Grundlage für Massenstromberechnungen entwickelt, deren Zusammensetzung für einige Elemente in der folgenden Tabelle 32 wiedergegeben ist.

Tabelle 32: Zusammensetzung einer Modell-LED nach Spengler et al. (2012)

Element	Masse in LED (Mikrogramm)	Masse min-max (Mikrogramm) ¹³
Ga	25,8	15,1 bis 25,8
In	0,015	0,006 bis 0,028
Au	206,5	55,5 bis 1070
Ag	11,0	
Ge	807,5	425,0 bis 807,5
Υ	63,0	
Ce	pg/fg-Bereich	

Eine in Spengler et al. (2012) entwickelte Referenz-LED-Lampe besitzt die in Tabelle 33 genannte Zusammensetzung. Dabei wird deutlich, dass das eigentlich LED-Modul aus den bekannten Lampen mit 0,8 % nur einen sehr geringen Gewichtsanteil der Lampe ausmacht. In Automobilen liegt in der Regel eine abweichende Konfiguration vor, die jedoch im Grundsatz alle genannten Bauteile umfassen (Linse, Modul, Kühlkörper, Vorschaltgerät, Sockel, Gehäuse, Verbindungsteile).

Tabelle 33: Materialien in Referenz-LED-Lampe (E27, ca. 650 lm, ca. 10 W) nach Spengler et al. (2012)

Bauteil	Material	Masse (g)	Gewichts-%
Linse	Glas oder Plastik	20	8,1
LED-Modul	LED in Modul:	2	0,8
Kühlkörper	Aluminium	140	56,9
	Kupfer	20	8,1
	Eisen	1,6	4,0

¹³ Sofern abweichende Angaben vorliegen.

Bauteil	Material	Masse (g)	Gewichts-%
Vorschaltgerät: Leiter-	Kupfer	1,6	
platte, Widerstände, Transistoren, Spulen,	Aluminium	1,3	
Kondensatoren, Dio-	Zinn	0,3	
den, Draht, Lötpaste,	Silber	0,01	
Schaum, Beschichtung	Plastik	1,3	
	Sonstige	3,8	
Sockel	Verzinnter Stahl	9	3,7
Gehäuse und Verbin- dungsteile	Kupferschrauben, Aluminiumteile, Porzellan, Plastik	45	18,3

In drei LEDs der Außenbeleuchtung eines Fahrzeugs wurden von Cullbrand&Magnusson (2012) <0,01 g Europium gefunden. Weiterhin wurden Gadolinium (<0,01 g), Gallium (0,56 g) und Yttrium (0,22 - 0,23 g) gefunden, die Mengenangaben wurden jedoch über mehrere funktionale Einheiten aggregiert (z. B. "Keramik und LED"), so dass die jeweils für LED angewandten Mengen nicht identifiziert werden können.

In Tagfahrlicht-LED sind laut Lim et al. (2013) bis zu 26 mg Antimon pro kg verarbeitet.

Guberman (2008-2011) beschreibt die Anwendung von Germanium in LED-Rücklichtern von Autos. Eine Quantifizierung der Konzentrationen erfolgt jedoch nicht.

3.5 Sensoren

Sensoren stellen den Oberbegriff für eine breite Palette von Anwendungen dar. Im allgemeinen Sinn erfassen sie physikalische Zustände, übertragen sie in elektrische (analoge oder digitale) Informationen, die von der Bordelektronik umgesetzt werden. Moderne Sensoren umfassen dabei teilweise auch eine eigene Auswertungselektronik.

Sensoren sind somit in der Systematik dieses Berichts als Teile oder Komponenten einzuordnen. Die folgende Liste (Tabelle 34) kategorisiert beispielhaft verschiedene Sensorarten¹⁴.

drucksensoren, Positionssensoren, Füllstandsensoren).

¹⁴ Die in Tabelle 34 dargestellte Kategorisierung nach Bosch 2013a ist für die Zielstellung dieses Projektes besser geeignet als vergleichbare Kategorisierungen wie z. B. entsprechend HdT (2013), da die Differenzierung nach Bosch (2013a) stärker auf die Funktionsweise der Sensoren abzielt. Bei HdT (2013) stehen eher die Teilsysteme im Vordergrund. Da dies ggf. für die spätere demontageorientierte Betrachtung von Bedeutung sein kann, ist dieser Differenzierungsansatz hier jedoch ebenfalls wiedergegeben. Bei HdT (2013) wird unterschieden zwischen: Sensoren für Motorsteuerungen (Klopfsensoren, Abgassensoren, Temperatursensoren, Drucksensoren, Geschwindigkeitssensoren, Positionssensoren), Sensoren für Fahrwerksfunktionen (Höhenstandssensoren, Raddrehzahlsensoren, Querbeschleunigungssensoren, Achslastsensoren, Pedalpositionssensoren, Lenkwinkelsensoren), Sensoren für Assistenzfunktionen (Regensensoren, Lichtsensoren, Bildsensoren für Fernlichtsteuerung, Radarabstandssensoren, Parkabstandssensoren), Sensoren für Klimatisierung (Temperatursensoren, Solarsensoren, Feuchtesensoren, Luftgütesensoren, Kältemitteldrucksensoren), Sensoren für aktive/passive Sicherheit (Beschleunigungssensoren, Drucksensoren, Sitzbelegungssensoren, Bildsensoren für Insassenerkennung, Wasserstoff-Sicherheitssensoren), Sensoren für allg. Karosseriefunktionen (Batteriesensoren, Zugangssensoren, Reifen-

Tabelle 34: Sensorarten und ihre Anwendungsgebiete in KFZ (Quelle: Bosch 2013a)

	D
Sensoren	Beispielhafte Anwendung
Winkelgeber messen einfache Winkelstellungen und - änderungen.	Drosselkappen-Winkelmessung für das Motormanagement bei Ottomotoren.
Drehzahlsensoren messen Drehzahlen, Positionen und Winkel über 360° hinaus.	Raddrehzahlen bei ABS/ASR, Motordrehzahlen, Verstellwinkel, Lenkradwinkel-, Fahrstrecken-, Kurvenmessungen bei Navigationssystemen.
Feder-Masse-Beschleunigungssensoren messen Geschwindigkeitsänderungen, wie sie im Straßenverkehr auftreten.	Beschleunigungs- und Verzögerungserfassung von Kraftfahrzeugen für das ABS und die Antriebsschlupfregelung (ASR).
Biegebalken-Beschleunigungssensoren erfassen Erschütterungen, wie sie durch Stöße auf Schlechtwetterstrecken und durch Bordsteinkanten auftreten.	Rüttelerkennung bei Schlechtwetterstrecken für das Motormanagement.
Piezoelektrische Beschleunigungssensoren messen Stöße und Schwingungen, wie sie beim Aufprall von Fahrzeugen und Körpern auf Hindernisse auftreten.	Aufprallerkennung zur Auslösung von Airbag und Gurtstraffer.
Drehratensensoren messen Schleuderbewegungen, wie sie bei Fahrzeugen im Straßenverkehr auftreten.	Giergeschwindigkeits- und Querbeschleuni- gungsmessung für die Fahrdynamikregelung (ESP) und für Navigationssysteme.
Piezoelektrische Vibrationssensoren messen Körper- schwingungen, wie sie an Motoren, Maschinen, Dreh- lagern auftreten.	Motor-Klopferkennung zur Antiklopfregelung im Motormanagement.
Absolutdrucksensoren messen Druckbereiche von etwa der Hälfte bis zum Fünffachen des Erdatmosphärendrucks.	Unterdruckmessung im Saugrohr für Motor- management, Ladedruckmessung zur Lade- druckregelung, atmosphärendruckabhängige Einspritzung bei Dieselmotoren.
Differenzdrucksensoren messen Gasdruckdifferenzen, z. B. für Druckausgleiche.	Druckmessung im Kraftstofftank, Kraftstoffverdunstungs-Rückhaltesysteme.
Temperatursensoren messen Temperaturen von gasförmigen Stoffen und mit einem geeigneten Gehäuse auch Temperaturen von Flüssigkeiten im Temperaturbereich der Erdatmosphäre und des Wassers.	Anzeige von Außen- und Innentemperatur, Regelung für Klimaanlagen und Innentempe- ratur, Kühler-Thermostatsteuerung, Messung von Öl-, Kühlwasser- und Motortemperatur.
Sauerstoff-Lambda-Sonden bestimmen den Restsauerstoffgehalt im Abgas.	Gemischsteuerung zur Schadstoffminimierung bei Benzin- und Gasmotoren.
Luftmassenmesser messen Durchflussmassen von Gasen.	Messung der Durchflussmasse der vom Motor angesaugten Luft.

Die verfügbaren Informationen zur Zusammensetzung von Sensoren sind in der Regel nicht nach den funktionalen Einheiten im Sensor differenziert (z. B. Sensoreinheit und Leiterplatte der Auswertungselektronik), sondern stellen nur Gesamtangaben dar. Die Zusammensetzungen variieren entsprechend und die verfügbaren Daten sind im Vergleich zur Vielfalt der Produkte sehr begrenzt. Angaben zum Vorhandensein von ORKAM-Elementen in piezokeramischen Sensorelementen liegen nicht vor.

3.5.1 Magnetsensoren/Bewegungssensoren

Sensoren, die Bewegungen erfassen oder bei denen Medien (Wasser, Luft) über drehende Teile gemessen werden, enthalten oftmals Magnete.

Cullbrand&Magnusson (2012) stellen dar, dass das Teilsystem "Sicherheitselektronik" in dem untersuchten Fahrzeug der Mittelklasse ca. 5 g Neodym enthielt. Das Teilsystem "Sicherheitselektronik" wird im Anhang 2 von Cullbrand&Magnusson (2012) als "Sensors for air bags & ABS sensor" beschrieben.

Aufgrund des relativ hohen Preises von Neodymmagneten werden auch in neuen Magnet-/Bewegungssensoren teilweise Ferritmagnete verwendet.

3.5.2 Sauerstoffsensoren

Sauerstoffsensoren (wie z. B. Lambdasonden) und Temperatursensoren können Yttrium enthalten.

Du et al. (2014)¹⁵ fanden eine Konzentration von Yttrium im Keramikkörper von Sauerstoffsonden von ca. 2,5 %. Der Platingehalt lag in der Analyse bei ca. 0,7 %.

In einem Zerlegeversuch stellten Rodrigo/Castells (2004) in einer Lambdasonde mit einem Gesamtgewicht von 73 g einen Gehalt an Pt von 41 mg (entsprechend 0,6 g/kg) und einen Gehalt von Pd von 21 mg (entsprechend 0,3 g/kg) fest, siehe Tabelle 35.

Tabelle 35: Inhaltsstoffe von Sauerstoffsonden (Wäger et al. 2013, Rodrigo/Castells 2004)

Metall	Gewicht Sonde	Yttrium	Platin	Palladium
Metallgehalt nach (Du et al. 2014)	k. A.	25 g/kg	7 g/kg	k. A.
Metallgehalt nach (Rodrigo/Castells 2004)	73 g		0,6 g/kg	0,3 g/kg

Mögliche Erklärungen für den Mengenunterschied sind unterschiedliche Modelle der Sauerstoffsonden, ein unterschiedliches Alter oder unterschiedliche Bezugseinheiten (z. B. Sensorkeramik vs. Sensor).

3.5.3 Radar

In Radarelektronik, die als Fahrassistenzsystem eingesetzt wird, wird Germanium als IC-Bestandteil genutzt. USGS 2007 beschreibt, dass ab dem Jahr 2007 Silizium-Germanium ICs (SiGe) Gallium-Arsenide-ICs (GaAs) in kabellosen Kommunikationsgeräten zu ersetzen begannen.

Der erste kommerzielle Autoradar im Massenmarkt wurde 1997 im Toyota Celsior genutzt, es folgten BMW, Lexus und Nissan. 2010 waren auch Modelle wie der Audi A8, Porsche Panamera und Volkswagen Touareg mit Radarsystemen ausgestattet (Stevenson 2011).

Die Marktdurchdringung wurde zunächst durch die hohen Preise behindert. Szweda (2006) nennt als Preis für Radarsysteme für Autos für das Jahr 2006 bis zu 2.000 US-Dollar. Stevenson (2011) nennt für 2011 einen Preis von 1.000 US-Dollar. Lachner (2008) berichtet für 2008 von

¹⁵ Hierbei handelt es sich um Schätzungen, die aus einer 3D-Grafik einer Präsentation abgelesen wurden und daher eine größere Ungenauigkeit aufweisen.

einem niedrigen Akzeptanzlevel für neue Technologien bei original equipment manufacturers (OEM), dem Problem der hohen Vorleistungen in Produkt- und Technologieentwicklung und der langsamen Marktdurchdringung bei sich entwickelnden Technologien sowie einem sehr späten "Return On Investment". 2009 wurde ein dreijähriges BMBF-Projekt mit dem Ziel, Radarsysteme von hoher Zuverlässigkeit in allen Fahrzeugklassen verfügbar zu machen, unter Beteiligung der BMW Forschung und Technik GmbH, Continental AG, Daimler AG, Infineon Technologies AG und Robert Bosch GmbH, gestartet (Technologiekooperation "Radar on Chip for Cars" (RoCC)) (ieee 2011). Hierdurch wurde ein wesentlicher Entwicklungsimpuls gegeben. Das Marktforschungsunternehmen Strategy Analytics erwartete für das Jahr 2011 eine Nutzung von weltweit etwa 2,3 Millionen Fahrzeugen mit Radarsystemen (ieee 2011). 2014 könnten 7 % aller Neuwagen mit einem Fernwarnsystem ausgerüstet sein, vorwiegend in Europa und Japan (Infineon 2008).

Die Firma Bosch produzierte ab dem Serienstart im Jahr 2000 innerhalb von 13 Jahren 1 Millionen Radarsysteme. Bosch geht davon aus, dass 2016 der 10-millionste Radarsensor ausgeliefert wird (Bosch 2013a).

Dabei basierten die ersten beiden Generationen auf GaAs-Systemen. Ab der dritten Generation LRR3 wurden SiGe-Chips verwendet.

3.5.4 Temperatursensoren

Informationen zur Zusammensetzung von Temperatursensoren in Automobilen in Bezug auf die ORKAM-Elemente liegen nur sehr begrenzt vor. Thermometric (2014) beschreibt Silber als Hauptmetall für metallisierte Oberflächenkontakte von Thermistoren¹⁶. Dort, wo Silber nicht geeignet ist, werden Gold-, Platin- oder Palladiumlegierungen angewandt.

3.5.5 Fazit

In Bezug auf das Vorhandensein von ORKAM-Elementen zeigt die vorangegangene Untersuchung die Relevanz von Magnet-/Bewegungssensoren für das vorliegende Projekt. Weiterhin zeigt sich die Lambdasonde als Sauerstoffsonde relevant in Bezug auf die Anwendungsgebiete von Yttrium und Platin. Radarsensoren sollten in die Untersuchung als Anwendungsgebiet von Germanium in Autos berücksichtigt werden. Thermistoren stellen ein Anwendungsgebiet von Silber im Bereich der Sensoren dar (z. B. in Klimasensoren).

¹⁶ Ein Thermistor ist ein variabler elektrischer Widerstand.

Tabelle 36: Zu erwartende Inhaltsstoffe von Sensoren nach verschiedenen Quellen (siehe oben)

	Temperatur- sensor	Radar	Magnet-/ Bewegungssensor	Sauerstoff- sensor
Neodym			X	
Praseo- dym				
Dyspro- sium				
Gadoli- nium				
Terbium				
Germa- nium		Х		
Silber	X (unsichere Datenlage)			
Gold	X (unsichere Datenlage)			
Yttrium				X
Platin	X (unsichere Datenlage)			Χ
Palla- dium	X (unsichere Datenlage)			X
Gallium		X		

3.6 Zündkerzen

Elektroden der Zündkerze im Verbrennungsmotor können Yttrium und Iridium enthalten. Die Mittelelektrode einer "Iridiumzündkerze" ist 0,4 bis 0,6 mm dick (NGK 2013a). Der Anteil an Iridium in der Legierung kann bis zu 50 % erreichen (Niessner 2009). Daraus kann eine Menge von <9 mg Iridium pro Zündkerze geschätzt werden¹⁷. Zündkerzen mit Iridiumspitzen auf der Mittelelektrode werden z. B. in BMW-Modellen eingesetzt (320i, 520i, 528i, xDrive 20i, X3 x/sDrive 20i und Z4 sDrive 20i; NGK 2012a). Angaben zu den Gesamtmarktanteilen von Iridum-haltigen Zündkerzen liegen nicht vor. Aufgrund des Preises kann davon ausgegangen werden, dass andere Zündkerzenarten einen deutlich höheren Marktanteil haben.

In besonderen Fällen ist die Masseelektrode mit einem Platinplättchen besetzt. Der Platinanteil in dieser Legierung ist mit bis zu 50 % beschrieben. Es kann grob eine Masse von 8 mg Platin pro Zündkerze geschätzt werden 18. NGK (2012b) berichtet über den Einsatz eines Zündkerzentyps mit Mittelelektrode mit lasergeschweißter Platinspitze und einem zusätzlichen Platinchip in der Masseelektrode in den Modellen Mercedes C160 Kompressor, C200 Kompressor, 250 CGI, E200 Kompressor, SLK 200 und 250 sowie den Sprinterausführungen 216, 316 und 516.

¹⁷ Annahmen: Durchmesser 0,4 mm, Länge 2 mm, V=Pi*Radius²*Höhe, Dichte Iridium = 22,56 g/cm³

¹⁸ Annahmen: Durchmesser 1 mm, Höhe 0,5 mm, V=Pi*Radius²*Höhe, Dichte Platin = 21,45 g/cm³

Rhodium ist in einigen Zündkerzenvarianten als Legierungsbestandteil von Teilen der Mittelelektrode enthalten. Dabei wird versucht, das rhodiumhaltige Teil so klein wie möglich zu halten (u. a. auch wegen des hohen Preises von Rhodium).

Auf der Basis von Patentschriften (Niesser 2009) kann grob geschätzt werden, dass die Menge Rhodium je Zündkerze, die Rhodium enthalten, unter 3 mg liegt. Angaben zu den Marktanteilen von rhodiumhaltigen Zündkerzen liegen nicht vor. Aufgrund des Preises (doppelt bis dreifach so hoch wie Standardzündkerzen) kann davon ausgegangen werden, dass andere Zündkerzenarten einen höheren Marktanteil haben.

Tabelle 37 fasst die recherchierten Angaben zu Zündkerzen zusammen.

Tabelle 37: Zusammenstellung der Angaben zum Metallgehalt von Zündkerzen

Zündkerzen-Bestandteil	Metall	Metall- menge pro Zündkerze	Marktanteil dieses Zünd- kerzentyps	Quelle
Elektrode	Yttrium	k. A.	k. A.	k. A.
Mittelelektrode einer Iridiumzünd- kerze	Iridium	<9 mg	aufgrund des hohen Preises kein hoher	NGK 2013a, NGK 2012a, Niessner 2009
Platinplättchen auf Masseelektrode	Platin	8 mg	Marktanteil zu	
Mittelelektrode mit lasergeschweiß- ter Platinspitze und zusätzlicher Pla- tinchip in der Masseelektrode	Platin	k.A.	erwarten	NGK 2012b
Mittelelektrode	Rho- dium	<3mg		Niessner 2009

3.7 Sonstiges

3.7.1 Kabelverbindungen

In Kabelverbindungen der Elektronik von Gurtstraffern und Airbags wurde Rhodium identifiziert (<0,01 g) (Cullbrand&Magnusson 2012). Wir vermuten, dass es sich dabei um Bestandteile von Kontakten handelte.

3.7.2 Stecker

Unter anderem aufgrund ihrer Zuverlässigkeit werden Kupfer-Beryllium-Legierungen in Steckern in elektrischen Systemen von Fahrzeugen verwendet. Sie sind u. a. in Traktionskontrolle, Übersetzung, elektrischen Motoren, Diebstahlsicherungen, elektronischen Servolenkungen und Treibstoffeinspritzsystemen zu finden (BEST 2012). Steckverbindungen in Bereichen mit besonders hohen Sicherheitsanforderungen enthalten mehr/häufiger Goldbeschichtungen als Steckverbindungen bei Geräten mit geringen Sicherheitsanforderungen (z. B. Unterhaltungselektronik im Auto). Darüber hinaus können Kontakte von Steckern Rhodium enthalten.

3.7.3 Relais

Ein von Geraghty et al. 2006 untersuchtes Relais (Masse 32,8 g) in Verteilerboxen enthielt 0,07 % Silber (entsprechend 0,02 g pro Relais) und 0,09 % Antimontrioxid (entsprechend 0,03 g pro Relais) (Geraghty et al. 2006 S. 218).

3.7.4 Sicherungen

Die von Geraghty et al. (2006) untersuchten Sicherungen enthielten keine Edelmetalle und 12,14 % Kupfer (entsprechend 1,7 g bei größeren Sicherungen bzw. 0,41 g bei kleinen Sicherungen).

3.7.5 Schalter und Kontakte

Schalter und Kontakte können Edelmetalle und Beryllium enthalten. Quantifizierende Informationen hierzu liegen nicht vor.

3.7.6 Kunststoffe mit Antimon

Antimon bzw. Antimontrioxid wird als Flammschutzmittel insbesondere in Kunststoffen, aber auch in Klebstoffen, Gummi und Textilien eingesetzt. Einigen Quellen zufolge verbraucht die Herstellung von elektrischen und elektronischen Geräten 50 % des globalen Antimonangebots, überwiegend als Synergist in Flammschutzmitteln. Als Synergist mit Halogenen wird Antimontrioxid in Polyvinylchlorid (PVC) und in Kombination mit halogenhaltigen Flammschutzmitteln (bromiert, chloriert) verwendet (Erdmann et al. 2011). Gängige Anteile von Antimon sind 2-8 % in Kunststoff für EEE, 0,1-2 % in Epoxy und Silikon für Halbleiter in EEE, 1-10 % in PVC, 2-4 % in anderen Polymeren und Gummi und 1-15 % Antimon in Klebstoffen, Resins und Textilien (Erdmann et al. 2011).

3.7.7 Andere Geräte der Unterhaltungselektronik

In verschiedenen Projekten zu strategischen Elementen in Autos werden DVD-Player oder CD-Wechsler als Komponenten genannt. Die folgende Tabelle 38 beschreibt Gehalte strategischer Elemente in DVD-Playern. Dabei ist davon auszugehen, dass die Gehalte in CD-Player in einer vergleichbaren Größenordnung liegen.

Tabelle 38: Zusammenstellung der Angaben zum Metallgehalt von DVD-Player (RePro 2012)

Element	Gehalt in mg pro Gerät
Gallium	4
Gold	46,5 – 628
Kobalt	49,3
Neodym	314
Palladium	9 – 15,7
Silber	318 – 5024
Zinn	9.856 – 63.114

ORKAM-Elemente sind im Wesentlichen auf den bestückten Leiterplatten sowie den Motoreinheiten von DVD-Playern enthalten.

4 Kategorisierung von Fahrzeugkomponenten

Entsprechend den Ergebnissen der Projektstartbesprechung wird angestrebt, Komponenten der Fahrzeugelektrik bzw. -elektronik aus unterschiedlichen Anwendungsbereichen bzw. mit verschiedenen Funktionen bei den Demontageversuchen zu berücksichtigen. Daher ist zunächst eine Kategorisierung der Vielzahl unterschiedlicher Komponenten, die die in Kapitel 3 beschriebenen funktionalen Einheiten beinhalten, notwendig.

Ausgehend von der Analyse solcher Kategorisierungen in verschiedenen laufenden bzw. abgeschlossenen Projekten wird ein Kategorisierungsvorschlag entwickelt, der auf die Fragestellung und den Rahmen des Projektes ORKAM zugeschnitten ist.

4.1 Kategorisierungen in anderen Untersuchungen

4.1.1 Komponenten-Kategorisierung im EU-Projekt SEES¹⁹

Im Rahmen des EU-Projektes "Sustainable Electrical & Electronic System for the Automotive Sector" (SEES), in dem elektrische und elektronische Systeme untersucht wurden, erfolgte die Kategorisierung aufgrund physikalischer Eigenschaften und der Funktionen der Komponenten (Geraghty et al. 2006) in die in Tabelle 39 dargestellten Gruppen. Eine detailliertere Ableitung der Kategorien ist nicht veröffentlicht.

Das SEES-Projekt umfasste alle elektrischen und elektronischen Komponenten unabhängig von den Inhaltsstoffen. Im vorliegenden Projekt liegt im Unterschied dazu der Schwerpunkt nur auf den elektrischen und elektronischen Komponenten konventioneller Antriebe mit den ausgewählten ORKAM-Elementen.

Tabelle 39: Kategorisierung der elektrischen und elektronischen Systeme im EU-Projekt SEES

Lfd. Nr.	Gruppe der Systeme	Einsatzgebiete, Beispiele	ORKAM- relevant
1	Sensors	for sensing pressure, positions, flow, temperature, heat, humidity, exhaust gas, speed, acceleration and knock, torque	Х
2	Actuators: - basic actuators - electrical actuators - piezoelectric actuators - thermal actuators - pyrotechnical initiators	 electro-magnetic actuators (e.g. solenoids, moving coils) e.g. sparking plug e.g. injection valves 	X
3	Wire harnesses and ca- bles		
4	Connection and protection devices	cable connectors, passive junction boxes, switches, relays, fuses	Х

¹⁹ EU-Projekt SEES -Sustainable Electrical & Electronic System for the Automotive Sector. 2004 bis 2007. http://cordis.europa.eu/projects/506075

Lfd. Nr.	Gruppe der Systeme	Einsatzgebiete, Beispiele	ORKAM- relevant
5	Electronic control units (ECU)		X
6	Integrated mechatronic components (IMC),		Χ
7	Batteries	lead-acid battery, NiMH batteries	
8	Electrical motors and generators	starter motor, alternator, dc motors, step motors, motor pumps, compressors	Χ
9	Lights	high intensity discharge (HID) lamps, tungsten / halo- gen bulbs, LED	Χ
10	Heating units	window heating, seat heating, cigarette lighter	
11	Displays	electronic analogue displays, LCD, head-up displays (HUD)	Χ
12	Entertainment devices	CD / cassette radio, loudspeaker	Χ
13	Communication and navigation devices	GPS receiver, cell phone unit, telematics system	X
14	Other devices	horn, security/anti-theft devices, IR light units (e.g. remote power lock), radar/ultrasonic units (e.g. obstacle detection)	X / -

Fazit: Die SEES-Kategorien eignen sich im Wesentlichen gut für die Zielstellung des ORKAM-Projektes, da sie über Funktionen die Berücksichtigung von Zusammensetzungen ermöglichen. Einige Kategorien decken allerdings für das Projekt ORKAM eine zu breite Palette funktioneller Einheiten ab (z. B. "Entertainment").

4.1.2 Komponenten-Kategorisierung im Schweizer Projekt zur Automobilelektronik

Das vom Schweizer BAFU beauftragte Projekt "Verwertungspotenzial seltener Metalle in der Automobilelektronik" zielt darauf ab, Informationen über die Verwendung von seltenen Elementen in Autos bzw. Automobilelektronik zu generieren. Dabei werden "seltene Elemente" so definiert, dass sie in der Erdkruste in durchschnittlichen Konzentrationen von weniger als 0,01 Gew-% vorkommen (Widmer & Wäger 2013).

Im BAFU-Projekt wurden die elektronischen Bauteile in Gruppen aufgeteilt, siehe Tabelle 40. Die Ableitung der Gruppierungen erfolgte auf Basis von Experteneinschätzungen (Blaser et al. 2012a).

Tabelle 40: Kategorisierung der Bauteile im Schweizer Projekt zu seltenen Metallen in Automobilelektronik (Widmer & Wäger 2013) (siehe auch Blaser et al. 2012a)

Lfd. Nr.	Gruppe der Systeme	Beispiele
1	Elektromotoren	ABS-Pumpe, Alternator, Anlasser, Benzinpumpe, Fensterheber, Wischermotor, Kühlermotor
2	Steuergeräte	Steuergerät Airbag, Steuergerät Motor, Steuergerät Zündgerät
3	Sensoren	Lambdasonde, Luftmassenmesser, Airbag- /Crashsensor, ABS-Sensor

Lfd. Nr.	Gruppe der Systeme	Beispiele
4	Beleuchtung	
5	User Interface	Instrumente
6	Aktuatoren	
7	IKT/UE	Navigationssystem mit GPS, Radio/CD
8	Kontakte	Kombischalter, Sicherungskasten, Zündverteiler
9	Kleinteile	

Fazit: Die Kategorisierung des Projektes ist überwiegend sehr gut geeignet für die Zielstellung im ORKAM-Projekt. Teilweise erscheint eine auf die Zusammensetzung stärker orientierte Benennung sinnvoll (z. B. "Bildschirm" statt "User interface") bzw. eine Aufteilung bzw. Nichtberücksichtigung der Gruppe (z. B. "Kleinteile").

4.1.3 Komponentenkategorisierung nach Alonso et al. 2012

Alonso et al. (2012) identifizierten 700 Komponenten in konventionellen und Hybridfahrzeugen, die Seltene Erden enthielten und kategorisierten diese zweistufig nach "subsystem" (z. B. "fuel & exhaust and information & controls") und "application" (als typische Anwendung werden Katalysatoren, Lautsprechersysteme und Türschlösser genannt) (Alonso et al. 2012). Für jede Anwendung wurde dann ein "repräsentatives" Teil ausgewählt²⁰. Im Ergebnis wurden 76 Komponenten ausgewählt, um einen 2012er Sedan zu repräsentieren.

Tabelle 41: Kategorisierung der Bauteile in Alonso et al. (2012)

Lfd. Nr.	Gruppe der Systeme	
1	Electrical	
2	Fuel and exhaust	
3	Steering and brakes	
4	Closure	
5	Heating, ventilation, air condition	
6	Transmission	
7	Interior	
8	Tires and wheels	
9	Exterior	
10	Suspension	
11	Engine	

Fazit: Die Kategorisierung des Projektes ist etwas stärker auf die Demontage bzw. Lokalisierung zugeschnitten. Für die Zielstellung des ORKAM-Projektes erscheint eine Orientierung auf eine funktions-/zusammensetzungsbezogene Gruppierung sinnvoller.

²⁰ "The basis for selection was that the part was used in a midsize sedan and contained an average rare earth quantity relative to the other reported mid-size sedan parts. These parts were determined to represent a typical hypothetical midsize sedan." (Alonso et al. 2012 S. 474)

4.1.4 Komponenten-Kategorisierung einer japanischer Altfahrzeug-Zerlegestudie

Sakai et al. (2013) bildeten in einer demontageorientierten Untersuchung 9 Kategorien für die Komponenten anhand der Lage der Komponente im Auto:

- Motorraum,
- Innenraum (mit Unterteilung in Frontbereich, Sitzbereich, hinterer Bereich, Kofferraum),
- Außen (mit Unterteilung in Bodenbereich und andere),
- Sonstige Karosserie,
- Andere (hier wurden Komponenten zugeordnet, die in keine der anderen Kategorien passten, wie z. B. Kabelbäume).

Fazit: Die Gruppierung ist sehr stark auf die Lokalisierung der Komponenten für die Demontageuntersuchung zugeschnitten. Die Kategorisierung nach Lage im Fahrzeug ist für das vorliegende Projekt nur beschränkt zielführend, da es sinnvoller scheint, nach Aufbau/enthaltenen Funktionen zu gruppieren, da sich hieraus die Metallinhalte ableiten lassen.

4.2 Kategorisierung der Komponenten für das vorliegende Projekt

Folgende Komponentengruppen wurden als relevant bewertet:

- Motoren sowie vergleichbare Magnetanwendungen (siehe Kapitel 5.2 und 6.2),
- Bildschirme (siehe Kapitel 5.3 und 6.2.2),
- Steuergeräte (siehe Kapitel 5.7 und 6.2.2),
- Licht (LED-Lampen) (siehe Kapitel 5.4 und 6.2.3).

Leiterplatten und Kontakte sind i.d.R. Teile der anderen hier genannten Komponenten (siehe hierzu auch Kapitel 5.1).

Die Recherche zeigte zusätzlich, dass auch in Sensoren in Autos und Aktuatoren wie z. B. Zündkerzen ORKAM-Elemente bzw. die in Kapitel 3 beschriebenen funktionalen Einheiten zu erwarten sind. Daher wird eine Ergänzung um diese drei Komponentengruppen und einen "Platzhalter" für Sonstiges vorgenommen:

- Sensoren (siehe Kapitel 5.5 und 6.2.4),
- Verteiler (siehe Kapitel 5.8 und 6.2.7),
- Aktuatoren (siehe Kapitel 5.6 und 6.2.5),
- Sonstiges (siehe Kapitel 5.9 und 6.2.8).

Für das vorliegende Projekt wurde die in der folgenden Tabelle 42 dargestellte Kategorisierung gewählt. Dabei wurden dem Teil "Bestückte Leiterplatte" folgende der dargestellten funktionalen Einheiten zugeordnet:

- unbestückte Leiterplatte
- Kondensator,
- Gleichrichter,
- Widerstand,

- IC,
- Transistor,
- Kontakte,
- Lote.

Kabelverbindungen, Stecker und Schalter sind in der nachfolgenden Tabelle über die funktionalen Einheiten "Kontakte" berücksichtigt²¹.

Tabelle 42: Zuordnung von funktionalen Einheiten zu Komponentengruppen

Funktionale Einheiten	Motoren, ver- gleichbare Mag- netanwendun- gen	Bildschirm	Steuerungsge- rät	Verteiler	Licht	Sensoren	Aktuatoren
Magnete	Х					Х	
Bestückte Leiterplatten			х	х		Х	
Kunststoffgehäuse			x	x			
Relais				х			
Sensoren						Х	
Radarchip						х	
Lichtelektroden						Х	
LED		Х			х		
Leuchtstoff		Х					
Elektrodenmaterial Bild- schirm		Х					
Elektrode Zündkerze							Х
Sicherungen				x			

Anmerkung: Im Zusammenhang mit der Matrix in Tabelle 16 ergibt sich die Zuordnung von OR-KAM-Elementen zu den dargestellten Gruppen.

²¹ Der Kupfergehalt ist kein Auswahlkriterium im ORKAM Projekt.

5 Anzahl/Mengen der Komponenten je Fahrzeug

5.1 Leiterplatten

Der folgende Abschnitt beschreibt die Anzahl und die Verteilung von Leiterplatten in Pkws. In Tabelle 43 sind Angaben über den Gewichtsanteil von Leiterplatten in verschiedenen Pkws zusammengestellt.

Tabelle 43: Gewichtsanteile von Leiterplatten in Autos nach verschiedenen Quellen

Bauteile	Gewichtsanteil bezogen auf das Fahrzeuggewicht	Automarke	Bauteile
Nur Leiterplatten	0,13 %	Mercedes S-Klasse	(Mercedes-Benz 2005)
Nur Leiterplatten	0,1 %	Mercedes C-Klasse T- Modell	(Mercedes-Benz 2007)
Werkstoffklasse Elektrik	3 % (32 kg / 1.043 kg)	VW Golf, 4 Türen 1.4 l 55 kW Otto-Mo- tor	(Schweimer & Levin 1999)
E/E-System (Kabelsatz mit Komponenten, Steuerge- räte, Stromverteiler, Bat- terie)	6 %	"PKW heute"	(Delphi 2012)
E/E-System ohne Batterie (Kabelsatz mit Komponen- ten, Steuergeräte, Strom- verteiler)	4 %	"PKW heute", ohne Batterie (ca. 20 kg in einem PKW)	(Delphi 2012) + eigene Schätzung

Sakai et al. (2013) haben 56 Leiterplatten aus 19 Fahrzeugkomponenten gezählt. 61 % der Leiterplatten waren im Frontbereich verbaut (Sakai et al. 2013). Von den insgesamt 4,1 kg Leiterplatten waren 0,74 kg in Steuergeräten (siehe auch Kapitel 5.7) genutzt (im Hybridfahrzeug waren dies 2,5 kg). Die anderen Leiterplatten stammten vor allem aus Audiosystemen, Navigationssystemen, Tachometern und Airbagsensoren (Sakai et. al. 2013).

5.2 Magnetanwendungen

5.2.1 Anzahl und Lokalisierung

Neodymhaltige Permanentmagnete werden in Statoren und Rotoren in Elektromotoren verbaut, die in verschiedenen Teilsystemen von Fahrzeugen zu finden sind. Beispielhaft seien hier genannt: Einspritzsysteme, Kraftstoffpumpe, Fensterheber, Schließsysteme, Scheibenwischer, Klima-/Lüftung, Antennenmotor, Servolenkung (elektrisch, elektrohydraulisch). Anlasser und

Lichtmaschine werden von Rodrigo/Castells (2004) als "wertvoll" eingestuft, Gleichstrommotoren, Schrittmotoren, Pumpenmotoren und Kompressoren als mittelwertvoll²².

Rieger (2009) nennt folgende typische Anwendungsgebiete von Magnetanwendungen im Auto: Motor Heckklappe, Motor Türschloss, Lautsprecher, Motor Schiebedach, automatische Temperaturregelung, Tempomat, Tacho, Anzeigen Armaturenbrett, Wasserstandsanzeige, Scheibenwischermotor, Pumpe Scheibenwaschwasser, Kühlermotor, Scheinwerfermotor, Zündung, Startermotor, Drosselklappen-Positionssensor, Kurbelwellen-Positionssensor, Motor Klimaanlage, Stellmotor Sitze, Fensterheber, Kraftstoffpumpe, Antiblockiersystem.

Blaser et al. (2012a S. 20) nennen 20 als durchschnittliche Anzahl von Elektromotoren in einem aktuellen Mittelklassewagen.

TDK lokalisiert beispielhaft die Anwendung von Neodymmagneten in Magnetanwendungen in Autos (NEOREC-Magnete). Dies ist in der folgenden Tabelle 44 dargestellt.

Tabelle 44: Beispielhafte Magnetanwendungen in Autos (TDK 2011, TDK 2013a)

Komponente	Ferrit Magnet	Neodym Magnet
Fuel pump motor	FB 9N 9B 12B	
Power window lift motor	FB 9B 12B	
Anti-lock brake system (ABS) pump motor	FB 9H 6B 9B 12B 12H	
Blower motor, Wiper motor	FB 9B 12B	
Power steering motor	FB 9N 9B 12B	NEOREC 42SH
Power brake motor	FB 9B 9H 12B 12H	
Motor for active suspension	FB 9B 9H 12B 12H	NEOREC 42SH
Motor for electronic throttle control	FB 9B 9H 12B	
Motor for continuously variable transmission (CVT)	FB 9B 9H 12B 12H	
Starter motor	FB 9B 9H 12B 12H	NEOREC 38UH
Door lock motor, Power mirror motor	FB 5D 5DH	
Generator operation motor		NEOREC 38UH
Electric generator	FB 9N 9B 12B 12H	NEOREC 38UH
Alternator	FB 9B 12B FB 38UH	
Loudspeaker		NEOREC 37H 40H

5.2.2 Mengen ORKAM-Elemente

Als durchschnittliche Menge an Seltenen Erd-Metallen in Permanentmagneten pro betrachtetem Fahrzeug nennt Rieger (2009) 29,5 g.

Cullbrand & Magnusson (2012) beschreiben die in Tabelle 45 dargestellten Mengen von Magnetwerkstoffen für einen aktuellen Volvo-Pkw der Mittelklasse mit Serienausstattung.

²² "Medium value metals or other valuable materials" (Rodrigo/Castells 2004 S. 51); Basis der Einstufung war anscheinend eine Betrachtung des Rohmaterialwertes.

Tabelle 45: Magnetwerkstoffe in einem Volvo-Mittelklasse-Pkw aktuellen Modelljahres mit Serienausstattung (CML "Conventional Midsize car, Low Specified") (Cullbrand & Magnusson 2012)

Werkstoff	Masse pro Fz. [g]	Anzahl Anwend. pro Fz.	Hauptanwen- dungen	Haupt-Teilsysteme des Fahr- zeugs
Dysprosium	0,83	7	Magnete	Klimaanlage, Innenausstattung, Instrumentenkonsole
Gallium	0,08	29	Magnete, LED	Klimaanlage, Fahrkontrolle
Lanthan	5,22	3	Magnete, Parti- kelfilter	Motorsystem, Lenkung
Neodym	43,38	28	Magnete, Lei- terplatten	Klimaanlage, Lenkung
Praseodym	0,81	4	Magnete	Klimaanlage, Fahrkontrolle
Samarium	0,43	2	Magnete	Motorsystem
Summe	50,75			

Die (Servo-)Lenkung enthält in dem untersuchten Fahrzeug ca. 35 g Neodym. Weitere wichtige Komponenten sind die Klimaanlage mit ca. 4 g (Dysprosium 1 g, Praseodym 1 g), der Innenraum inklusive Instrumententafel mit ca. 3 g (vermutlich vor allem die Lautsprecher), Hupe und Waschanlage (vermutlich der Scheibenwischermotor bzw. die Waschwasserpumpe) mit ca. 1 g und das Teilsystem "driver controls"²³ mit ca. 1 g (Cullbrand & Magnusson 2012). Eine Zuordnung der Mengen zu den funktionalen Einheiten ist nicht möglich, da ausschließlich aggregierte Gewichtsangaben vorliegen.

Die folgende Tabelle 46 zeigt die Mengen an Magnetwerkstoffen in einem Volvo-Mittelklassefahrzeug aus einem aktuellen Baujahr mit hohem Ausstattungsgrad.

Tabelle 46: Magnetwerkstoffe in einem Volvo-Mittelklasse-Pkw aktuellen Modelljahres mit hohem Ausstattungsgrad (CMH "Conventional Midsize car, High Specified") (Cullbrand & Magnusson 2012)

Werkstoff	Masse pro Fz. [g]	Anzahl An- wend. pro Fz.	Hauptanwendungen	Haupt-Teilsysteme des Fahrzeugs
Dysprosium	27,14	21	Magnete	Infotainment, Sitze, Len- kung
Gallium	0,56	47	Magnete, LED	Klimaanlage, Sitze
Lanthan	0,07	5	Keramik, Magnete, Zinklegierungen	Infotainment, Sitze, Len- kung
Neodym	205,68	70	Magnete, Leiterplatten	Klimaanlage, Infotain- ment, Sitze, Lenkung
Praseodym	5,55	13	Keramik, Magnete	Klimaanlage, Sitze
Samarium	0,43	2	Magnete, Leiterplatten	Motorsystem

²³ Das Teilsystem 340 "Driver Controls" wird in Anhang 2 von Cullbrand&Magnusson (2012) folgendermaßen beschrieben: "Buttons and switches that the driver can control, e.g. cruise control start button & light switch".

Werkstoff	Masse pro Fz. [g]	Anzahl An- wend. pro Fz.	Hauptanwendungen	Haupt-Teilsysteme des Fahrzeugs
Summe	239,43			

Der deutlich höhere Einsatz von Neodym im Vergleich zum Fahrzeug mit Serienausstattung resultiert vor allem aus den Lautsprechern des "Sound Systems" mit 10 Lautsprechern. Hier sind ca. 135 g Neodym verbaut (Dysprosium 15 g). Zusätzlich enthält dieses Fahrzeug eine elektrische Sitzverstellung mit ca. 25 bis 30 g Neodym (Dysprosium 5 g). Die (Servo-)Lenkung enthält hier ca. 30 g Neodym (Dysprosium 10 g) (Cullbrand & Magnusson 2012).

Die folgende Tabelle 47 zeigt die Mengen an Magnetwerkstoffen in einem Volvo-Oberklassefahrzeug mit mittlerem Ausstattungsgrad, das aus einem etwas früheren Modelljahr stammt als die beiden zuvor dargestellten Fahrzeuge.

Tabelle 47: Magnetwerkstoffe in einem Volvo-Oberklasse-Pkw eines Modelljahres vor einigen Jahren mit mittlerem Ausstattungsgrad (CLM "Conventional Large Car, Medium Specified") (Cullbrand & Magnusson 2012)

Werkstoff	Masse pro Fz. [g]	Anzahl An- wend. pro Fz.	Hauptanwendun- gen	Haupt-Teilsysteme des Fahrzeugs
Dysprosium	1,96	9	Magnete	Klimaanlage, Infotainment, Si- cherheitselektronik
Gallium	0,42	21	Aluminiumlegie- rungen, Magnete LED	Außenlicht, Sitze
Neodym	27,60	26	Magnete, Leiter- platten	Klimaanlage, Infotainment, Si- cherheitselektronik
Praseodym	2,47	6	Magnete	Klimaanlage, Sicherheitselektro- nik
Samarium	0,73	2	Magnete, Leiter- platten	Motorsystem, Sitze
Summe	33,18			

Das Infotainment dieses Fahrzeugs umfasste ein einfacheres Sound System mit 8 Lautsprechern. Die Neodymmenge betrug ca. 10 g. Die Neodymmenge in der Klimaanlage lag in der gleichen Größenordnung, wie in den anderen Fahrzeugen (10 g) (Dysprosium 2 g). Das Teilsystem Sicherheitselektronik enthielt ca. 5 g Neodym (Dysprosium 1 g). Es ist im Anhang 2 von Cullbrand & Magnusson (2012) beschrieben als "Sensors for air bags & ABS sensor".

Dass der Oberklassewagen mit mittlerer Ausstattung entgegen der Erwartung insgesamt weniger (ca. 33 g, Tabelle 47) Magnetwerkstoffe enthält als der Mittelklassewagen mit geringer Ausstattung (ca. 50 g, Tabelle 45) könnte dem Umstand geschuldet sein, dass es sich um ein Fahrzeug aus einem älteren Modelljahr handelt. Dies deutet darauf hin, dass der Einsatz von Magnetwerkstoffen erst in den letzten Jahren stark stieg.

Alonso et al. (2012) benennen als wichtigste Anwendungsfeldern der Magnetwerkstoffe Neodym und Praseodym Lenkung und Bremsen, die Komponenten der Kraftübertragung, Lautsprecher, Diebstahlssicherung, Türschließungen Lichtmaschine. Das wichtigste Anwendungsfeld für Praseodym ist die Schaltung (siehe folgende Abbildung 11).

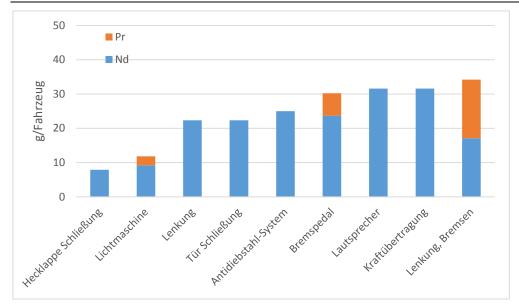
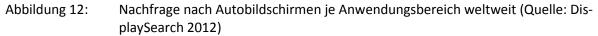
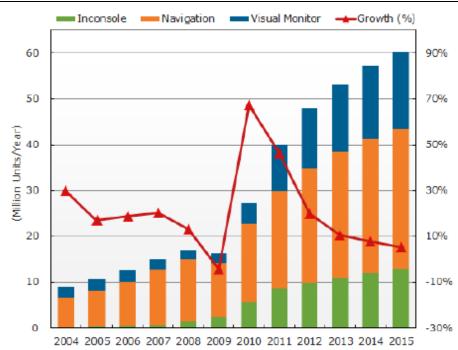




Abbildung 11: Seltenerdmengen in Autos (Datengrundlage: Alonso et al. 2012)

5.3 LCD

Die LCD finden sich bei aktuellen Altautos vor allem in den Navigationssystemen. Bei aktuellen Neuproduktionen wird bereits der Trend zu zusätzlichen Bildschirmen deutlich, z. B. für Informationen über Sicherheit, Energiedaten und zur Unterhaltung. Sie befinden sich z. B. im Frontbereich bzw. integriert in die Vordersitze (siehe auch Abbildung 12).

Informationen zur Anzahl von LED je Bildschirm bzw. Bildschirmfläche liegen nicht vor.

5.4 Licht

Komponenten, die LEDs enthalten, sind vielfältig im Auto verteilt.

In Autoscheinwerfern werden LEDs teilweise als Tagfahrlicht und in einigen Fällen auch als Abblendlicht und Fernlicht eingesetzt. Darüber hinaus werden LEDs in größerem Umfang in den Rückfahrscheinwerfern und der Innenbeleuchtung genutzt. Sie befinden sich außerdem in Informations- und Kontrolllampen und werden als Hintergrundbeleuchtung bei Flachbildschirmen eingesetzt. Die herkömmlichen Lichtquellen Halogen und Xenon in Scheinwerfern werden in Zukunft zunehmend Marktanteile an LEDs verlieren, doch weiterhin lange in Autos verwendet werden (Lorek 2013). "Experten sehen auch nach 2020 noch einen gehörigen Marktanteil für Halogen, umgekehrt dürfte ab 2018 praktisch jedes Fahrzeugmodell auch in einer LED-Variante erhältlich sein" (Lorek 2013).

Angaben über die Anzahl der LEDs pro Komponente liegen nur vereinzelt vor. Beim Audi A8 setzt sich das Abblendlicht aus zehn einzelnen Modulen zusammen. Jeweils 22 weiße und gelbe LEDs bilden Tagfahrlicht und Blinker. Das Fernlicht besteht aus zwei Vier-Chip-LED. Weitere LEDs generieren das Autobahn- und das Abbiegelicht (Audi 2013a). Im Audi A8 W12 wurde 2004 ein Scheinwerfer mit einer Leuchteinheit genutzt, die sich aus jeweils fünf LEDs zusammensetzte. Der aktuelle A1 nutzt pro Einheit eine einzige Leuchtdiode, die ihr Licht in einen transparenten Kunststoffschlauch, einen sogenannten Lichtleiter, schickt. Beim A7 Sportback erscheint das Tagfahrlicht der optionalen LED-Scheinwerfer ebenfalls linear, doch es wird von 18 einzelnen LEDs und einem vorgelagerten Kunststoffkörper erzeugt (Audi 2013b). Jede Heckleuchte des A8 enthält 72 LEDs (Audi 2013c).

5.5 Sensoren

Rodrigo/Castells (2004) beschreient 30 bis 40 als durchschnittliche Anzahl von Sensoren im Auto. Dies könne auf 100 bis 120 Sensoren bei Luxusfahrzeugen ansteigen. Der Bericht stuft alle Sensoren als geringwertig im Sinne des Projektes SEES ein, bis auf Sensoren aus dem Bereich Abgassystem. D. h. der Gehalt an ökonomisch werthaltigen Elementen wird im Vergleich zum Demontageaufwand als gering eingestuft.

Magnetanwendungen in Sensoren werden in Tabelle 48 beispielhaft aufgelistet. Dabei wird deutlich, dass Sensoren mit gleicher Funktion Neodym- oder Ferritmagnete enthalten können.

Tabelle 48: Beispielhafte Magnetanwendungen in Sensoren (TDK 2011, TDK 2013a)

Komponente	Ferritmagnet	Neodymmagnet
Anti-lock brake system (ABS) sensor	FB5D 5DH	NEOREC 44H 42SH
Fuel level sensor, Oil level sensor	FB 5D 5DH	
Distributer sensor	FB 5D 5DH	NEOREC 42SH
CAM sensor	NEOREC 42SH	
Suspension control	NEOREC 42SH	

5.6 Aktuatoren

Informationen zu Verkaufszahlen von Zündkerzen nach Bauart (Platin, Iridium) liegen nicht vor.

5.7 Steuergeräte

Laut Blaser et al. (2012a) werden in einem aktuellen Mittelklassewagen 50 bis 100 Steuergeräte genutzt. Rodrigo/Castells (2004) geben an, dass ein Kleinwagen im Schnitt 9 bis 14 Steuergeräte enthält, die die Kraftübertragung, Bremsen, Karosseriefunktionen, Airbagsysteme und andere Systeme überwachen. In Fahrzeugen der Luxusklasse sind nach derselben Quelle bis zu über 50 Steuergeräte vorhanden. Steuergeräte finden sich nach Rodrigo/Castells (2004) vor allem in folgenden Teilsystemen:

- Steuergeräte der Antriebseinheit (Motorsteuerung, Getriebesteuerung, Fahrtsteuerung),
- Fahrgestellsteuergeräte (ABS, Traktionskontrolle, Rad-Kontrolleinheiten),
- Steuerungskontrolle,
- Klimasteuerung,
- Airbagsteuerung,
- Körperkontrolleinheiten.

Hella (2013) nennt als Durchschnitt 60 Steuergeräte für gut ausgestattete Mittelklassewagen.

Knode (2009) hat die Anzahl der Steuergeräte für die Fahrzeugbaureihe der VW Golf-Familie gezählt, s. Tabelle 49und Tabelle 50. Dies lässt einen starken Anstieg von 1 auf 28 innerhalb von 30 Jahre seit Mitte der 1970er Jahre erkennen.

Tabelle 49: Anzahl an Steuergeräten in VW Golf I bis V und Demontageaufwand (Knode 2009), (Knode 2007)

Fahrzeug	Produktionszeitraum in Deutschland	Pot. Anzahl Steuerge- räte	Demontagezeit (Brutto) ²⁴
Golf I	1974-1983	1 Stück	10 min
Golf II	1983-1992	5 Stück	80 min
Golf III	1991-1997	9 Stück	170 min
Golf IV	1997-2003	16 Stück	240 min
Golf V	2003-2008	28 Stück	360 min

Tabelle 50: In VW Golf I bis VW Golf V verbaute Steuergeräte, gestaffelt danach, ab welchem Modell das Steuergerät eingesetzt wurde (Knode 2008)

Steuergerät	Golf Modell, ab dem das Steuergerät eingesetzt wurde
Motorsteuergerät	1
ABS-Steuergerät	2
Lambdasonde	2

^{24 &}quot;Unter Bruttodemontagezeit versteht sich die Zeit, die aufaddiert sämtliche Einzeldemontagezeiten ergibt, jeweils berücksichtigt vom kompletten Fahrzeug. In der Praxis werden durch die Demontage vieler Bauteile in zeitnahen Arbeitsschritten sehr viel kürzere Arbeitszeiten benötigt." (Knode 2009 S. 198 f.).

Steuergerät	Golf Modell, ab dem das Steuergerät eingesetzt wurde
Steuergerät für Sitzheizung	2
ZV-Steuergerät	2
Airbag-Steuergerät	3
Climatronic-Steuergerät	3
Getriebesteuergerät	3
Steuergerät Sitzheizung	3
Telematik-Steuergerät	3
Steuergerät Wegfahrsperre	3
Einparkhilfe Steuergerät	4
Navigations-Steuergerät	4
Steuergerät für automatische Leuchtweitenverstellung	4
Steuergerät für Memory-Sitzverstellung	4
Steuergerät für Multifunktionslenkrad	4
Steuergerät für Standheizung (Empfangsmodul)	4
Steuergerät für Leistungsendstufe	4
Steuergerät coming home	5
GRA-Steuergerät	5
Steuergerät Haldex-Kupplung	5
Steuergerät mit NOX-Sensor für Abgaskontrolle	5
Steuergerät Gateway	5
Telefon- und Bluetooth-Steuergerät	5
Steuergerät Abschleppschutz	5
Steuergerät für Anhängerbetrieb	5
Telematik-Steuergerät	5
Steuergerät für Bordnetz	5

Steuergeräte enthalten als wesentliche Teile im Kontext des vorliegenden Projektes Leiterplatten (siehe hierzu Kapitel 5.3 dieses Berichts). Geraghty et al. (2006) kommt in Demontageversuchen zu dem Ergebnis, dass die bestückte Leiterplatte ca. $50\,\%$ des Gewichtes eines Motorsteuergeräts ausmacht.

Die Sitzverstellung eines Mittelklassewagens hat nach Rodrigo/Castells (2004) die in Tabelle 51 genannte Zusammensetzung. Das Gewicht lag zwischen 0,2 und 0,5 kg (Rodrigo/Castells 2004).

Tabelle 51: Zusammensetzung Steuergerät zur Sitzverstellung, Angaben in Gew.% (Rodrigo/Castells 2004)

Type of component	Weight	Nonferrous metals	Ferrous metals	Precious metals	Plastics	Others
Terminals	0.0					
Screws, nuts, etc.	0.0					
PCB's	20.0	37.0				63.0
Relays	18.0	50.5	26.0	0.7	2.6	0.3
Fuses	0.0					
Covers, spacers & frame	48.7				100	
Insulator	4.3				100	
Connectors	5.0	35.0	0.0		65.0	0.0
Bus Bar	0.0	•				100.0
Electronic Compo- nents	1.8					100.0
Solder	2.1					100.0
TOTAL	100.0	18.3	4.7	0.1	60.3	16.6

Rodrigo/Castells (2004) benennen als Mengen von Nichteisen-Metallen in Sitzverstellungen 47 g Kupfer, 2 g Zinn und 0,04 g Silber bei einem Gesamtgewicht der Steuereinheit von 260 g.

Das Steuergerät für die Sitzverstellung enthielt in einem Demontageversuch nach Geraghty et al. (2006) 134 g bestückte Leiterplatten entsprechend 55,4 %.

5.8 Verteiler

Unter dem Stichwort "Verteiler" werden in diesem Kapitel verschiedene Arten von Verteilerboxen und Sicherungskästen zusammengefasst. Sie enthalten die funktionalen Einheiten Bestückte Leiterplatten, Kunststoffgehäuse, Relais und Sicherungen. Angaben zur Anzahl von Verteilerboxen je Auto liegen nicht vor.

Passive Verteilerboxen bestehen nach Rodrigo/Castells (2004) aus den funktionalen Einheiten:

- Verbinder,
- Terminals,
- Schrauben,
- Kontakte (Kupfer, Legierung),
- Sicherungen
- Relais (eingesteckt oder gelötet),
- Plastikbox,
- Leiterplatte (z. B. 400 μm Kupferdicke für Stromverteilung)

Bei den "Terminals" enthalten die Kontakte potenziell ORKAM-Elemente. Sie werden daher in den weiteren Untersuchungen im vorliegenden Projekt unter "Kontakte" subsumiert.

Tabelle 52 zeigt die Zusammensetzung verschiedener Verteilerboxen.

Tabelle 52: ORKAM-relevante Zusammensetzung von Verteilerboxen (Rodrigo/Castells 2004)

Verteilerbox	Gewicht	Anteil Leiterplatten	Anteil Relais	Anteil Verbinder	Sonstige Information
Passive Verteilerbox ohne Leiterplatten	0,8 bis 2 kg	-	27,0 %	-	404 g Cu und 10 g Sn in Box mit 880 g.
Passive Verteilerbox <u>mit</u> Leiterplatten	0,7 bis 1,5 kg	20,2 %	19,1 %	-	
Aktive "smarte" Verteilerbox	0,9 bis 1,5 kg	28,1 %	13,1 %	2,5 %	134 g Cu, 29 g Sn, 0,25 g Ag in Box mit 1.328 g.

5.9 Sonstige

GPS-Empfänger, Mobilfunkeinheiten und Telematiksysteme werden von Rodrigo/Castells (2004) als mittelwertvoll²⁵ eingestuft, ebenso wie Diebstahlssicherungen und Fahrassistenzsysteme (Infraroteinheiten, Radarsysteme und Ultraschalleinheiten).

Datenlücken bestehen im Hinblick auf Schalter, die durch den Fahrer bedient werden (vor allem an der Lenksäule z. B. Blinkerschalter, Scheibenwischerschalter).

 $^{^{25}}$ "Medium value metals or other valuable materials" (Rodrigo/Castells 2004) basierend auf einer ökonomischen Wertbetrachtung.

6 Ableitung einer "30er-Liste" der zu demontierenden Komponenten

Ziel ist es, etwa 30 Komponenten der Fahrzeugelektronik auszuwählen, die eine möglichst hohe Relevanz bezüglich der ORKAM-Elemente (Abbildung 4) aufweisen ("30er-Liste"), um diese Komponenten im anschließenden Versuch aus den Fahrzeugen zu demontieren. Eingangs werden die bei der Auswahl der zu separierenden Komponenten zu berücksichtigenden Kriterien dargestellt (siehe Kapitel 6.1). Für die einzelnen Komponentengruppen wird eine vorläufige Liste der Komponenten mit möglicher Relevanz für die "30er-Liste" aus der Grundgesamtheit der Komponenten (siehe Kapitel 3 bis 5) ausgewählt. Diese Zusammenstellung wird in Abhängigkeit der Relevanz der Komponenten für die "30er-Liste zusammengefasst. Anschließend erfolgt eine Prioritätensetzung, so dass im Ergebnis eine Liste mit 30 zu separierenden Komponenten (plus Ersatzkomponenten) entsteht.

6.1 Vorgehen bei der Auswahl der "30er-Liste", Auswahlkriterien

Ausgangspunkt für die Auswahl der zu separierenden Komponenten sind die Informationen zu den in den Komponenten zu erwartenden funktionalen Einheiten und damit zu erwartenden OR-KAM-Elemente.

Die Ableitung berücksichtigt den Rahmen, der durch die Erwägungen zu den abzudeckenden Komponenten und Elementen gesetzt wurde (siehe unten). Zusätzlich wird die Massenrelevanz der ORKAM-Elemente berücksichtigt. Die verfügbare Datenbasis ermöglicht nur teilweise die Quantifizierung der Verwendung der ORKAM-Elemente für bestimmte Komponenten bzw. Teilsysteme²⁶. Das Kriterium "Massenrelevanz der ORKAM-Elemente in der Komponente" (siehe Kap. 3) kann daher nur teilweise angewandt werden. Über dieses Kriterium wurde die Anzahl der Komponenten in den jeweiligen Gruppen beeinflusst. Da nur wenig quantifizierende Daten vorlagen, wurde auch hier die Auswahl über Schätzungen im Rahmen von Expertengesprächen vorgenommen. Die Anzahl der Komponente je Gruppe in der Liste musste aufgrund fehlender quantifizierender Daten über Schätzungen gewichtet werden.

Weiterhin werden folgende Zusatzkriterien berücksichtig:

- Mindestens jeweils eine Komponente aus jeder Komponentengruppe (Tabelle 42) sollte in der "30er-Liste" enthalten sein.
- Für einige ORKAM-Elemente sollten in jedem Fall relevante Komponenten auch unabhängig von möglichen absoluten Massen- und Wirtschaftlichkeitsrelevanzen des jeweiligen Elements in Fahrzeugen betrachtet werden. Dies sind Komponenten mit
 - a) Indium,
 - b) Yttrium (außer, wenn nur Dotierung),
 - c) Neodym, Dysprosium, Praseodym, Terbium (Magnetwerkstoffe),

²⁶ Oftmals werden Mengendaten aus Primär- oder Sekundärerhebungen nur aggregiert veröffentlicht. Die Untersuchung von Cullbrand & Magnusson (2012) aggregierte z. B. die Gehalte der untersuchten Elemente über verschiedene Anwendungen "in order to avoid that the data are used for the wrong purposes" (Cullbrand & Magnusson 2012 S. 8).

- d) Gold, Silber und Palladium (in Leiterplatten, Steckern, Kontakten),
- e) Tantal.

Der Abgleich mit in Abschnitt 4.2 bzw. 5 beschriebenen Komponentengruppen ergibt, dass alle genannten Elemente in einer oder mehreren Gruppen vertreten sind.

- Der Kupfergehalt von Bauteilen war zunächst kein Auswahlkriterium für die "30er-Liste". Bei den ausgewählten Teilen ist der Kupfergehalt jedoch ein Faktor der Wertgebung.
- Um spezifische Charakteristika von Hybridfahrzeugen mit zu berücksichtigen, sollte eine der 30 Komponenten spezifisch für Hybridfahrzeuge sein. Neben vielen gleichartigen Komponenten unterscheiden sich Hybridfahrzeuge von Fahrzeugen mit konventionellem Antrieb insbesondere in folgenden Komponenten bzw. Teilsystemen:
 - Elektromotor,
 - Traktionsbatterie,
 - Inverter.
 - zusätzliche Steuergeräte.

Da es zu den beiden erstgenannten bereits diverse Forschungsvorhaben gibt und Steuergeräte grundsätzlich schon als Komponentengruppe in der vorliegenden Studie vertreten sind, werden die Inverter aus Hybridfahrzeugen als hybrid-spezifische Komponente mit in die "30er-Liste" aufgenommen.

6.2 Auswahl der zu demontierenden Komponenten

6.2.1 Motoren, weitere Magnetanwendungen

Entsprechend den dargestellten Untersuchungen ergeben sich als massenrelevante Magnetanwendungen Motoren, Lichtmaschine und Lautsprecher. Der Analyse in Kapitel 3.1 und 5.1 zufolge besteht dabei eine Unsicherheit, welcher Magnettyp jeweils tatsächlich eingesetzt wurde. Die Magnetanwendung in Sensoren wird im spezifischen Kapitel zu Sensoren (Kapitel 6.2.4) berücksichtigt. Außerdem könnten über Motoren entsprechend den Literaturangaben ggf. die OR-KAM-Elemente Samarium und Lanthan abgedeckt werden. Hierfür müssten Nicht-Nd-Magnete (optisch?) identifiziert werden. Ob diese allerdings die beiden genannten Elemente enthalten, kann wahrscheinlich nur über eine chemische Analyse bzw. eine Sichtkontrolle ermittelt werden.

Ziel des Projektes ist es auch, Demontagezeiten für relevante Komponenten zu bestimmen. Daher sollten Komponenten mit breit gestreutem Demontageaufwand in der Liste enthalten sein.

Auf der Basis der Komponentenliste von Blaser et al. (2012b) werden in Tabelle 53 mögliche relevante Komponenten mit Magnetanwendungen für die "30er-Liste" dargestellt.

Tabelle 53: Motoren, Magnetanwendungen: Komponenten mit möglicher Relevanz für die "30er-Liste"

"JOET-LISCE				
Komponenten in Blaser et al. (2012a)	Priori- tät nach Blaser et al. (2012a)	Mögliche Re- levanz für Aufnahme in die "30er- Liste"	Kommentar	
ABS Pumpe	1	X	Mengenrelevanz in der Literatur uneinheitlich (z.B. nicht erwähnt in Cullbrandt&Magnusson (2012))	
Lichtmaschine	1	Х		
Anlasser	1	x		
Benzinpumpe	3	X	keine Differenzierung in der "30er-Liste", Situa-	
Benzinpumpe im Tank	1	х	tion in den zu demontierenden Fahrzeugen sollte berücksichtigt werden	
Dieselpumpe	3		Mit Benzinpumpe ausreichend abgedeckt	
Fensterheber hi links	3	x	keine Differenzierung in der "30er-Liste", Situa-	
Fensterheber hi rechts	3	X	tion in den zu demontierenden Fahrzeugen so- wie mögliche Mitnahmeeffekte dabei sollten	
Fensterheber vo links	2	X	berücksichtigt werden	
Fensterheber vo rechts	1	x		
Heizlüfter	2	x		
Klimakühler Lüfter	3		Heizlüfter als vergleichbare Anwendung enthalten	
Kühlerlüfter	2	X		
Lenkhilfmotor el.	2	x		
Lenksäulenstellmotor	3		seltenes Ausstattungsmerkmal	
Pumpe Fahrwerk	3		seltenes Ausstattungsmerkmal	
Pumpe ZV Zentralver- riegelung	3		seltenes Ausstattungsmerkmal	
Scheinwerfermotor li	2	Х	kleiner Motor, ggf. durch mögliche Mitnahme-	
Scheinwerfermotor re	3	х	effekte zu berücksichtigen, Differenzierung für die Zielsetzung von ORKAM verzichtbar	
Schiebedach/Cabrio- Motor	2		seltenes Ausstattungsmerkmal	
Wasserpumpe elektrisch	3		keine Magnete mit ORKAM-Elementen erwartet	
Wischermotor hi	2	Х	keine Differenzierung in "30er-Liste"	
Wischermotor vo	1	X		
Zündspule	3		Keine Literaturbelege für ORKAM-Elemente	

Komponenten in Bla- ser et al. (2012a)	Priori- tät nach Blaser et al. (2012a)	Mögliche Re- levanz für Aufnahme in die "30er- Liste"	Kommentar
elektrische Sitzverstel- lung	nicht er- wähnt	X	Mengenrelevanz nach Cullbrand&Magnusson (2012)
Heckklappenschließ- motor	nicht er- wähnt	X	Mengenrelevanz nach Cullbrand&Magnusson (2012)
Spiegeljustierung	nicht er- wähnt	X	mögliche Mitnahmeeffekte bei der Demontage prüfen
Türverschluss	nicht er- wähnt	X	mögliche Mitnahmeeffekte bei der Demontage prüfen
Lautsprecher	nicht er- wähnt	X	Mengenrelevanz nach Cullbrand&Magnusson (2012)

6.2.2 Bildschirme

Über Bildschirme werden die ORKAM-Elemente Indium, Yttrium und Gallium abgedeckt, die in jedem Fall auch unabhängig vom Kriterium "Gesamtmengenrelevanz" berücksichtigt werden sollen. Aufgrund der Mengenverteilung der Bildschirmanwendung in Autos (siehe auch Kapitel 5.3) kann davon ausgegangen werden, dass Bildschirme von Navigationssystemen und Bildschirme von Infotainmentsystemen (z. B. Kombiinstrument oder LCD-Mittelkonsole) die Auswahlkriterien des Projektes erfüllen.

Auf der Basis der Komponentenliste von Blaser et al. (2012a) werden in Tabelle 54 mögliche relevante Komponenten für die "30er-Liste" dargestellt.

Tabelle 54: Bildschirme: Komponenten mit möglicher Relevanz für die "30er-Liste"

Komponenten in Blaser et al. (2012a)	Priorität nach Bla- ser et al. (2012a)	Mögliche Rele- vanz für Auf- nahme in die "30er-Liste"	Kommentar
Instrumente	1	х	
Multifunktionsanzeige	3	X	
Navigationssystem	nicht er- wähnt	Х	weitere Bildschirmanwendung

6.2.3 Licht (LED)

LEDs enthalten Gallium, Gold, Indium und spezifische Leuchtstoffe (siehe Kapitel 2 und 3.4). In den Innenanwendungen werden oftmals weniger lichtstarke LED eingesetzt, die aufgrund der Anzahl je Komponente mit einem höheren spezifischen Demontageaufwand je LED verbunden sind.

Auf der Basis der Komponentenliste von Blaser et al. (2012a) werden in Tabelle 55 mögliche relevante Komponenten, in denen LEDs zum Einsatz kommen, für die "30er-Liste" dargestellt.

Tabelle 55: Licht (LED): Komponenten mit möglicher Relevanz für die "30er-Liste"

Komponenten in Blaser et al. (2012a)	Priorität nach Blaser et al. (2012a)	Mögliche Re- levanz für Auf- nahme in die "30er-Liste"	Kommentar
Blinker links	3	x	Differenzierung für die Zielsetzung von ORKAM ver-
Blinker rechts	3	x	zichtbar
Kombileuchte vo li	3	x	
Leuchte Bi-Xenon vo li	3	x	Hg-haltig, bestehende Demontagepflicht
Leuchte hi li innen	3		Kleine LED
Leuchte hi li oben	3	Х	Differenzierung für die Zielsetzung von ORKAM verzichtbar
Leuchte hi re innen	3		Kleine LED
Leuchte hi re oben	3	Х	Differenzierung für die Zielsetzung von ORKAM verzichtbar
Leuchte hi li	3	x	
Leuchte hi re	3	Х	Differenzierung für die Zielsetzung von ORKAM verzichtbar
Leuchte vo li außen	3	x	
Leuchte vo li innen	3		Kleine LED
Leuchte vo re außen	3	х	Differenzierung für die Zielsetzung von ORKAM verzichtbar
Leuchte vo re innen	3		Kleine LED
Leuchte Xenon vo li	3		Hg-haltig, bestehende Demontagepflicht
Leuchte Xenon vo re	3		
Nebelleuchte vo li	3	x	Differenzierung für die Zielsetzung von ORKAM ver-
Nebelleuchte vo re	3	x	zichtbar
Standlicht li	3	x	Differenzierung für die Zielsetzung von ORKAM ver-
Standlicht re	3	x	zichtbar

6.2.4 Sensoren

Die Lambdasonde enthält Platin, teilweise auch Yttrium bzw. Palladium, Radarsensoren enthalten je nach Generation Gallium oder Germanium. Bewegungssensoren können Neodym und andere Magnetwerkstoffe enthalten. Darüber hinaus können ebenfalls Edelmetalle (z. B. Silber und Gold in Kontakten) und Zinn enthalten sein.

Auf der Basis der Komponentenliste von Blaser et al. (2012a) werden in Tabelle 56 mögliche relevante Komponenten für die "30er-Liste" dargestellt.

Tabelle 56: Sensoren: Komponenten mit möglicher Relevanz für die "30er-Liste"

	i	l	I
Komponenten in Blaser et al. (2012a)	Priorität nach Bla- ser et al. (2012a)	Mögliche Relevanz für Aufnahme in die "30er-Liste"	Kommentar
ABS Sensor	3	Х	= Raddrehzahlsensor
Airbagsensor I	3	X	Differenzierung für die Zielsetzung des ORKAM-
Airbagsensor II	3	x	Projektes verzichtbar
E-Gaspedal	3	X	
Lambdasonde I	1	x	Differenzierung für die Zielsetzung des ORKAM-
Lambdasonde II	2	X	Projektes verzichtbar, Orientierung an verfügbaren Fahrzeugen sinnvoll
Lambdasonde III	3	x	ren Fanizeugen Sinnvon
Lambdasonde IV	3	x	
Lenkwinkelsensor	3	x	
Luftmassenmesser	1	x	
Luftmengenmesser	3	x	
MAP-Sensor	3	x	
Nockenwellensensor	nicht er- wähnt	Х	Bewegungssensoren
Kurbelwellensensor	nicht er- wähnt	Х	Bewegungssensoren
Ultraschall, Nahdistanz- radar	nicht er- wähnt	X	potenzielle Germanium-Anwendung (und Gallium), mehrere Sensoren pro Fahrzeug
Radar	nicht er- wähnt	X	potenzielle Germanium-Anwendung (und Gallium)
Drosselkappen-Win- kelsensor	nicht er- wähnt	X	
Giergeschwindigkeits- und Querbeschleuni- gungssensor	nicht er- wähnt	X	
Beschleunigungs- und Verzögerungssensor	nicht er- wähnt	Х	
Klimasensor	nicht er- wähnt	Х	
Motor-Klopfsensor	nicht er- wähnt		keine Literaturbelege für ORKAM-Elemente
Unterdrucksensor	nicht er- wähnt		keine Literaturbelege für ORKAM-Elemente
Drucksensor Kraft- stoffsystem	nicht er- wähnt		keine Literaturbelege für ORKAM-Elemente

6.2.5 Aktuatoren

Aktuatoren decken entsprechend ihren vielfältigen Funktionen potenziell eine Vielzahl von OR-KAM-Elementen ab.

Auf der Basis der Komponentenliste von Blaser et al. (2012a) werden in Tabelle 57 mögliche relevante Komponenten für die "30er-Liste" dargestellt.

Tabelle 57: Aktuatoren: Komponenten mit möglicher Relevanz für die "30er-Liste"

Komponenten in Blaser et al. (2012a)	Priorität nach Bla- ser et al. (2012a)	Mögliche Relevanz für Aufnahme in die "30er-Liste"	Kommentar
Abgas-Rückführ-Ventil (AGR)	3	X	Magnetanwendung
Einspritzeinheit Monojet	3	X	Magnetanwendung
Heizelement	3		Keine Literaturbelege für ORKAM-Elemente
Heizwiderstand	3		Keine Literaturbelege für ORKAM-Elemente
Servo-Lenkung elektrisch	2		In der Gruppe "Motoren und Magnetanwendungen" enthalten
Zündkerze	nicht er- wähnt	Х	Iridium-, Rhodium-, Platinanwendung

6.2.6 Steuergeräte

Steuergeräte sind im vorliegenden Projekt vor allem aufgrund der enthaltenen Leiterplatten relevant. Da ein Zusatzkriterium bei der Auswahl die Berücksichtigung einer für Hybridfahrzeuge spezifischen Komponente war (Kapitel 6.1), wird an dieser Stelle ein Inverter/Controller aus einem Hybridfahrzeug in die Liste der Komponenten mit Relevanz für die "30er-Liste" aufgenommen.

Auf der Basis der Komponentenliste von Blaser et al. (2012a) werden in Tabelle 58 mögliche relevante Komponenten für die "30er-Liste" dargestellt.

Tabelle 58: Steuergeräte: Komponenten mit möglicher Relevanz für die "30er-Liste"

Komponenten in Blaser et al. (2012a)	Priorität nach Bla- ser et al. (2012a)	Mögliche Relevanz für Aufnahme in die "30er-Liste"	Kommentar
ABS-Bremskraft-Regler	2	X	
Bordcomputer	1		unspezifische Anwendung
Klimakontrolle	2	x	
Leerlaufregler	3		oftmals Teil der "Motorsteuerung"
Steuergerät ABS	2	x	
Steuergerät Airbag	1	X	
Steuergerät Alarm	3	x	
Steuergerät Allrad	3		geringe Verbreitung, ausreichend Steuergeräte in ORKAM-Liste

Komponenten in Blaser et al. (2012a)	Priorität nach Bla- ser et al. (2012a)	Mögliche Relevanz für Aufnahme in die "30er-Liste"	Kommentar
Steuergerät ASR	3	Х	
Steuergerät Automat	3	X	Getriebesteuerung bei Automatik enthalten
Steuergerät Bremsassistent	3	х	
Steuergerät Cabrio-Verdeck	3		geringe Verbreitung, ausreichend Steuergeräte in ORKAM-Liste
Steuergerät diverse	2		unspezifisch
Steuergerät E-Gas	3	X	
Steuergerät elektroni- sche Getriebesteuerung	3	Х	
Steuergerät Einspritzung	1	х	
Steuergerät ESP elektro- nisches Stabilitätspro- gramm	3	X	
Steuergerät Fahrwerk	3	x	
Steuergerät Heizung	3	x	
Steuergerät HGS	3	X	Getriebesteuerung
Steuergerät Hyd. Aktiv	3		geringe Verbreitung
Steuergerät Klima	3	x	
Steuergerät Komfort	3	х	
Steuergerät Lenkung	3	х	
Steuergerät LWR	3	х	
Steuergerät Motor	1	Х	
Steuergerät Multifunktion	3		unspezifisch
Steuergerät Parkhilfe	3		geringe Verbreitung
Steuergerät Tempo.	3		geringe Verbreitung,
Steuergerät Xenon I	3	x	
Steuergerät Xenon II	3	x	
Steuergerät Zentralver- riegelung	3	Х	
Zündgerät	1		unspezifisch
Inverter/Controller	nein	x	

6.2.7 Verteiler

Blaser et al. (2012a) führen keine Verteiler in der Komponentenliste auf. Smarte Verteilerboxen bzw. passive Verteilerboxen enthalten bestückte Leiterplatten bzw. Kontakte. Eine Berücksichtigung in der "30er-Liste" ist daher sinnvoll.

Tabelle 59: Verteiler: Komponenten mit möglicher Relevanz für die "30er-Liste"

Komponenten in Bla- ser et al. (2012a)	Priorität nach Blaser et al. (2012a)	Mögliche Relevanz für Aufnahme in die "30er-Liste"	Kommentar
Smarte Verteilerboxen	nicht erwähnt	Х	enthalten Leiterplat- ten
Passive Verteilerboxen mit Leiterplatten	nicht erwähnt	Х	enthalten Leiterplat- ten bzw. Kontakte

6.2.8 Sonstiges

Ob Schalter, die vom Fahrer bedient werden (Blinker-, Scheibenwischerschalter etc.) für die Zielsetzung des Projektes bzw. die "30er-Liste" relevant sind, ist in der verfügbaren Literatur nicht dokumentiert. Dies gilt ebenso für die Frage, ob bei der Verspiegelung von Scheinwerfern Germanium eingesetzt wird.

In DVD-/CD-Playern sind ORKAM-Elemente vor allem auf den Leiterplatten und in den Motoreinheiten enthalten. Bei dieser Anwendung handelt es sich nicht um Auto-spezifische Konfigurationen. Da Unterhaltungselektronik im UBA-Projekt RePro behandelt wurde (RePro 2012) und darüber hinaus Leiterplatten und Magnetanwendungen bereits in den Gruppen mit Autospezifischen Anwendungen abgedeckt sind (z.B. Steuergeräte, Fensterheber, Bewegungssensoren) erfolgt keine weiter Berücksichtigung von DVD-/CD-Playern.

Katalysatoren, die reich an Platingruppenelementen und dem Seltenerdelement Cer sind, werden nicht in die Untersuchung einbezogen, da sie keine Komponenten der Fahrzeugelektronik sind und es bereits eine (funktionierende) Demontageverpflichtung gibt.

6.2.9 Auswahl der zu separierenden Komponenten aus 117 potentiell relevanten Komponenten

Die folgende Tabelle 60 fasst die in den Abschnitten 6.2.1 bis 6.2.8 identifizierten Komponenten für die nähere Auswahl für die "30er-Liste" zusammen.

Tabelle 60: Zusammenfassung der Komponenten der Kapitel 6.2 bis 6.2.8

Gesamt- zahl	Gruppe	Lfd. Nr. je Grupp e	Komponente in Bla- ser et al. (2012a)	Mögl. Rele- vanz für "30er- Liste"	Kommentar	
1	Motoren und ver- gleichbare Magnetan-	1	ABS Pumpe	X	Mengenrelevanz in der Literatur uneinheitlich (z. B. nicht erwähnt in Cullbrand&Magnusson (2012))	
2	wendungen	2	Lichtmaschine	Х		
3		3	Anlasser	Х		
4		4	Benzinpumpe	Х	keine Differenzierung in der	
5		5	Benzinpumpe im Tank	X	"30er-Liste", Situation in den zu demontierenden Fahrzeugen sollte berück- sichtigt werden	
6		6	Dieselpumpe		Mit Benzinpumpe ausrei- chend abgedeckt	
7		7	Fensterheber hi links	Х	keine Differenzierung in der	
8		8	Fensterheber hi rechts	Х	"30er-Liste", Situation in den zu demontierenden Fahrzeugen sowie mögliche Mitnahmeeffekte dabei soll- ten berücksichtigt werden	
9		9	Fensterheber vo links	х		
10		10	Fensterheber vo rechts	Х		
11		11	Heizlüfter	Х		
12		12	Klimakühler Lüfter		Heizlüfter als vergleichbare Anwendung enthalten	
13		13	Kühlerlüfter	Х		
14			14	Lenkhilfmotor elektr.	Х	
15		15	Lenksäulenstellmo- tor		seltenes Ausstattungsmerk- mal	
16		16	Pumpe Fahrwerk		seltenes Ausstattungsmerk- mal	
17		17	Pumpe ZV Zentral- verriegelung		seltenes Ausstattungsmerk- mal	
18		18	Scheinwerfermotor li	Х		

Gesamt- zahl	Gruppe	Lfd. Nr. je Grupp e	Komponente in Bla- ser et al. (2012a)	Mögl. Rele- vanz für "30er- Liste"	Kommentar
19		19	Scheinwerfermotor re	Х	kleiner Motor, ggf. durch mögliche Mitnahmeeffekte zu berücksichtigen
20		20	Schiebedach/Cabrio- Motor		seltenes Ausstattungsmerk- mal
21		21	Wasserpumpe elektrisch		keine Magnete mit ORKAM- Elementen erwartet
22		22	Wischermotor hi	Х	Differenzierung für die Ziel-
23		23	Wischermotor vo	X	setzung von ORKAM ver- zichtbar
24		24	Zündspule		Keine Literaturbelege für ORKAM-Elemente
25		25	elektrische Sitzver- stellung	Х	Mengenrelevanz nach Cull- brand&Magnusson (2012)
26		26	Heckklappenschließ- motor	X	Mengenrelevanz nach Cull- brand&Magnusson (2012)
27		27	Spiegeljustierung	х	mögliche Mitnahmeeffekte bei der Demontage prüfen
28		28	Türverschluss	х	mögliche Mitnahmeeffekte bei der Demontage prüfen
29		29	Pumpe Scheibenwä- scher	Х	
30		30	Lautsprecher	х	Mengenrelevanz nach Cull- brand&Magnusson (2012)
31	Bildschirme	1	Instrumente	Х	
32		2	Multifunktionsan- zeige	х	
33		3	Navigationssystem	Х	weitere Bildschirmanwen- dung
34	Steuerge- räte	1	ABS-Bremskraft-Reg- ler	х	
35		2	Bordcomputer		unspezifische Anwendung
36		3	Klimakontrolle	х	
37		4	Leerlaufregler		oftmals Teil der "Motorsteu- erung"
38		5	Steuergerät ABS	х	
39		6	Steuergerät Airbag	х	
40		7	Steuergerät Alarm	х	
41		8	Steuergerät Allrad		geringe Verbreitung

Gesamt- zahl	Gruppe	Lfd. Nr. je Grupp e	Komponente in Bla- ser et al. (2012a)	Mögl. Rele- vanz für "30er- Liste"	Kommentar
42		9	Steuergerät ASR	Х	
43		10	Steuergerät Automat	Х	Getriebesteuerung bei Auto- matik enthalten
44		11	Steuergerät Bremsassistent	Х	
45		12	Steuergerät Cab- rio-Verdeck		geringe Verbreitung
46		13	Steuergerät diverse		unspezifisch
47		14	Steuergerät E-Gas	х	
48		15	Steuergerät elektro- nische Getriebesteu- erung	х	
49		16	Steuergerät Einsprit- zung	Х	
50		17	Steuergerät ESP elektronisches Stabi- litätsprogramm	X	
51		18	Steuergerät Fahr- werk	X	
52		19	Steuergerät Heizung	Х	
53		20	Steuergerät HGS	Х	Getriebesteuerung
54		21	Steuergerät Hyd. Ak- tiv		geringe Verbreitung
55		22	Steuergerät Klima	Х	
56		23	Steuergerät Komfort	Х	
57		24	Steuergerät Lenkung	Х	
58		25	Steuergerät Leucht- weitenregelung	Х	
59		26	Steuergerät Motor	Х	
60		27	Steuergerät Multi- funktion		unspezifisch
61		28	Steuergerät Parkhilfe		geringe Verbreitung
62		29	Steuergerät Tempo.		geringe Verbreitung,
63		30	Steuergerät Xenon	х	
64		31	Steuergerät Zentral- verriegelung	Х	
65		32	Zündgerät		unspezifisch
66		33	Inverter/Controller	х	

Gesamt- zahl	Gruppe	Lfd. Nr. je Grupp e	Komponente in Bla- ser et al. (2012a)	Mögl. Rele- vanz für "30er- Liste"	Kommentar
67	Verteiler	1	Smarte Verteilerbo- xen	Х	enthalten Leiterplatten
68		2	Passive Verteilerbo- xen mit Leiterplatten	Х	enthalten Leiterplatten bzw. Kontakte
69	Licht	1	Blinker links	Х	
70		2	Blinker rechts	х	Differenzierung für die Ziel- setzung von ORKAM ver- zichtbar
71		3	Kombileuchte vo li	Х	
72		4	Leuchte Bi-Xenon vo li	Х	Hg-haltig, bestehende De- montagepflicht
73		5	Leuchte hi li innen		Kleine LED
74		6	Leuchte hi li oben	X	Differenzierung für die Ziel- setzung von ORKAM ver- zichtbar
75		7	Leuchte hi re innen		Kleine LED
76		8	Leuchte hi re oben	х	Differenzierung für die Zielsetzung von ORKAM verzichtbar
77		9	Leuchte hi li	Х	
78		10	Leuchte hi re	Х	Differenzierung für die Ziel- setzung von ORKAM ver- zichtbar
79		11	Leuchte vo li aussen	Х	
80		12	Leuchte vo li innen		Kleine LED
81		13	Leuchte vo re aussen	X	Differenzierung für die Ziel- setzung von ORKAM ver- zichtbar
82		14	Leuchte vo re innen		Kleine LED
83		15	Leuchte Xenon vo li		Hg-haltig, bestehende De- montagepflicht
84		16	Leuchte Xenon vo re		Hg-haltig, bestehende De- montagepflicht
85		17	Nebelleuchte vo li	Х	
86		18	Nebelleuchte vo re	X	Differenzierung für die Ziel- setzung von ORKAM ver- zichtbar
87		19	Standlicht li	X	

Gesamt- zahl	Gruppe	Lfd. Nr. je Grupp e	Komponente in Bla- ser et al. (2012a)	Mögl. Rele- vanz für "30er- Liste"	Kommentar
88		20	Standlicht re	X	Differenzierung für die Zielsetzung von ORKAM verzichtbar, Teil einer Kombileuchte
89	Sensoren	1	ABS Sensor	Х	als Raddrehzahlsensor
90		2	Airbagsensor I	X	Differenzierung für die Ziel- setzung des ORKAM-Projek- tes verzichtbar
91		3	Airbagsensor II	Х	
92		4	E-Gaspedal	Х	
93		5	Lambdasonde I	X	Differenzierung für die Zielsetzung des ORKAM-Projektes verzichtbar, Orientierung an verfügbaren Fahrzeugen sinnvoll
94		6	Lambdasonde II	Х	
95		7	Lambdasonde III	х	
96		8	Lambdasonde IV	Х	
97		9	Lenkwinkelsensor	х	
98		10	Luftmassenmesser	Х	
99		11	Luftmengenmesser	х	
100		12	MAP-Sensor	Х	
101		13	Nockenwellensensor	х	Bewegungssensoren
102		14	Kurbelwellensensor	Х	Bewegungssensoren
103		15	Ultraschall, Nahdis- tanzradar	X	potenzielle Germanium-An- wendung (und Gallium), mehrere Sensoren pro Fahr- zeug
104		16	Radar	Х	potenzielle Germanium-An- wendung (und Gallium)
105		17	Klimasensor	х	
106		18	Drosselkappen-Win- kelsensor	Х	
107		19	Giergeschwindig- keits- und Querbe- schleunigungssensor	X	
108		20	Beschleunigungs- und Verzögerungs- sensor	X	

Gesamt- zahl	Gruppe	Lfd. Nr. je Grupp e	Komponente in Bla- ser et al. (2012a)	Mögl. Rele- vanz für "30er- Liste"	Kommentar
109		21	Motor-Klopfsensor		keine Literaturbelege für ORKAM-Elemente
110		22	Unterdrucksensor		keine Literaturbelege für ORKAM-Elemente
111		23	Drucksensor Kraft- stoffsystem		keine Literaturbelege für ORKAM-Elemente
112	Aktuatoren	1	Abgas-Rückführ-Ven- til	Х	Magnetanwendung
113		2	Einspritzeinheit Mo- nojet	Х	Magnetanwendung
114		3	Heizelement		Keine Literaturbelege für ORKAM-Elemente
115		4	Heizwiderstand		Keine Literaturbelege für ORKAM-Elemente
116		5	Servo-Lenkung elektrisch		In der Gruppe "Motoren und Magnetanwendungen" ent- halten
117		6	Zündkerze	X	Iridium-, Rhodium-, Platin- anwendung

Die enthaltenen 117 Komponenten wurden zunächst entsprechend den Markierungen in der Spalte "Mögliche Relevanz für '30er-Liste" gefiltert und jene Komponenten, bei denen in der "30er-Liste" keine Differenzierung erforderlich ist (z.B. Fensterheber hinten links und Fensterheber hinten rechts), gebündelt.

Tabelle 61: Bündelung der Komponenten mit Relevanz für die "30er-Liste"

Ge- samt- zahl	Gruppe	Lfd. Nr. je Gruppe	Komponente	Kommentar
1	Motoren	1	ABS Pumpe	
2	und ver- gleich-	2	Lichtmaschine	
3	bare Mag-	3	Anlasser	
4	netan-	4	Kraftstoffpumpe	
5	wendun- gen	5	Fensterheber	
6	80	6	Heizlüfter	
7		7	Kühlerlüfter	
8		8	Lenkhilfmotor el.	
9		9	Scheinwerfermotor	
10		10	Wischermotor hi	

Ge-	Gruppe	Lfd. Nr.	Komponente	Kommentar
samt-		je		
zahl 11		Gruppe 11	alaktrischa Citzvaretallung	Mengenrelevanz nach Cull-
11		11	elektrische Sitzverstellung	brand&Magnusson (2012)
12		12	Heckklappenschließmotor	Mengenrelevanz nach Cull- brand&Magnusson (2012)
13		13	Spiegeljustierung	mögliche Mitnahmeeffekte bei der Demontage prüfen
14		14	Türverschluss	mögliche Mitnahmeeffekte bei der Demontage prüfen
15		15	Pumpe Scheibenwäscher	
16		16	Lautsprecher	Mengenrelevanz nach Cull- brand&Magnusson (2012)
17	Bild-	1	Instrumente	
18	schirme	2	Multifunktionsanzeige	
19		3	Navigationssystem	weitere Bildschirmanwendung
20	Steuerge-	1	ABS-Bremskraft-Regler	
21	räte	2	Klimakontrolle	
22		3	Steuergerät ABS	
23		4	Steuergerät Airbag	
24		5	Steuergerät Alarm	
25		6	Steuergerät ASR	
26		7	Steuergerät Automat	
27		8	Steuergerät Bremsassistent	
28		9	Steuergerät E-Gas	
29		10	Steuergerät elektronische Getriebesteuerung	
30		11	Steuergerät Einspritzung	
31		12	Steuergerät ESP elektronisches Stabilitätsprogramm	
32		13	Steuergerät Fahrwerk	
33		14	Steuergerät Heizung	
34		15	Steuergerät HGS	
35		16	Steuergerät Klima	
36		17	Steuergerät Komfort	
37		18	Steuergerät Lenkung	
38		19	Steuergerät Leuchtweiten- regelung	
39		20	Steuergerät Motor	
40		21	Steuergerät Xenon	

Ge- samt-	Gruppe	Lfd. Nr. je	Komponente	Kommentar
zahl		Gruppe		
41		22	Steuergerät Zentralverrie- gelung	
42		23	Inverter/Controller	
43	Verteiler	1	Smarte Verteilerboxen	enthalten Leiterplatten
44		2	Passive Verteilerboxen mit Leiterplatten	enthalten Leiterplatten bzw. Kon- takte
45	Licht	1	Blinker	
46		2	Kombileuchte vorn	
47		3	Leuchte hinten	
48		4	Leuchte vo außen	
49		5	Nebelleuchte	
50	Sensoren	1	Airbagsensor	
51		2	ABS/Drehzahlsensor	
52		3	E-Gaspedal	
53		4	Lambdasonde	
54		5	Lenkwinkelsensor	
55		6	Luftmassenmesser	
56		7	Luftmengenmesser	
57		8	MAP-Sensor	
58		9	Nockenwellensensor	Bewegungssensoren
59		10	Kurbelwellensensor	Bewegungssensoren
60		11	Ultraschall, Nahdistanzra- dar	potenzielle Germanium-Anwendung (und Gallium), mehrere Sensoren pro Fahrzeug
61		12	Radar	potenzielle Germanium-Anwendung (und Gallium)
62		13	Klimasensor	
63		14	Drosselkappen-Win- kelsensor	
64		15	Giergeschwindigkeits- und Querbeschleunigungs- sensor	
65		16	Beschleunigungs- und Verzögerungssensor	
66	Aktua- toren	1	Abgas-Rückführ-Ventil (AGR)	Magnetanwendung
67		2	Einspritzeinheit	Magnetanwendung
68		3	Zündkerze	Iridium-, Rhodium-, Platinanwen- dung

Hierdurch ergibt sich eine Liste von 68 Komponenten. Ziel ist es mittels weiterer Reduzierung aus den potenziell relevanten Komponenten 30 auszuwählen. Hierzu erfolgt anhand der nachfolgend genannten Kriterien eine Priorisierung der 68 Komponenten. Zur Zuordnung der Prioritäten wurden Zahlen von 1-4 vergeben, wobei 1 die höchste Priorität darstellt.

Komponenten, die eine unklare Relevanz für ORKAM-Elemente aufwiesen, wurden mit einer niedrigen Priorität versehen. Unter Einbeziehung von Demontageerfahrungen wurden der erwartete Demontageaufwand sowie die Menge an ORKAM-Elementen einbezogen. Bei der Schätzung des Demontageaufwandes wurde ggf. auch ein möglicher Mitnahmeeffekt²⁷ berücksichtigt. Zudem wurde berücksichtigt, dass

- Magnetanwendungen die massenrelevantesten Anwendungen von Seltenen Erden im Auto sind,
- Steuergeräte die größten Mengen an Edelmetallen enthalten,
- Sensoren in vielfältigen Varianten vorkommen, die jeweiligen Mengen an ORKAM-Elementen jedoch oftmals gering sind.

Tabelle 62: Prioritätensetzung zur weiteren Reduktion auf die "30er-Liste"

Lfd. Nr.	Gruppe	Lfd. Nr. je Grupp e	Komponente	Priori- tät	Kommentar
1	Motoren und vergleichbare Magnetan- wendungen	1	ABS Pumpe	4	unklare Mengenrelevanz an ORKAM-Elementen (z. B. nicht erwähnt in Cullbrand&Magnusson (2012))
2		2	Lichtmaschine	2	
3		3	Anlasser	1	
4		4	Kraftstoffpumpe	3	Demontage aufwendig, klei- ner Motor
5		5	Scheibenheber	2	beschränkte Verwendung von Nd-Motoren erwartet
6		6	Heizlüfter	2	Demontage aufwendig
7		7	Kühlerlüfter	2	Demontage aufwendig
8		8	Lenkung Servomotor	2	beschränkte Anzahl von Fahrzeugen mit elektrischer Lenkhilfeunterstützung, De- montage aufwendig
9		9	Scheinwerfermotor	4	unklarer Gehalt an ORKAM- Elementen, kleiner Motor

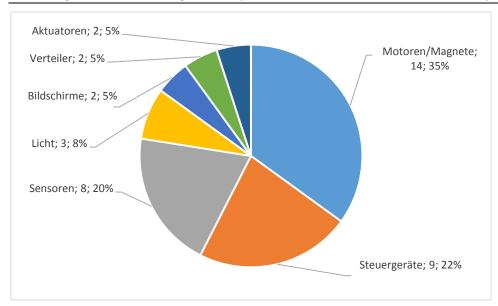
²⁷ Mitnahmeeffekt: Wenn ein Teilsystem demontiert wird und dabei mehrere Komponenten separiert werden können und somit weniger Demontagezeit je Komponente angesetzt werden muss, wird dies hier als Mitnahmeeffekt bezeichnet.

Lfd. Nr.	Gruppe	Lfd. Nr. je Grupp e	Komponente	Priori- tät	Kommentar
10		10	Wischermotor	2	beschränkte Verwendung von Nd-Motoren erwartet
11		11	elektrische Sitzverstel- lung	3	Demontage aufwendig
12		12	Heckklappenschließmo- tor	3	kleiner Motor
13		13	Spiegeljustierung	3	geringe Größe aber ggf. Mitnahmeeffekt
14		14	Türverschluss	2	geringe Größe aber ggf. Mitnahmeeffekt
15		15	Pumpe Scheibenwä- scher	3	Demontage aufwendig, klei- ner Motor
16		16	Lautsprecher	1	Vorausgesetzt, dass es sich um Nd-Lautsprecher han- delt
17	Bildschirme	1	Kombiinstrumente	1	
18		2	Multifunktionsanzeige	1	
19		3	Navigationssystem	2	
20	Steuergeräte	1	ABS-Bremskraft-Regler	3	ABS, Berücksichtigung der Ausstattung bei verfügba- ren Fahrzeuge
21		2	Klimakontrolle	2	
22		3	Steuergerät ABS	2	
23		4	Steuergerät Airbag	1	erhöhte Gehalte an OR- KAM-Elementen erwartet
24		5	Steuergerät Alarm/Diebstahl	2	ggf. Mitnahmeeffekt
25		6	Steuergerät ASR	4	Steuergerät ABS bereits abgedeckt
26		7	Steuergerät Automat	4	Steuergerät Getriebe be- reits abgedeckt
27		8	Steuergerät Bremsas- sistent	2	
28		9	Steuergerät E-Gas	2	
29		10	Steuergerät elektroni- sche Getriebesteue- rung	2	
30		11	Steuergerät Einsprit- zung	2	

Lfd. Nr.	Gruppe	Lfd. Nr. je Grupp e	Komponente	Priori- tät	Kommentar
31		12	Steuergerät ESP elekt- ronisches Stabilitäts- programm	4	Steuergerät ABS bereits abgedeckt
32		13	Steuergerät Fahrwerk	1	erhöhte Gehalte an OR- KAM-Elementen erwartet
33		14	Steuergerät Heizung	3	unklarer Gehalt an ORKAM- Elementen
34		15	Steuergerät HGS	4	Steuergerät Getriebe be- reits abgedeckt
35		16	Steuergerät Klima	2	
36		17	Steuergerät Komfort	4	unspezifisch
37		18	Steuergerät Lenkung	1	erhöhte Gehalte an OR- KAM-Elementen erwartet
38		19	Steuergerät Leuchtweitenregelung	4	unklarer Gehalt an ORKAM- Elementen
39		20	Steuergerät Motor	1	erhöhte Gehalte an OR- KAM-Elementen erwartet
40		21	Steuergerät Xenon	3	
41		22	Steuergerät Zentralver- riegelung	4	unklarer Gehalt an ORKAM- Elementen
42		23	Inverter/Controller	1	erhöhte Gehalte an OR- KAM-Elementen erwartet
43	Verteiler	1	Smarte Verteilerboxen	1	
44		2	Passive Verteilerboxen mit Leiterplatten	2	
45	Licht	1	Blinker	1	
46		2	Kombileuchte vorn	2	unklare Nutzung von LED in verfügbaren Modellen
47		3	Leuchte hinten	1	
48		4	Leuchte vo außen	3	
49		5	Nebelleuchte	3	
50	Sensoren	1	Airbagsensor	1	
51		2	ABS-/Raddreh- zahlsensor	3	hoher Demontageaufwand
52		3	E-Gaspedal	3	
53		4	Lambdasonde/Sauer- stoffsensor	1	
54		5	Lenkwinkelsensor	4	unklarer Gehalt an ORKAM- Elementen

Lfd. Nr.	Gruppe	Lfd. Nr. je Grupp e	Komponente	Priori- tät	Kommentar
55		6	Luftmassenmesser	4	unklarer Gehalt an ORKAM- Elementen
56		7	Luftmengenmesser	4	unklarer Gehalt an ORKAM- Elementen
57		8	Manifold-Absolute- Pressure (MAP)-Sensor	4	unklarer Gehalt an ORKAM- Elementen
58		9	Nockenwellensensor	2	
59		10	Kurbelwellensensor	3	hoher Demontageaufwand
60		11	Ultraschall, Nahdistanz- radar	1	
61		12	Radar	1	
62		13	Klimasensor	3	unklare Gehalte an ORKAM- Elementen
63		14	Drosselkappen-Win- kelsensor	4	unklarer Gehalt an ORKAM- Elementen
64		15	Giergeschwindigkeits- und Querbeschleuni- gungssensor	4	unklarer Gehalt an ORKAM- Elementen
65		16	Beschleunigungs- und Verzögerungssensor	4	unklarer Gehalt an ORKAM- Elementen
66	Aktuatoren	1	Abgas-Rückführ-Ventil (AGR)	4	unklarer Gehalt an ORKAM- Elementen
67		2	Einspritzeinheit	3	unklare Gehalte an ORKAM- Elementen, hoher Demon- tageaufwand
68		3	Zündkerze	1	

Basierend auf der Prioritätensetzung in Tabelle 62 wurde als Vorschlag für die "30er-Liste" eine Liste generiert, die neben den 30 Komponenten aus konventionellen Fahrzeugen und dem Inverter aus Hybridfahrzeugen ebenfalls 10 "Ausweich-Komponenten" enthält, die in den Demontageversuchen berücksichtigt werden, wenn in der Liste genannte Komponenten in den verfügbaren Fahrzeugen nicht vorhanden sind (Tabelle 63). Es wurden die Komponenten mit Priorität 1 und 2 übernommen sowie um Komponenten mit der Priorität 3 ergänzt, bis die gewünschte Anzahl erreicht war. Zur Darstellung in der folgenden Tabelle ist anzumerken, dass die Reihenfolge der Komponenten an die Vordiskussionen zu den Demontageversuchen angepasst wurde.


Tabelle 63: Vorschlag für die "30er-Liste" inklusive Ersatzkomponenten

Lfd. Nr.	Gruppe	Lfd. Nr. je Grupp e	Komponente	Priori- tät	Kommentar
1	Motoren	1	Heizlüfter	2	Demontage aufwendig
2	und ver- gleichbare Magnetan-	2	Lenkung Servomotor	2	beschränkte Anzahl von Fahrzeugen mit elektrischer Lenkhilfeunterstüt- zung, Demontage aufwendig
3	wendungen	3	Anlasser	1	
4		4	Kühlerlüfter	2	Demontage aufwendig
5		5	Lautsprecher	1	Vorausgesetzt, dass es sich um Nd- Lautsprecher handelt
6		6	Türverschluss	2	geringe Größe aber ggf. Mitnahme- effekt
7		7	Lichtmaschine	2	
8		8	Heckklappenschließ- motor	3	kleiner Motor
9		9	elektrische Sitzver- stellung	3	Demontage aufwendig
10		10	Kraftstoffpumpe	3	Demontage aufwendig, kleiner Mo- tor
11		11	Pumpe Scheibenwä- scher	3	Demontage aufwendig, kleiner Mo- tor
12		12	Wischermotor	2	beschränkte Verwendung von Nd- Motoren erwartet
13		13	Scheibenheber	2	beschränkte Verwendung von Nd- Motoren erwartet
14		14	Spiegeljustierung	3	geringe Größe aber ggf. Mitnahme- effekt
15	Bildschirme	1	Navigationssystem	2	
16		2	Kombiinstrument	1	
17		3	Multifunktionsanzeige	1	
18	Steuerungs- geräte	1	Inverter/Controller	1	erhöhte Gehalte an ORKAM-Elemen- ten erwartet
19		2	Steuergerät Motor	1	erhöhte Gehalte an ORKAM-Elemen- ten erwartet
20		3	Steuergerät elektroni- sche Getriebesteue- rung	2	
21		4	Steuergerät ABS	2	
22		5	Steuergerät Fahrwerk	1	erhöhte Gehalte an ORKAM-Elemen- ten erwartet

Lfd. Nr.	Gruppe	Lfd. Nr. je Grupp e	Komponente	Priori- tät	Kommentar
23		6	Steuergerät Lenkung	1	erhöhte Gehalte an ORKAM-Elementen erwartet
24		7	Steuergerät Alarm/Diebstahl	2	ggf. Mitnahmeeffekt
25		8	Steuergerät Klima	2	
26		9	Steuergerät Airbag	1	erhöhte Gehalte an ORKAM-Elemen- ten erwartet
27	Verteiler	1	Smarte Verteilerbo- xen	1	
28		2	Passive Verteilerbo- xen mit Leiterplatten	2	
29	Licht	1	Leuchte hinten	1	
30		2	Kombileuchte vorn	2	unklare Nutzung von LED in verfüg- baren Modellen
31		3	Blinker	1	
32	Sensoren	1	ABS-/Raddreh- zahlsensor	3	hoher Demontageaufwand
33		2	Nockenwellensensor	2	
34		3	Kurbelwellensensor	3	hoher Demontageaufwand
35		4	Lambdasonde/Sauer- stoffsensor	1	
36		5	Ultraschall, Nahdis- tanzradar	1	
37		6	Radar	1	
38		7	Airbagsensor	1	
39		8	Klimasensor	3	unklare Gehalte an ORKAM-Elemen- ten
40	Aktuatoren	1	Zündkerze	1	
41		2	Einspritzeinheit	3	unklare Gehalte an ORKAM-Elemen- ten, hoher Demontageaufwand

Die Abbildung 13 zeigt die Verteilung der Komponenten in der "30er-Liste" auf die Komponentengruppen.

Abbildung 13: Verteilung der Komponenten in der "30er-Liste" auf die Komponentengruppen

Legende: Dargestellt ist der Gruppenname, die absolute Anzahl sowie die Prozentangabe bezogen auf die Gesamtzahl der Komponenten

6.3 Prüfung der Auswahl

Um zu prüfen, ob alle ORKAM-Elemente in der Vorschlagsliste zur "30er-Liste" abgedeckt sind, erfolgt eine Gegenüberstellung in Tabelle 64.

Tabelle 64: Prüfung zur Abdeckung der ORKAM-Elemente in der "30er Liste"

Element	Komponenten der "30er-Liste", die das Element potenziell enthalten	Lfd.Nr. der Komponenten (s. Tabelle 63)	
Antimon	Als Flammenhemmer in Leiterplatten und Kunststoffgehäusen.	18-28	
Beryllium	Als CuBe-Legierung in Kontakten und Motoren.	1-14, 18-41	
Cer	In Leuchtstoffen der Bildschirme/LED.	15-17, 29-31	
Dyspro- sium	Als Magnetwerkstoff in Motoren. Als Magnetwerkstoff in Sensoren.	1-14, 32-38	
Erbium	In Leuchtstoffen der Bildschirme/LED.	15-17, 29-31	
Europium	In Leuchtstoffen der Bildschirme/LED.	15-17, 29-31	
Gadolinium	In Leuchtstoffen der Bildschirme/LED. Als Magnetwerkstoff in Motoren.	15-17, 29-31	
Gallium	Als Halbleiter in integrierten Schaltkreisen. In LED.	18-26, 29-31, 36-37	
Germa- nium	Als SiGe-Chip im Radar.	37	
Gold	In Leiterplatten und Kontakten.	1-41	
Holmium	Es wurden keine im Rahmen des Projektes relevanter ziert.	n Anwendungsfelder identifi-	
Indium	In LCD und LED.	15-17, 29-31	
Iridium	Als Bestandteil von Zündkerzen-Elektroden.	40	
Kobalt	Als Samarium-Kobalt-Magnet.	1-14	
Lanthan	In Leuchtstoffen der Bildschirme/LED.	15-17, 29-31	
Lutetium	Es wurden keine im Rahmen des Projektes relevanter ziert.	n Anwendungsfelder identifi-	
Neodym	Als Magnetwerkstoff in Motoren. Als Magnetwerkstoff in Sensoren. ²⁸	1-14, 32-38	
Osmium	Es wurden keine im Rahmen des Projektes relevanter ziert.	n Anwendungsfelder identifi-	
Palladium	Als Bestandteil von Leiterplatten.	18-26	
Platin	Als Bestandteil von Sensoren und als Kontaktmaterial	18-26, 35	
Praseodym	Als Magnetwerkstoff in Motoren.	1-14	
Prome- thium	Es wurden keine im Rahmen des Projektes relevanter ziert.	n Anwendungsfelder identifi-	

²⁸ Ob Neodym als Bestandteil von NPO-Kondensatoren auf den Leiterplatten der ausgewählten Komponenten vorhanden ist, konnte nicht identifiziert werden.

Element	Komponenten der "30er-Liste", die das Element potenziell enthalten	Lfd.Nr. der Komponenten (s. Tabelle 63)		
Rhodium	Als Legierungsbestandteil der Mittelelektrode in Zündkerzen.	40		
Ruthenium	Es wurden keine im Rahmen des Projektes relevanter ziert.	n Anwendungsfelder identifi-		
Samarium	Als Magnetwerkstoff in Motoren.	1-14		
Scandium	Es wurden keine im Rahmen des Projektes relevanten Anwendungsfelder identifiziert.			
Silber	Als Bestandteil von Leiterplatten und Kontakten.	1-41		
Tantal	Als Bestandteil von Leiterplatten.	18-26		
Terbium	Es wurden keine im Rahmen des Projektes relevanten Anwendungsfelder identifiziert ²⁹ .			
Thulium	Es wurden keine im Rahmen des Projektes relevanten Anwendungsfelder identifiziert.			
Ytterbium	Es wurden keine im Rahmen des Projektes relevanten Anwendungsfelder identifiziert.			
Yttrium	Als Bestandteil von Leuchtstoffen. Als Bestandteil von Sensoren.	15-17, 35		
Zinn	Als Bestandteil von Leiterplatten.	1-41		

Ergebnis: Die Vorschlagsliste zur "30er-Liste" deckt die projektrelevanten Elemente ab.

Die Liste der identifizierten Komponenten wurde anschließend mit externen Experten unter den Fragestellungen diskutiert, ob

- wesentliche Komponenten fehlen,
- aufgelistete Komponenten keine ORKAM-Elemente enthalten,
- andere Informationen zu den Gehalten an ORKAM-Elementen vorliegen.

Die Experten waren Projektbearbeiter vergleichbarer Projekte (EMPA, Uni Kyoto), Autohersteller (VW, Opel) und Entsorger (Callparts, RETEK GmbH, ELPRO Elektronik-Produkt Recycling GmbH). Dabei wurden die in der Liste enthaltenen Komponenten bestätigt, allerdings wurde auch ausdrücklich auf die sehr große Vielfalt der Komponenten in Autos, die hohe Dynamik bei der Ausrüstung der Autos und der technischen Innovation und die lückenhafte Datengrundlage hingewiesen.

6.4 Ergebnis: "30er-Liste" (mit Ersatzkomponenten) der zu demontierenden Komponenten

Der oben entwickelte Vorschlag zur Auswahl der zu demontierenden Komponenten (Tabelle 63) deckt die im Projekt ORKAM relevanten Elemente ab und wird deshalb zunächst als "30er-Liste" (inkl. Ersatzkomponenten) übernommen. Die Auswahl der tatsächlich im praktischen Versuch

²⁹ Tb wird in Neodym-Magneten eingesetzt. (Blade 2010 nach ReStra 2013). Nach Cullbrand&Magnusson (2012 S. 21) wurde Terbium jedoch nur im Motor von Hybrid-Fahrzeugen gefunden. Andere Neodym-Magnet-Motoren der Untersuchung enthielten nur sehr geringe Spuren.

zu demontierenden 30 Komponenten wird aus dieser Liste erfolgen (Kapitel 7.4.1), in Abhängigkeit der in der Fahrzeugstichprobe zur Verfügung stehenden Komponenten, für die in Tabelle 65 eine möglichst hohe Priorität angegeben wird.

Tabelle 65: "30er-Liste" der zu demontierenden Komponenten inklusive Ersatzkomponenten

rabelle	os. "Soci Liste t	der zu demonderenden komponent	en inklusive L
Lfd. Nr.	Gruppe	Komponente	Priorität
1	Motoren und ver-	Heizlüfter	2
2	gleichbare Magnet-	Lenkung Servomotor	2
3	anwendungen	Anlasser	1
4		Kühlerlüfter	2
5		Lautsprecher	1
6		Türverschluss	2
7		Lichtmaschine	2
8		Heckklappenschließmotor	3
9		elektrische Sitzverstellung	3
10		Kraftstoffpumpe	3
11		Pumpe Scheibenwäscher	3
12		Wischermotor	2
13		Scheibenheber	2
14		Spiegeljustierung	3
15	Bildschirme	Navigationssystem	2
16		Kombiinstrument	1
17		Multifunktionsanzeige	1
18	Steuerungsgeräte	Inverter/Controller	1
19		Steuergerät Motor	1
20		Steuergerät elektronische Ge- triebesteuerung	2
21		Steuergerät ABS	2
22		Steuergerät Fahrwerk	1
23		Steuergerät Lenkung	1
24		Steuergerät Alarm/Diebstahl	2
25		Steuergerät Klima	2
26		Steuergerät Airbag	1
27	Verteiler	Smarte Verteilerboxen	1
28		Passive Verteilerboxen mit Lei- terplatten	2
29	Licht	Leuchte hinten	1
30		Kombileuchte vorn	2
31		Blinker	1

Lfd. Nr.	Gruppe	Komponente	Priorität
32	Sensoren	ABS-/Raddrehzahlsensor	3
33		Nockenwellensensor	2
34		Kurbelwellensensor	3
35		Lambdasonde/Sauerstoffsensor	1
36		Ultraschall, Nahdistanzradar	1
37		Radar	1
38		Airbagsensor	1
39		Klimasensor	3
40	Aktuatoren	Zündkerze	1
41		Einspritzeinheit	3

7 Altfahrzeugstichprobe

7.1 Ziel und Vorgehen

Gegenstand dieses Kapitels ist die Auswahl von 11 Altfahrzeugen³⁰, aus denen die ausgewählten 30 Komponenten (Tabelle 63) ausgebaut und Demontageinformationen gewonnen werden sollen.

Um eine aussagekräftige, möglichst repräsentative Auswahl treffen zu können, wird die Verteilung der jüngsten PKW Neuzulassungen in Deutschland analysiert. Es werden Kriterien für eine Fahrzeugauswahl aufgestellt und daraus eine geeignete Fahrzeugstichprobe abgeleitet. Die Altfahrzeugliste wird mit der Liste der 30 zu separierenden Komponenten abgeglichen, um festzustellen, ob die Komponenten zur Demontage zur Verfügung stehen.

7.2 Kriterien für die Fahrzeugauswahl

7.2.1 PKW-Segmentierung

Zur Separation der Fahrzeugelektronik sollen 11 neuere Altfahrzeuge mit einem Alter von maximal 6 Jahren zerlegt werden. Ziel ist, Erkenntnisse über zukünftig in Deutschland typischerweise anfallende Altfahrzeuge zu gewinnen.

Für eine möglichst aussagekräftige Stichprobe ist es wünschenswert, die wichtigsten Vertreter dieser zukünftigen Altfahrzeuge zu identifizieren. Statistische Daten über die Verteilung der deutschen Altfahrzeuge auf Segmente werden jedoch nicht erhoben³¹, ebenso sind Zukunftsprognosen hierzu nicht verfügbar. Daher wird als Näherungswert unterstellt, dass die Segmentierung der heutigen Neuzulassungen sich in späteren Jahren im Rücklauf der zu erwartenden Altfahrzeuge in durchschnittlich 14-15 Jahren (UBA/BMU 2013) in etwa widerspiegelt und somit als Basis für eine repräsentative Auswahl dienen kann.

In Deutschland werden jährlich rund 3 Mio. Personenkraftwagen der Klasse M1³² neu zugelassen. Im Jahr 2013 betrug der Wert 2.952.431 Einheiten. Die vom Kraftfahrt-Bundesamt (KBA) publizierten und beispielsweise von der Branchenzeitschrift AUTOHAUS (Autohaus 2013) zitierten und ausgewerteten Daten bieten eine Aufgliederung dieses Volumens nach Segmenten an (Tabelle 66). Die Gliederung der PKW-Modelle nach Segmenten wurde zur Verbesserung der statistischen Vergleichbarkeit geschaffen und erfolgt anhand von optischen, technischen und marktorientierten Merkmalen in Abstimmung mit Vertretern der Automobilindustrie.

Die Fahrzeugauswahl erfolgte mit dem Ziel, eine repräsentative Stichprobe von Fahrzeugen aus den Segmenten zu finden, so dass sich möglichst die 10 mengenmäßig stärksten Segmente in der Stichprobe wiederfinden.

³⁰ Zu Beginn sollten 10 Altfahrzeuge demontiert werden. Aus Gründen der Markenvielfalt (s. Kapitel 7.2.4) konnte die Stichprobe im Verlaufe des Projekts um ein weiteres Altfahrzeug ergänzt werden.

³¹ Für das Ausnahmejahr der Abwrackprämie sind einmalig Daten verfügbar, deren Repräsentativität für andere Jahre jedoch eingeschränkt sein dürfte.

³² Kfz zur Personenbeförderung mit mindestens vier Rädern und mit höchstens acht Sitzplätzen außer dem Fahrersitz (Richtlinie 2007/46/EG).

Tabelle 66: Pkw-Neuzulassungen in Deutschland nach Segmenten (AUTOHAUS 2013)

Plat- zierung	Pkw-Segmente [AUTOHAUS]	Neuzulassungen in Deutschland im Seg- ment 2013	Anteil Segment an Neuzulassungen Ge- samt	Anteil ku- muliert
1	Untere Mittelklasse	705.955	24%	24%
2	Kleinwagen	417.015	14%	38%
3	Mittelklasse	400.410	14%	52%
4	Kleinstwagen	266.412	9%	61%
5	Geländewagen medium	210.861	7%	68%
6	Geländewagen klein	205.599	7%	75%
7	Minivan	179.212	6%	81%
8	Obere Mittelklasse	157.533	5%	86%
9	Microvan	79.435	3%	89%
10	Geländewagen groß	63.915	2%	91%
11	Transporter klein	56.626	2%	93%
12	Hochdachkombi	56.057	2%	95%
13	Sportwagen	43.619	1%	97%
14	Großraumlimousine	37.098	1%	98%
15	Transporter groß	25.686	1%	99%
16	Oberklasse	25.170	1%	100%
17	Sportwagen (Luxus)	12.024	0,4%	100%
	Gesamt	2.942.627		

Auswahlkriterium Nr. 1 ist eine gleichmäßige Verteilung der Fahrzeugstichprobe über die mengenmäßig stärksten Segmente.

7.2.2 Platzierung eines Fahrzeugtyps im Segment

Den Segmenten sind die Fahrzeugtypen der verschiedenen Marken zugeordnet und in AUTO-HAUS (2013) nach Zulassungshäufigkeit gelistet. Um bei der Auswahl der Fahrzeuge aus den Segmenten häufig am Markt vertretene Fahrzeugtypen zu finden, werden Zulassungsspitzenreiter oder in der Rangfolge möglichst obenstehende Typen ausgewählt.

Am Beispiel der unteren Mittelklasse wird das Vorgehen erläutert, siehe Tabelle 67.

Der Fahrzeugtyp Golf bzw. die Modellreihe Golf, Jetta, etc. belegt in der Platzierung den 1. Rang und umfasst im Jahr 2013 einen Marktanteil von 35 % im Segment der unteren Mittelklasse. Die Auswahl eines Fahrzeuges Typ Golf würde bedeuten, dass ein hoher Anteil der deutschen Neuzulassungen und damit näherungsweise auch zukünftigen Altfahrzeuge repräsentiert würde.

Auswahlkriterium Nr. 2 ist eine möglichst gute Platzierung im Marktsegment.

Tabelle 67: Neuzulassungen von Fahrzeugtypen im Segment "Untere Mittelklasse" (AUTOHAUS 2013)

	Fahrzeugtypen des Segments "Untere Mittelklasse"	Anzahl Neuzulas- sungen 2013	Anteil Fahrzeug- typen im Seg- ment
1	VW Golf/Jetta	244.249	35%
2	Audi A3	60.978	9%
3	BMW 1er-Reihe	53.214	8%
4	Opel Astra	50.322	7%
5	Mercedes A-Klasse	49.034	7%
6	Ford Focus	45.485	6%
7	Hyundai I 30	31.037	4%
8	Seat Altera, Toledo, Leon	30.569	4%
9	Renault Megane	20.313	3%
	VW (New) Beetle	15.496	2%
	Sonstige	105.258	15%
	Gesamt	705.955	

7.2.3 Baujahr des Fahrzeuges

Bei der Tendenz zunehmender Elektronisierung in Fahrzeugen ist zu erwarten, dass jüngere Fahrzeuge mit einer höheren Anzahl von Elektronikkomponenten ausgestattet sind.

Das Lastenheft schränkt daher die Auswahl sinnvollerweise auf Fahrzeuge nicht älter als sechs Jahre ein.

Auswahlkriterium Nr. 3 ist das Baujahr.

7.2.4 Markenvielfalt

Unterschiedliche Marken lassen Konstruktionsunterschiede vermuten und können unterschiedliche Erkenntnisse bei der Demontage liefern. Wünschenswert wäre Markenvielfalt in der Fahrzeugstichprobe. Um die Markenvielfalt zu erhöhen, konnte zu einem späteren Zeitpunkt ein weiteres Auto einer anderen Marke zusätzlich zu den 10 eingangs genannten untersucht werden.

Auswahlkriterium Nr. 4 ist Markenvielfalt.

7.2.5 Verfügbarkeit

Da durch den Auftraggeber kein Budget für die Beschaffung der Altfahrzeuge zur Verfügung gestellt wurde, ist ein weiteres wesentliches Kriterium die kostenfreie Beschaffung der Fahrzeuge für diese Studie. Das Volumen an Fahrzeugen, die kostenfrei zur zerstörenden Demontage zur Verfügung stehen, ist hinsichtlich der Markenvielfalt begrenzt. Die zur Verfügung stehenden Marken sind jedoch in den meisten Segmenten mit guter Platzierung vertreten.

Auswahlkriterium Nr. 5 ist die Verfügbarkeit von geeigneten Fahrzeugen.

7.3 Ergebnis: "11-er-Liste" Altfahrzeugauswahl

Gemäß den oben genannten Kriterien erfolgte die Fahrzeugauswahl, welche die 10-er-Liste (Tabelle 68) ergab.

In der ersten Phase des Projekts standen 10 Fahrzeuge bzw. Fahrzeugtypen von zwei Marken eines einzigen Fahrzeugherstellers zur Verfügung, mit denen 10 Segmente und auch ein Hybridfahrzeug abgebildet werden konnten und die hinsichtlich des Anteils im jeweiligen Segment eine hohe Platzierung einnahmen. Gegen Projektende ergab sich jedoch die Möglichkeit, die Separationsversuche auf ein "junges" Altfahrzeug (Untere Mittelklasse; gekennzeichnet mit römisch II) eines anderen Fahrzeugherstellers auszuweiten, so dass das Kriterium "Markenvielfalt" besser erfüllt werden konnte.

Die Verfügbarkeit einer Oberklasse konnte im Projektverlauf nicht realisiert werden. Die Mittelklasse und die zwei Geländewagen groß standen aber mit einer gehobenen Ausstattung zur Verfügung, so dass deren Merkmale hinsichtlich Fahrzeugelektronik auf eine Oberklasse übertragen werden konnten.

Tabelle 68: Fahrzeugstichprobe "11er-Liste"

Plat- zie- rung ³³	Segment (Quelle Auto- haus 2013)	Neuzulas- sungen in Deutschland 2013	Anteil des ausgewähl- ten Fzg im Segment ³⁴	Platzierung des ausgewählten Fzg im Segment	Modell- jahr
1	Untere Mittelklasse	705.955	35%	1	2013
_	(2 Altfahrzeuge)	703.333	3%	> 10	2012
2	Kleinwagen	417.015	16%	1	2014
3	Mittelklasse ³⁵	400.410	18%	1	2014
4	Kleinstwagen	266.412	5%	8	2013
5	Geländewagen medium	210.861	27%	1	2013
7	Minivan	179.212	26%	1	2013
10	Geländewagen groß (Hybrid)	63.915	14%	1	2012
12	Hochdachkombi	56.626	54%	1	2009
14	Großraumlimousine	43.619	32%	1	2013
16	Oberklasse (Geländewa- gen/Mittelklasse mit ge- hobener Ausstattung)	25.170	13%	3	2013

In der vorgeschlagenen Fahrzeug-Stichprobe (Tabelle 68) sind einige Fahrzeug-Segmente aus Tabelle 66 wegen fehlender Verfügbarkeit nicht enthalten, beispielsweise das Segment mit Platzierung 6 "Geländewagen klein".

³³ Platzierungen des Segments nach Tabelle 66.

³⁴ Quelle: Autohaus 2013.

³⁵ Das untersuchte Fahrzeugmodell ist der Mittelklasse zuzuordnen. Allerdings verfügte das Versuchsfahrzeug über eine gehobene Ausstattung, vergleichbar mit einer oberen Mittelklasse. Aus diesem Grund wird das Fahrzeug im weiteren Bericht als obere Mittelklasse bezeichnet werden.

In fast allen Segmenten ist eine der drei häufigsten Fahrzeugtypen in der Stichprobe vertreten. Um Markenvielfalt herzustellen, wurde im Kleinstwagensegment auch eine schwächere Platzierung akzeptiert. Das Kriterium Alter ist immer erfüllt. Die Verfügbarkeit und das Kriterium Kostenlosigkeit bei gleichzeitiger Altersbeschränkung haben Einschränkungen bei der Markenvielfalt zur Folge.

Entsprechend der Abstimmung mit dem Auftraggeber sollte ein Fahrzeug der Stichprobe ein Hybridfahrzeug sein, um insbesondere auch einen Inverter als Komponente in die Separationsversuche einbeziehen zu können (siehe "30er-Liste" in Tabelle 63). Das Hybridfahrzeug wurde aufgrund seiner hochwertigen Ausstattung zusätzlich dem Segment Oberklasse zugeordnet, da eine Alternative im Altfahrzeugbestand nicht vorhanden war.

Mit der ausgewählten Altfahrzeugstichprobe sind Segmente berücksichtigt, die in Summe bei den Neuzulassungen ca. 80 % des Fahrzeugvolumens umfassen.

7.4 Abgleich Fahrzeugwahl und Komponenten

7.4.1 Ziel und Vorgehen

Die Vorschlagsliste zur Entwicklung der 30-iger Komponentenliste umfasst 41 Komponenten (Tabelle 63), darunter 32 Komponenten mit Priorität 1 oder 2. Im ersten Schritt wurde abgeglichen, ob Komponenten mit Priorität 1 oder 2 in den Fahrzeugen der Stichprobe (Tabelle 68) enthalten sind. Im zweiten Schritt wurde der Fehlbestand um Komponenten mit der Priorität 3 ergänzt.

7.4.2 Komponentenverfügbarkeit in der Altfahrzeugstichprobe

Eine grobe Verfügbarkeitsprüfung ergibt, dass von den Komponenten mit Priorität 1 oder 2 aus Tabelle 63 in den zur Verfügung stehenden Altfahrzeugen nur zwei Komponenten nicht verfügbar sind:

Damit würde sich eine Komponentenliste mit 30 Positionen mit Priorität 1 oder 2 ergeben, deren Separation sich aus den Altfahrzeugen der Stichprobe realisieren lässt.

Sollte Ersatz durch Komponenten mit Priorität 3 erforderlich sein, werden

- Nr. 32 Raddrehzahlsensor,
- Nr. 39 Klimasensor oder
- eventuell Nr. 11 Pumpe Scheibenwäscher

ausgewählt. Die Auswahl erfolgte, weil erwartet wurde, dass beide Sensoren und die Pumpe in Verbindung mit anderen Komponenten schnell und kurzzeitig demontiert werden können. Ein Ersatz ist nur erforderlich, wenn ein Priorität 1-Bauteil im Verlaufe des Zerlegeprozesses ausfallen sollte.

Zusammenfassend ist festzustellen, dass als Ergebnis der Vorabprüfung alle 30 Komponenten mindestens ein Mal in den Altfahrzeugen der Stichprobe vorkommen und demontierbar sind.

Bei der Demontage wird für jedes Fahrzeug eine Liste der real vorgefundenen Komponenten erstellt. Darüber hinaus ist nicht ausgeschlossen, dass bei der Demontage noch weitere elektronische Komponenten aufgefunden werden, die nicht in der Komponentenliste enthalten sind, aber kritische Metalle enthalten können, siehe Kapitel 9.2.

8 Zerlegekonzept

In diesem Kapitel werden der Demontageprozess und die zugehörigen Mittel beschrieben und das Konzept zum Ablauf der Zerlegung und Dokumentation in einem Demontageprotokoll erläutert.

8.1 Altfahrzeugbehandlung gemäß Altfahrzeugverordnung

Der Ablauf der Behandlung von Altfahrzeugen ergibt sich aus den Vorgaben des Anhangs der Altfahrzeugverordnung³⁶, so dass in allen Demontagebetrieben eine einheitliche Vorgehensweise vorzufinden ist.

In der Praxis gliedert sich der Ablauf in vier Schritte: a. Annahme, b. Vorbehandlung, c. Gebrauchtteil- bzw. Reststoffdemontage und d. Verdichtung und Bereitstellung zur weiteren Behandlung.

a. Annahme

Unmittelbar nach der Annahme werden Stoffe bzw. Materialien wegen ihres Gefahrenpotentials separiert, beispielsweise Batterien und pyrotechnische Bauteile.

b. Vorbehandlung

Bei der branchenüblich bezeichneten "Trockenlegung" werden Flüssigkeiten, Stoffe und Materialien wegen ihres Schad- und Störstoffcharakters oder auch Wertstoffpotentials separiert:

- Betriebsflüssigkeiten und Betriebsmittel: Kraftstoff, Kühlerflüssigkeit, Bremsflüssigkeit, Scheibenwaschflüssigkeit, Kältemittel aus Klimaanlagen, Motorenöl, Getriebeöl, Differenzialöl, Hydrauliköl und Stoßdämpferöl
- Ölfilter (außer bei Wiederverwendung des Motors),
- Öl aus Stoßdämpfern (soweit keine Demontage erfolgt)
- Latentwärmespeicher, asbesthaltige Komponenten
- quecksilberhaltige Komponenten und weitere gekennzeichnete schwermetallhaltige Komponenten
- kraftfahrzeugfremde Stoffe
- Auswuchtgewichte

c. Gebrauchtteil- bzw. Reststoffdemontage

In der gängigen Praxis erfolgt die Demontage von Gebrauchtteilen zum Verkauf als Ersatzteil. Darüber hinaus werden Bauteile und Wertstoffe mit dem Ziel der stofflichen Verwertung gewonnen, wie beispielsweise:

- Katalysatoren,
- Front-, Heck- und Seitenscheiben, Glasdächer bzw. große Kunststoffbauteile (sofern keine mit dem Abfallrecht konforme Freistellung für den Betrieb existiert),
- Reifen (i.d.R. Räder mit Reifen), Aluminiumfelgen,
- Türen aus Aluminium, Motoren als hochwertiger Kernschrott.

³⁶ Verordnung über die Überlassung, Rücknahme und umweltverträgliche Entsorgung von Altfahrzeugen (Altfahrzeug-Verordnung - AltfahrzeugV) in der Fassung der Bekanntmachung vom 21. Juni 2002 (BGBl. I S. 2214), zuletzt geändert durch Artikel 3 der Verordnung zur Fortentwicklung der abfallrechtlichen Überwachung, vom 5.12.2013 (BGBl. I, S. 4043).

Zum Sammeln separierter Komponenten in der Größe von Fahrzeugelektronik werden beispielsweise Gitterboxen, Holz- oder Kunststoffkisten und ähnliche verwendet.

d. Verdichtung und Bereitstellung

Nach Entnahme von Komponenten und Separation von Wertstoffen erfolgt das Verdichten der Restkarosse. Einem Aufbereiter für Metallschrott, welches i.d.R. ein Schredderbetrieb ist, werden die gepressten Karossen überlassen.

8.2 Arbeitsplatzgestaltung und Ausrüstung im Demontagebetrieb

Die Zerlegung der Altfahrzeuge erfolgt in diesem Projekt in einem Altfahrzeugdemontagebetrieb in einer Arbeitsumgebung, die mit der Struktur und Ausrüstung von Werkstätten vergleichbar ist. Es handelt sich dabei um eine Einzelplatzdemontage auf Hebebühnen oder Demontageböcken, die eine hohe Flexibilität bezüglich der Unterschiede im Demontageablauf und der Demontagezeit hinsichtlich verschiedener Modelle, Typen, Tiefe der Zerlegung oder dem Zustand von Fahrzeugen aufweist.

Anfänglich in Deutschland installierte Demontagestraßen wurden stillgelegt oder abgebaut. Auch im europäischen Ausland ist eine Liniendemontage eine Seltenheit. Im Gegensatz zur Liniendemontage ist eine Taktung bei der Einzelplatzdemontage nicht erforderlich, so dass keine Probleme durch unterschiedliche Zeiten für die Zerlegung entstehen.

Die Vorbehandlung und anschließende Zerlegung der Altfahrzeuge nach den Anforderungen der Altfahrzeugverordnung erfolgt an separaten oder kombinierten Arbeitsplätzen.

Für die Separation der Komponenten werden Handwerkzeuge mit mobilen Werkzeugwagen an den Hebebühnen oder Demontageböcken in Griffnähe bereitgestellt. In unmittelbarer Nähe am Arbeitsplatz befinden sich Werkbänke für zusätzliche Arbeitsmittel oder zur Nutzung als Ablage. Als Sammelbehälter werden Kisten, Boxen oder Paletten in unmittelbarer Nähe zum Arbeitsplatz bereitgestellt.

Für spezielle Zwecke, z.B. Zerlegen von Motoren, werden zweckentsprechende Arbeitstische in gesonderten Anlagenbereichen verwendet.

Handwerkzeuge

Die Auswahl von Werkzeugen erfolgt unter dem Augenmerk, eine schnelle Separation zu erreichen, bei der Verbindungsstellen oder -elemente bei Bedarf auch zerstörend aufgetrennt werden, da das Ziel eine stoffliche Verwertung ist, und keine Nachnutzung als Ersatzteil erfolgt.

Brechstange und Montiereisen können zum Aufbrechen von plastischen Verbindungen verwendet werden, indem das verbindende Element (Schraube, Niete) oder das Gehäuse einer Komponente zerstört wird.

Schneidende Werkzeuge, wie Bolzenschneider, Zange, Seitenschneider, sind zum Trennen von elastischen Halterungen aus Kunststoff, z.B. Kabelbinder, oder zum Trennen von Steckern und elektrischen Verbindungen oder Abtrennen von Leitungen für Betriebs-Medien geeignet.

Grundsätzlich sollte die Anwendung o.g. Werkzeuge ausreichen, denn elektronischen Komponenten haben meist eine kleine Größe und nicht auf Kraft ausgelegte Verbindung.

Auf die Anwendung von herkömmlichen Handwerkzeugen, wie beispielsweise Ratsche, Ring-, Maul-, Steckschlüssel, Schraubendreher zum Lösen von Schraubverbindungen, kann in den Fällen verzichtet werden, in denen zerstörende Methoden zeitlich vorteilhaft sind. Wenn es aber leicht ist, z.B. einen Stecker zu ziehen, muss nicht zerstört werden.

Transport

Der Transport erfolgt vorwiegend mit Gabelstapler.

Qualifikation der Kfz-Mechaniker

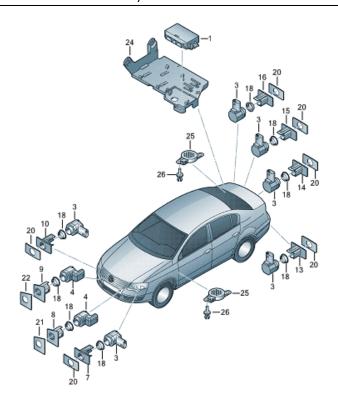
Der Demontagebetrieb, in dem die Zerlegung der Fahrzeuge im Rahmen der Studie durchgeführt wurde, ist spezialisiert auf junge Fahrzeugtypen. Die Separation und Dokumentation erfolgte durch einen Kfz-Mechaniker/Kfz-Mechatroniker (mit 15-jähriger Berufserfahrung auf dem Gebiet der Demontage sehr junger Altfahrzeuge) und einem Kfz-Meister. Die Dokumentation (siehe Kapitel 9) und projektbezogene Systematik erfolgte durch einen Diplom-Ingenieur.

Im Gegensatz zur werkstatttypischen Zerlegung von Altfahrzeugen in Deutschland werden in Betrieben mit einem großen Durchsatz von Altfahrzeugen, beispielsweise mehrere zehntausend Stück pro Jahr, auch Spezialgeräte eingesetzt.

Abbildung 14: Altfahrzeug-Demontage-System (Al-jon 2013)

Abbildung 14 zeigt ein Altfahrzeug-Demontage-System der Firma Al-jon in Ottumwa, Iowa, USA (Al-jon 2013), mit dem in kürzester Zeit Aggregate aus einem Altfahrzeug herausgerissen werden, wodurch auch der Zugang zu elektrischen Komponenten erleichtert werden kann. Das Altfahrzeug wird auf einen Tisch gestellt und mit einer Kralle festgehalten. Mit einem Greifer werden Komponenten, wie beispielsweise der Kühler aus dem Vorderwagen, herausgerissen. Auf einem neben dem Gerät stehenden Demontagetisch können weitere leicht zugängliche Komponenten separiert werden.

Derartige Technik findet bei der Altfahrzeugdemontage in Deutschland jedoch keine Anwendung, denn das meist eher geringe Altfahrzeugvolumen in den Betrieben ermöglicht keinen wirtschaftlichen Einsatz derartiger Spezialgeräte.


8.3 Lokalisierung der Komponenten im Fahrzeug und Dokumentation

Informationen zur Lage der Komponenten im Fahrzeug

Relevante elektronische Komponenten befinden sich im Vorderwagen außen/innen, Innenraum, Hinterwagen innen/außen und im Unterbodenbereich. Eine Orientierung zur Lage der Komponenten kann beispielsweise aus den Explosionszeichnungen und Informationen über im Fahrzeug enthaltene Komponenten in Ersatzteil-Katalogen von Kfz-Herstellern gewonnen werden. Beispielsweise enthält der Online-Ersatzteilkatalog von Volkswagen (ETKA 7.4) eine Abbildung mit der Steuerung (1) und Ultraschallsensoren (4) für die Einparkhilfe und Parklenkassistenz

(Abbildung 15), in der die Lage im Fahrzeug und der Verbund mit anderen Fahrzeugteilen, z.B. Blenden, erkennbar sind.

Abbildung 15: Explosionszeichnung eines VW Passat: mit Steuergeräten und Sensoren (VW ETKA 2013)

Zum Teil können auch Informationen aus dem IDIS (International Dismantling Information System, IDIS)³⁷ entnommen werden. Aus Angaben über sicherheitsrelevante Baugruppen oder über Komponenten mit Gefahrstoffen kann in einzelnen Fällen auf relevante Fahrzeugelektronik geschlossen werden. Beispielsweise können Angaben über vorhandene Batterien Hinweise auf Steuergeräte liefern.

8.4 Vorgehen bei der Separation und bewertungsrelevante Zeit

In der Praxis in Demontagebetrieben werden die beschriebenen Vorgänge von a. bis d. (Kapitel 8.1) in der Regel ohne einen Fokus auf die Separation elektronischer Komponenten durchgeführt. Daher ergaben sich im vorliegenden Projekt bei der Bewertung der Zeit zur Separation der Komponenten einige Besonderheiten hinsichtlich der für die Separation relevanten Zeit. Gemessen wurde nur der Bedarf für den Zweck der Separation elektronischer Komponenten. Alle Vorund Nachbehandlungstätigkeiten wurden zeitlich nicht bewertet.

Die Separation elektronischer Komponenten wird im Demontageablauf nur innerhalb eines Teils des Vorgangs c. – der Demontage – bewertet (Abbildung 16).

³⁷ Siehe http://www.idis2.com/.

Abbildung 16: Ablauf der Altfahrzeugbehandlung und Einbettung der Separation der Fahrzeugelektronik

Altfahrzeugbehandlung							
a. Annahme	ige	d. Verdichten					
Batterien	Betriebs- flüssigkeiten	Kat.	Fahrzeug- elektronik	Ersatzteile	Pressen / Lagern		
Pyrotechnik	Schadstoffhaltige Bauteile	Räder	erend on an	Wertstoffe (Metall, Glas, Kunststoff)	/ Lugerri		

Wie im vorherigen Abschnitt beschrieben, läuft die Altfahrzeugbehandlung in vier Phasen ab. Jedoch soll nicht die gesamte Zeit der Altfahrzeugbehandlung zur Bewertung der Wirtschaftlichkeit hinsichtlich der Separation elektrischer Komponenten angerechnet werden, um eine verursachergerechte Allokation der Zeit zu erhalten. Im Einzelnen werden die Vorgänge im Ablauf der Altfahrzeugbehandlung diskutiert.

Gesetzlich vorgeschriebene Vorgänge der Altfahrzeugbehandlung (Kapitel 8.1) sind nicht bewertungsrelevant, denn diese haben keine zusätzliche negative Auswirkung auf den Aufwand. Beispielsweise müssen gemäß Altfahrzeugverordnung immer Betriebsflüssigkeiten oder Räder entfernt werden, unabhängig davon, ob sie als eine störende Komponente auch ohne rechtliche Vorgabe entfernt würden. Demontagepflichten gemäß Altfahrzeugverordnung haben also keinen Einfluss auf die Wirtschaftlichkeitsbetrachtung bei der Separation von elektronischen Komponenten.

Arbeitsvorbereitung und Nacharbeiten

Unterstellt wird, dass der Mechaniker regelmäßig am gleichen Arbeitsplatz tätig ist und der Werkzeugwagen mit geeignetem Werkzeug bereitsteht, so dass die aufgaben- und fahrzeugbezogene Vorbereitung des Arbeitsplatzes nicht erforderlich ist.

Vorbereitend ist das Fahrzeug auf vorhandene Komponenten zu prüfen (vergleiche auch Kapitel 8.3)

Transporte von Fahrzeugen beinhalten i.d.R. das Holen vom Lagerplatz, das Umsetzen von der Vorbehandlung zum Demontageplatz oder den Abtransport nach der Zerlegung zur Fahrzeugpresse. Falls kein zusätzliches bzw. zeitintensives Umsetzen erfolgt, kann der Transport vernachlässigt werden.

Sammelboxen für separierte Komponenten werden in der Praxis jeweils für mehrere Fahrzeuge neu herangeschafft und abtransportiert. Es wird unterstellt, dass der Transportaufwand im Verhältnis zur Zerlegezeit gering ist und insbesondere je Fahrzeug vernachlässigbar erscheint.

Die Reinigung des Arbeitsplatzes sollte nicht angerechnet werden, wenn diese unabhängig von einer Zerlegung zur Separation von elektronischen Komponenten erfolgt.

Separation der Fahrzeugelektronik

Das Separieren der Komponenten wird in zwei Abschnitte unterteilt.

Vorbereitend wird das Fahrzeug auf vorhandene Komponenten geprüft und die Methoden und Werkzeugen abgestimmt. Diese Zeit wird nicht gemessen und bewertet. Bewertungsrelevant ist für jede einzelne Komponente die Zeit zwischen Aufnahme des Werkzeuges am Werkzeugwagen (mobile Werkbank) bis zur Ablage des Werkzeuges, um sperrende Komponenten zu entfernen

und die elektronischen Komponenten zzgl. weiterer (zufällig) freigelegten Komponenten zu separieren. Für diese zwei Arten von Komponenten erfolgte eine getrennte Zeiterfassung.

Der gelegentliche Werkzeugwechsel und wiederholtes Aufsuchen des Werkzeugwagens erfolgte bei den 11 Stichprobenfahrzeugen nur selten und der Zeitbedarf wurde als gering bewertet. Daher erfolgte keine Unterbrechung der Messung.

Sondereffekte, wie Unterbrechung der Zerlegung für die Dokumentation, das Fotografieren etc. wurden ausgeschlossen, indem die Messung der Zeit unterbrochen wurde.

Unter dem Aspekt möglicher Synergien oder Mitnahmeeffekte wurden auch weitere Komponenten mit (vermuteter) ORKAM-Relevanz separiert, die nicht in der "30er-Liste" genannt aber leicht separierbar waren. Beispielsweise wurde bei der Separation des Motors der Sitzverstellung (Komponente 9) auch die Steuerung für die Sitzverstellung separiert, die ebenfalls am Sitz verbaut ist.

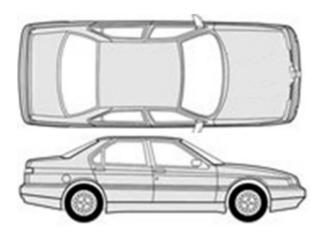
Sammeln

In der Praxis werden Boxen möglichst in unmittelbarer Nähe des Arbeitsplatzes aufgestellt, so dass unnötige Wegezeiten vermieden werden. Bei den Zerlegestudien wurde die Zeit bis zur Ablage der Komponente auf dem Werkzeugwagen gemessen. Der Unterschied zum Einwurf in eine Box neben dem Fahrzeug ist unerheblich. Die Logistik für Boxen oder Kartons wird bei der später erfolgenden Wirtschaftlichkeitsbetrachtung nicht berücksichtigt.

Bewertung der Separationszeit

Aufgrund einer "idealen" Situation bei der Zerlegung wurde die gemessene Zerlegezeit mit einem Faktor von 1,5 erhöht, siehe Kapitel 9.5.

8.5 Dokumentation der Zerlegung


Die Dokumentation der Separation der 30 Komponenten aus den 11 ausgewählten Fahrzeugen erfolgt in drei Teilen:

- Komponentenlage in Auf- und Seitenansicht (Abbildung 17)
- Zerlegeprotokoll (Anhang 15.3.1)
- Fotodokumentation, Kennzeichnung und Verpackung der Komponenten

8.5.1 Komponentenlage in Auf- und Seitenansicht

In schematischen Abbildungen von Fahrzeugen (Abbildung 17) wurde nach Abschluss der Zerlegung in der Auf- und Seitenansicht die Lage der Komponenten gekennzeichnet und mit der Teilebezeichnung beschriftet. Die Abbildung mit den Informationen über die Lage ist Bestandteil der Angaben im Zerlegeprotokoll.

Abbildung 17: Fahrzeug in der Auf- und Seitenansicht

8.5.2 Zerlegeprotokoll

Der Ablauf und die detaillierten Vorgänge werden im Zerlegeprotokoll dokumentiert (Anhang 15.3.1). Das Protokoll wurde während der Zerlegung des ersten Fahrzeuges optimiert und enthält alle Felder, die für die Dokumentation der wichtigen und wiederholt auftretenden Informationen als zweckmäßig bewertet wurden. Neben der Angabe des Fahrzeuges werden im Kopf des Protokolls die Nummern der Komponenten gemäß "30er-Liste" notiert, um eine schnelle Übersicht über den Inhalt des Blattes zu erhalten. Je nach Anzahl einzeln zu beschreibender Vorgänge zur Separation einer Komponente werden eine oder mehrere Zeilen verwendet und die Zerlegung in dieser Weise fortlaufend dokumentiert. Vorteilhaft ist, dass auch die Reihenfolge der Zerlegung dokumentiert ist, so dass eine extra Liste zur Aufzeichnung der Demontagereihenfolge nicht erforderlich ist.

8.5.3 Fotodokumentation, Kennzeichnen und Sammeln

Während der Zerlegung wurden Fotos zur Beschreibung des Ablaufes und Fotos zur Abbildung der Komponenten aufgenommen (Beispiele siehe Anhang 15.4.1).

Zum Sammeln wurden Kartons verwendet. Die separierten Komponenten wurden gekennzeichnet, so dass Informationen über die Zuordnung zu dem ursprünglichen Fahrzeug, die Komponenten-Nr. gemäß "30er-Liste" und die Bezeichnung erhalten bleiben.

9 Durchführung der Separation und Datenablage

Die Daten der Zerlegung wurden systematisch erfasst und ermöglichten anschließend weitere Auswertungen.

Während der Zerlegung wurden einerseits handschriftliche Aufzeichnungen in einem Ausdruck der Komponentenliste angefertigt. Andererseits erfolgte die geplante Aufzeichnung im Zerlegeprotokoll. Die erhobenen Daten und Informationen werden in die Datenbank übernommen.

Die Datenbank ist im Excel-Format eingerichtet und umfasst die folgenden Informationen:

- Fahrzeuggrunddaten für die Fahrzeuge der einzelnen Segmente, siehe Tabelle 69,
- Lage separierter Komponenten im Fahrzeug anhand graphischer Abbildung, siehe Kapitel 9.1,
- Ablauf der Zerlegung mit Fotodokumentation, siehe Kapitel 11.1,

• Ablauf der Zerlegung mit Informationen über die Reihenfolge und Zeit der Zerlegung.

Es wurden sowohl die ausgewählten Komponenten der "30er-Liste" als auch einige zusätzlichen Komponenten (siehe Kapitel 9.2) separiert.

Tabelle 69: Basisinformationen über die zerlegten Fahrzeuge

Segment	Modelljahr	Motor	Getriebe	Masse (kg)	Türen
Untere Mittelklasse	2013	Benzin	S	1400	4
Untere Mittelklasse II	2012	Benzin	А	1385	5
Kleinwagen	2014	Benzin/Gas	S	1050	2
Obere Mittelklasse	2014	Benzin	S	1400	4
Kleinstwagen	2013	Benzin	А	900	2
Geländewagen Medium	2013	Diesel	А	1400	4
Minivan	2013	Benzin/Gas	S	1380	4
Geländewagen HYBRID	2012	Benzin/Hybrid	А	1300	4
Hochdachkombi	2009	Diesel	S	1190	2
Großraumlimousine	2013	Diesel	S	1800	4
Oberklasse (Gelände- wagen mit gehobener Ausstattung)	2013	Benzin (fehlt)	ohne	2010	4

9.1 Beispiel für die Lage, Mengen und Massenverteilung von Komponenten

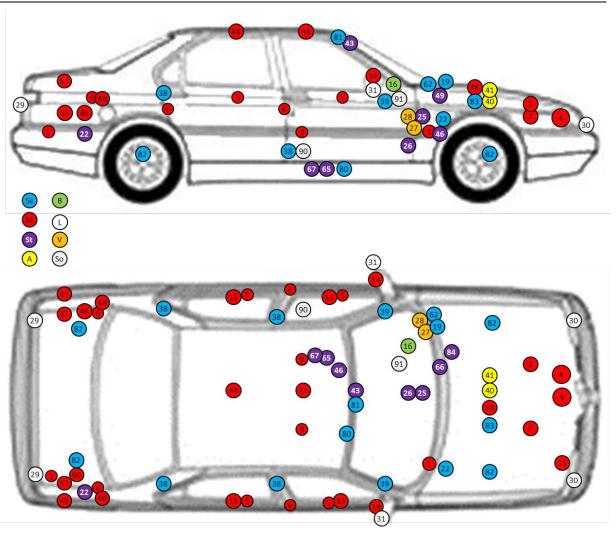

Die Abbildung 18 zeigt die Lage der identifizierten Komponenten in der Auf- und Seitenansicht in einer Großraumlimousine. Auf eine formgetreue Abbildung des Fahrzeuges wurde verzichtet. Die Komponenten werden gemäß ihrer Zuordnung zu den Teilsystemen farblich gekennzeichnet (Tabelle 70). Die Ziffer der Punkte in Abbildung 18 entspricht der Ziffer der erster Spalte der "30er-Liste" (s. Tabelle 65) bzw. der Liste mit zusätzlichen Komponenten (Tabelle 71).

Tabelle 70: Unterscheidung der Teilsysteme mit farblicher Kennzeichnung

Farbe	Teilsystem
rot	Motor
Gelb	Aktuator
Hellblau	Sensoren
Violett	Steuerungselektronik
Grün	Bildschirm
Hellgrau	Sonstiges
Weiß	Licht
Orange	Verteiler

Abbildung 18 zeigt die Lage von 47 verschiedenen Komponenten einer Großraumlimousine, die separiert wurden.

Abbildung 18: Komponentenlage im Fahrzeug des Segments Großraumlimousine in der Auf- und Seitenansicht

Die Fahrzeuge wurden in folgende Bereiche gegliedert:

- Front mit Motorraum, umliegende Anbauteile der Karosserie und vorderes Fahrwerk,
- Innenraum,
- Heck mit Kofferraum, Anbauteile der Karosserie und hinteres Fahrwerk.

Die Verteilung von Menge und Masse der Komponenten der "30er-Liste" und der zusätzlichen Komponenten auf Fahrzeugbereiche kann der Tabelle 71 entnommen werden. Die verschiedenen zusätzlichen Komponenten sind in Tabelle 72 genannt.

In der Front befinden sich 46 % der Komponenten mit einem Massenanteil von 66 %. Grund für den hohen Massenanteil sind große und schwere Komponenten, wie Anlasser, Lichtmaschine, Lüftermotor und Motor Servolenkung. Im Innenraum sind 45 % der Komponenten zu finden. Deren Massenanteil beträgt jedoch nur 29 %. Das sind leichte elektronische Komponenten, wie Steuerungen, kleine Elektromotoren, Bedienelemente oder Bildschirme. Im Heck befinden sich mit 9 % nur wenige Komponenten, die nur 5 % der Masse beinhalten. Das sind beispielsweise die Rückleuchten, Parksensoren, ein kleiner Scheibenwischermotor und Steuerungen.

Tabelle 71: Verteilung von Menge und Masse der Komponenten auf Fahrzeugbereiche der ausgewählten Segmente

Segment	Anzahl			Masse	[kg]	
	Front	Innen	Hinten	Front	In- nen	Hinten
Untere Mittelklasse	36	43	10	25	15	1
Untere Mittelklasse II	15	19	5	17	12	2
Kleinwagen	60	36	9	36	14	1
Obere Mittelklasse	28	38	8	18	10	3
Kleinstwagen / Mini	37	25	4	24	10	0
Geländew. Medium	59	48	6	43	19	0
Mini Van	43	35	7	29	13	0
Geländew. Groß	46	57	11	39	20	9
Hochdachkombi	30	17	7	24	7	0
Großraumlimousine	45	61	6	36	31	4
Geländew. Groß (Hybrid)	52	55	12	90	20	9
Anteil je Bereich	47%	45%	9%	65%	29%	5%

9.2 Zusätzlich separierte Komponenten

Zusätzlich wurden weitere 70 verschiedene Komponenten mit den Nrn. 42 bis 111 aus den verschiedenen Segmenten separiert (Tabelle 72). Die Zuordnung zu den Teilsystemen erfolgte wie in der in der "30er-Liste" (Tabelle 65) angewandten Systematik. Die Entscheidung zur zusätzlichen Entnahme erfolgte anhand folgender Überlegungen:

- Separation erfolgt mit geringem Aufwand,
- störenden Komponenten sind bereits entfernt,
- Zugewinn erfolgt bei der Zerlegung weitgehend parallel,
- die Komponenten besitzen mit den in der "30er-Liste" enthaltenen Komponenten vergleichbare Merkmale, wie beispielsweise Größe oder Gewicht.

Das Technik-Lexikon von Volkswagen (Technik-Lexikon o. J.) ist eine Quelle mit Beschreibungen von Zweck und Funktion von Komponenten und lässt möglicherweise auf Relevanz hinsichtlich kritischer Metalle oder die Lage im Fahrzeug schließen.

Soweit Kenntnisse erlaubten, wurde anhand einfacher Kriterien, die unter Anmerkungen genannt sind, eine Priorität für die Komponenten festgelegt. Für die meisten Sensoren wurde die Priorität jedoch offen gelassen, da eine Bewertung nicht sinnvoll ist.

Tabelle 72: Zusätzlich separierte Komponenten

Nr.	Komponente	Teilsys- tem	Priori- tät	Anmerkung
42	Dachfenstermotor	Motor	2	selten, wie Sitzverstellung
43	Schiebetürzuziehhilfe		1	groß, selten

Nr.	Komponente	Teilsys- tem	Priori- tät	Anmerkung
44	Gebläseregler, Stellmotoren		3	klein, selten
45	Gasdruckdämpfer		1	groß, selten, obere Segmente
46	Drosselklappe		3	klein
47	Elektrische Parkbremse		1	groß, selten, obere Segmente
48	Antriebsmotor Hybrid		1	groß, Hybrid
49	Kompressor Luftfahrwerk (elektrisch)		3	groß, Hybrid
50	Vakuumpumpe (elektrisch)		3	groß, Hybrid
51	Klimakompressor (elektrisch)		3	groß, Hybrid
52	Pumpe Scheinwerferwäscher		2	klein, eventuell Nd
53	Stellmotor Getriebe		2	mittel
54	Sitzbelüftung		2	klein
55	Zusatzwasserpumpe/Kühlmittelre- gelventil		2	klein, eventuell Nd
56	Anhängerzugvorrichtung		2	mittel
57	Klappenstellung Heizgebläse		2	klein
58	Kraftstoffpumpe Hybrid		1	groß, Hybrid
59	Sitzheizung		3	klein
60	Sekundärluftpumpe Hybrid		2	mittel, Hybrid
61	Anzeige Beifahrerfunktion Airbag	Bild-	3	klein
62	Uhr	schirm	3	klein
63	Gateway Diagnoseinterface		1	groß, Leiterplatte
64	Front-/Rückfahrkamera mit Steuer- gerät		1	groß, Leiterplatte
65	Anhängerzugvorrichtung Anschlussgerät		1	groß, Leiterplatte
66	DCDC Wandler		2	mittel, Leiterplatte
67	Komfortsteuergerät		1	groß, Leiterplatte
68	Interface Box Bluetooth Freisprech- einrichtung		2	mittel, selten
69	TEMIX		2	selten, klein, Leiterplatte
70	Verstärker Radio		2	mittel, Leiterplatte
71	Steuergerät elektrische Schiebetür		1	groß, Leiterplatte
72	Parkhilfe	onik	1	groß, selten, Leiterplatte
73	Sitzheizung	Steuerungselektronik	3	klein, Leiterplatte
74	Türsteuergerät		2	mittel, selten
75	Telefon		2	mittel, selten
76	Lüftersteuergerät		2	klein, Leiterplatte

Nr.	Komponente	Teilsys- tem	Priori- tät	Anmerkung
77	Leuchtweitenregelung		2	mittel, Leiterplatte
78	Standheizung		3	klein, selten, Leiterplatte
79	Tanksteuergerät		3	klein, Leiterplatte
80	Heckklappenöffnung		3	klein, Leiterplatte
81	Kamera Verkehrszeichenerkennung		3	klein, selten
82	Infotainment		1	groß, Leiterplatte
83	CD-Wechsler		1	groß, Leiterplatte
84	TV-Tuner		1	groß, Leiterplatte
85	Radio Steuergerät		1	groß, Leiterplatte
86	Radio		1	groß, Leiterplatte
87	Kennzeichenbeleuchtung	Licht	3	LED, klein
88	Fußraumbeleuchtung		3	LED, klein
89	ESP-Mehrfachsensor	Sensoren	3	klein
90	Sensor Regen- und Feuchtigkeit.JPG		3	klein
91	Beschleunigungssensor		3	klein
92	Luftmassenmesser		3	klein
93	elektronisches Gaspedal		3	mittel, Leiterplatte, ggf. Gold
94	Wegstrecke		3	klein
95	Drucksensor Saugrohrdruckfühler		3	klein
96	Achssensor		3	klein
97	Einparkhilfe Sensoren		3	klein
98	Keyles Entry Antenne		3	klein
99	Kühlwassertemperaturgeber		3	klein
100	Unterdrucksensor		3	klein
101	elektrische Gepäckraumklappe		3	mittel
106	Sitzschalter	Sonstiges	3	klein
107	Schalter Armaturenbrett		3	klein
108	Türschalter		3	klein
109	Zündanlasstaster		3	klein
102	Magnetventil	Aktuator	3	klein, eventuell Nd
103	Druckwandler		3	klein
104	Zündschloss mit Schlüssel		3	klein
105	elektronische Kupplung		1	groß, Hybrid
110	Kabelbaum	Kabel	1	Kupfer, Stecker
111	Start/Stop	Steue- rung	2	klein, Leiterplatte

9.3 Werkzeuge und Methoden bei der Separation

Das Ziel war zu ermitteln, mit welcher Methode und mit welchen Werkzeugen am effektivsten die Verbindungen zwischen Komponenten und tragenden Elementen getrennt werden können. Eine schnelle zerstörende Trennung von Verbindungen durch Brechen, Schneiden, Reißen oder Zerschlagen mit beispielweise Hebel, Brechstange, Montiereisen, Türverkleidungshebel, Hammer, Seitenschneider oder Messer wurde als die vorteilhafteste Methode erwartet.

Im Ergebnis stellte sich heraus, dass:

- harte geschraubten Verbindungen mit Druckluftschrauber und Torx- oder Nuss- Schraubendreher bzw. genietete Verbindungen mit Hammer und Meißel am schnellsten trennbar sind.
- zum Ansetzen von groben Werkzeugen häufig nicht ausreichend Platz vorhanden ist, z.B. keine Lücke zwischen Airbagsteuerung und Mittelkanal zum Ansetzen eines Hebels,
- elastische tragende Elemente (Kunststoff, dünnes Blech) den Einsatz eines Hebels nicht wirksam zulassen,
- softe Verbindungen (Kunststoff, Gummi, Kabel, Schläuche, Schnappverschlüsse, Binder) häufig durch Hebeln, Brechen, Reißen oder Schneiden schnell getrennt werden können.

Bei der Feststellung, dass das Schrauben eine sehr schnelle Methode zum Lösen der geschraubten Verbindungen ist, muss aber die Besonderheit beachtet werden, dass die Untersuchungen an jungen Altfahrzeugen ohne Korrosion oder sonstige Art einer Verfestigung von Verbindungen aufgrund beispielsweise Alter oder Verschmutzung erfolgte.

9.4 Beispiel des Ablaufs und der Vorgänge einer Zerlegung

Die Dokumentation der Zerlegung erfolgte anhand des im Kapitel 8.5.2 vorgestellten Protokolls. Auf Grundlage der Aufzeichnungen werden der gesamte Ablauf, einzelne Vorgänge, besondere Beobachtungen und der Zeitaufwand nachvollziehbar. Soweit zur Bewertung der Zerlegung zweckmäßig, werden Angaben zu Werkzeugen, Zerstörungsgrad, Zugänglichkeit oder sonstigen Erschwernissen und Zusatzaufwand gemacht.

Im Folgenden wird anhand des Fahrzeuges des Segmentes Großraumlimousine beispielhaft der Ablauf der Separation beschrieben.

Tabelle 73: Informationen aus der Zerlegung eines Fahrzeuges (Beispiel Großraumlimousine) gemäß Zerlegeplan und Protokoll (Zerlegekonzept, Kapitel 8)

Vorgehen bei der Zerlegung

14) Vom Spiegel der Fahrertür wird mit einem Schraubendreher als Hebel das Glas zerstörungsfrei entfernt. Die Spiegeljustierung aus Kunststoff enthält zwei sehr kleine Motoren, die zusammen mit einem Schraubendreher als Hebel separiert werden.

Die Tür-Verkleidung wird mit Hilfe von Türverkleidungshebel und Montiereisen durch hebeln, brechen und reißen entfernt.

Abbildungen von Komponenten und Lage

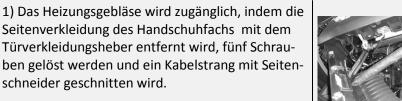
Vorgehen bei der Zerlegung

- 13) Der im Türinneren befindliche Fensterhebermotor wird abgeschraubt, indem drei leicht zugängliche Schrauben entfernt werden. Die Kabelverbindungen werden mit einem Seitenschneider durchtrennt.
- 5) Ein kleiner Lautsprecher im Türgriff wird mit einem Schraubendreher herausgehebelt.
- 6) Der Türverschluss/-öffner ist nach dem Entfernen eines gesteckten Kunststoffdeckels mit einem Tür-Verkleidungsheber zugänglich. Zwei Schrauben werden mit einem Druckluftschrauber entfernt und Kabel mit Seitenschneider geschnitten.

15/16/25) Das Navigationssystem, das Kombiinstrument mit LCD-Bildschirm und die Klimabetätigung werden durch Hebeln mit einem Türverkleidungsheber und Brechen von Befestigungselementen gelöst, Kabelstränge werden mit dem Seitenschneider geschnitten.

- 1) Das Heizungsgebläse wird zugänglich, indem die Seitenverkleidung des Handschuhfachs mit dem Türverkleidungsheber entfernt wird, fünf Schrauben gelöst werden und ein Kabelstrang mit Seiten-
- 39) Am Luftkanal im Bereich des Armaturenbrettes befindet sich ein Klimasensor, der gesteckt ist und abgezogen wird.

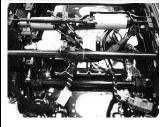
Abbildungen von Komponenten und Lage



Vorgehen bei der Zerlegung

- 26) Die Airbagsteuerung befindet sich auf der Mittelkonsole unterhalb des Armaturenbrettes. Auf der linken Seite wird die Verkleidung entfernt. Dann werden drei Schrauben gelöst und der Stecker gezogen.
- 28) Eine Interfacebox unterhalb des Fahrersitzes wird separiert. Diese ist mit einem Klettverschluss auf dem Boden befestigt und kann leicht abgerissen werden.
- 28) Das Bordnetzsteuergerät befindet sich hinter dem Knieschutz links unten neben der Lenksäule und wird mit einem Tür-Verkleidungsheber gebrochen und entnommen. An dieser Stelle befinden sich auch Relais und das Temix-Steuergerät.
- 9) Die elektrische Sitzverstellung für die Sitzfläche und Rückenlehne wird durch das Lösen des Sitzes zugänglich gemacht.
- 8) An der Heckklappe wird die Verkleidung durch schrauben, hebeln und reißen entfernt. Der Heckklappenschließmechanismus wird abgeschraubt. Der Kabelbaum wird entnommen.
- 38) An der B-Säule im Inneren wird durch Entfernen der Verkleidung mit hebeln und reißen ein Airbagsensor freigelegt. Eine Schraube wird entfernt.

Abbildungen von Komponenten und Lage



Vorgehen bei der Zerlegung

Von der Front werden Räder, Radhausschalen, Stoßfänger, Schlossträger und Kühlergrill entfernt. 30/4) Scheinwerfer und Lüfterzarge mit Lüftermotor werden separiert.

7/3/33/34/35) Viele Komponenten des Motors werden frei zugänglich gemacht – z.B. Lichtmaschine, Anlasser, Sauerstoff-, Nockenwellen-, Kurbelwellensensoren.

19/20/40/41) Motor- und Getriebesteuergerät, Einspritzeinheit, Zünd- oder Glühkerzen sind von oben leicht zugänglich nachdem Motorabdeckung, Luftfilterkasten, Luft-, Kraftstoff- der andere Leitungen und Kabel entfernt wurden.

12) Der Scheibenwischermotor vorn wird separiert, nachdem die Wischerarme, die Wasserkastenabdeckung und das Wasserkastenabschlussblech entfernt wurden. Es werden Schrauben gelöst und der Wischermotor mit Wischergestänge wird entnommen.

21) Das ABS-Modul mit der Fahrtsteuerung befindet sich neben dem Getriebe. Nach Demontage von Motor und Getriebe ist der Zugang zur Separation möglich. Das Steuergerät wird vom Hydromodul abgeschraubt.

10) Die Kraftstoffpumpe wird zugänglich, indem die Rücksitzbank und ein Kunststoffdeckel auf dem Karosserieboden entfernt werden. Die Pumpe wird durch Entfernen einer Verschraubung gelöst und entnommen.

Abbildungen von Komponenten und Lage

9.5 Zeit zum Separieren von Komponenten

Um Komponenten zu separieren, ist häufig zuerst das Entfernen von störenden Komponenten erforderlich. Bei günstiger räumlicher Lage kann dabei der Zugang zu verschiedenen Komponenten erreicht werden. Die vollständigen Daten aus der Zerlegung der Altfahrzeuge befinden sich im Anhang. Aufgrund einer "idealen" Situation bei der Zerlegung (bekannte Modelle, hochqualifizierter Mechaniker, Fahrzeuge ohne erschwerten Zerlegeaufwand) wurde in Expertengesprächen entschieden, die gemessene Zerlegezeit mit einem Faktor von 1,5 zu erhöhen. Im Bericht sind die um den Faktor von 1,5 erhöhten Werte ausgewiesen.

In Tabelle 74 ist die Zeit der Separation von Komponenten dargestellt, ohne dass das Entfernen von störenden Komponenten angerechnet wird. In Klammern ist die Anzahl n der Sauerstoffsensoren für das jeweilige Fahrzeugsegment angegeben. Für das Segment Obere Mittelklasse fehlen die Angaben zu Anbauteilen des Motors.

Tabelle 74: Zeit der Separation [min] am Beispiel einiger Komponenten (ohne störende Komponenten)

Fahrzeugsegment	Mo- tor- steue- rung	Anlas- ser	Licht- ma- schine	Airbag- steue- rung	Sauerstoff- sensor (n) ³⁸	Heizungs- gebläse
Untere Mittelklasse	0,40	3,25	2,90	1,35	0,13 (1)	2,00
Untere Mittelklasse II	0,26	7,13	5,63	3,75	0,50 (1)	0,90
Kleinwagen	0,75	2,00	1,25	1,15	0,65 (2)	2,00
Obere Mittelklasse	-	-	-	4,60	0,50 (1)	-
Kleinstwagen	1,03	0,35	1,48	4,25	0,55 (2)	0,75
Geländew. medium	0,60	3,25	2,90	1,35	1,50 (4)	2,00
Mini Van	0,60	3,25	2,90	1,35	0,53 (3)	2,00
Geländew. groß	0,63	3,50	5,25	0,98	1,00 (4)	4,08
Hochdachkombi	0,75	3,00	2,35	1,15	0,60 (2)	0,35
Großraumlimousine	0,50	3,50	2,00	3,63	0,38 (1)	0,75
Geländew. groß (Hybrid)	-	-	-	0,98	1,00 (4)	4,08

Im Gegensatz dazu zeigt Tabelle 75 die Separationszeit unter Berücksichtigung von störenden Komponenten, die zu entfernen sind, bevor die elektronischen Komponenten separiert werden können. Es wurde die Festlegung getroffen, dass zum Freilegen der aufgeführten Komponenten die gesamte Zeit zum Entfernen störender Komponenten der Motorsteuerung zugerechnet wird. Eine Diskussion von Möglichkeiten zur Verteilung der Zeit auf mehrere 30er-Komp., beispielsweise Motorsteuerung und Anlasser/Lichtmaschine erfolgte nicht.

Tabelle 75: Zeit der Separation [min] für ausgewählte Komponenten (inkl. störende Komponenten)

Fahrzeugsegment	Motor- steue- rung	Anlas- ser	Licht- ma- schine	Airbag- steue- rung	Sauerstoff- sensor (n)	Hei- zungs- gebläse
U. Mittelklasse	11,70	3,25	2,90	2,05	0,13 (1)	2,65
U. Mittelklasse II	0,17	4,75	5,63	2,95	-	0,88
Kleinwagen	12,15	2,00	4,85	1,15	0,65 (2)	5,60
O. Mittelklasse	-	-	-	4,60	0,50 (1)	-
Kleinstwagen	19,93	0,35	1,48	19,25	0,55 (2)	3,00
Geländew. medium	16,05	3,75	2,90	2,05	1,50 (4)	2,65
Mini Van	16,05	4,45	2,90	2,05	1,20 (3)	2,65
Geländew. groß	17,60	3,50	5,25	0,98	1,00 (4)	4,08
Hochdachkombi	11,53	3,00	5,95	1,15	0,30 (2)	0,35

³⁸ Die angegebenen Werte stellen die aufsummierten Zeiten für die Separation sämtlicher Sauerstoffsensoren dar.

Fahrzeugsegment	Motor- steue- rung	Anlas- ser	Licht- ma- schine	Airbag- steue- rung	Sauerstoff- sensor (n)	Hei- zungs- gebläse
Großraumlimousine	20,43	3,50	5,25	4,33	2,75 (1)	5,45
Geländew. groß (Hybrid)	-	-	-	0,98	1,00 (4)	4,38

Die Gegenüberstellung der Situationen bezüglich Tabelle 74 und Tabelle 75 zeigt, dass die Separationszeit und damit vor allem die Wirtschaftlichkeit durch den Aufwand zum Freilegen negativ belastet werden kann und die Allokation der Zeit zum Freilegen das Ergebnis von einzelnen Komponenten beeinflusst.

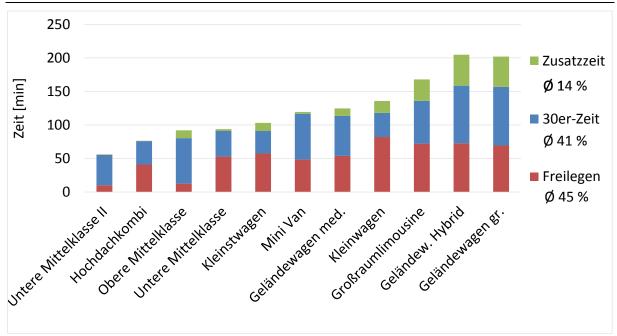
In Tabelle 76 wird beispielhaft ein Ausschnitt der Daten über den Ablauf der Separation einer Großraumlimousine gezeigt. Die Angaben in Spalten geben folgende Informationen wieder:

- Pos. Information über die Abfolge der Zerlegung
- Lage im Fahrzeug in den Bereichen Front, Hinten, Innen
- **Nr**. die Ziffer entsprechend der Nummerierung in der "30er-Liste" (Tabelle 65) oder in der Liste mit zusätzlich separierten Komponenten
- **Teilsystem** die Gruppierung gemäß Systematik der Bezeichnung der Elemente eines Autos (Abbildung 5). Im Fall, in dem die Datenzeile eine störende Komponente enthält, erfolgt kein Eintrag, z.B. bei Verkleidung.
- **Art** s = störend, z = zusätzlich, h = hybrid
- **Zeit** zum Separieren in einem Vorgang in Minuten

Tabelle 76: Ausschnitt des Zerlegevorgangs einer Großraumlimousine in der Reihenfolge der Ausführung und mit Zerlegezeit

Pos.	Lage	Nr.	Teilsystem	Komponente	Art	Zeit [min]
1	Front	14		Glas	S	0,08
2	Front	14	Motor	Spiegel	р	0,17
3	Front	14		Glas	S	0,08
4	Front	14	Motor	Spiegel	р	0,17
5	Innen	13		Verkleidung	s	0,72

Eine Zusammenfassung von Informationen, die aus Tabelle 76 gewonnen werden können, wird beispielhaft in Tabelle 77 für ein Fahrzeug des Segmentes Großraumlimousine gezeigt. Es werden insgesamt 54 30er-Komp., 29 zusätzliche und 29 störende Komponenten separiert. Die Zerlegezeit beträgt 1,87 Stunden. Dabei werden alle im Fahrzeug enthaltenen Stücke der Komponenten gemäß "30er-Liste" und der zusätzlich separierten Komponenten gewertet. Dieses Ergebnis zeigt beispielsweise, dass für das Entfernen störender Komponenten 43 % der Gesamtzeit eingesetzt wird.


Tabelle 77: Anzahl separierter Komponenten und Zerlegezeit bei einer Großraumlimousine

Art	Anzahl	Zeit [min/h]
-----	--------	--------------

30er-Komp.	54	42,48
Komp.Stören	29	48,16
Komp.Extra	29	21,33
Stück	112	
min h		112 1,87

Die Relation der Separationszeit von ORKAM-Komponenten, zusätzlichen Komponenten und der Zeit zum Ausbau von störenden Komponenten der verschiedenen Segmente zeigt Abbildung 19.

Abbildung 19: Separationszeiten (Freilegen, Separation 30er- und Zusatzkomponenten) nach Altfahrzeugen

Demnach wird zum Freilegen von Komponenten der "30er-Liste" über alle Segmente im Mittel 45 % der Gesamtzeit aufgewendet. Für die Separation der Komponenten der "30er-Liste" wird 41 % der Zeit aufgewendet. Für zusätzliche Komponenten wird 14 % der Zeit am Fahrzeug aufgewendet. Das bedeutet, dass ein beträchtlicher Teil des Aufwandes im Hinblick auf die Separation der Zielkomponenten unproduktiv verwendet wird. Zusätzliche Komponenten zu separieren, bedarf relativ wenig Aufwand, wie bei der Planung der Zerlegung beabsichtigt wurde. Das Verringern der Zeit zum Entfernen störender Komponenten, beispielsweise durch modulare Bauweise oder zerstörende Methoden, kann einen wichtigen Beitrag zur Verbesserung der Wirtschaftlichkeit leisten.

9.6 Ergebnisse des Separationsversuchs

Die Ergebnisse der in Kapitel 9.4 beispielhaft beschriebenen Separation werden in Tabelle 78 für die Separation von Komponenten aus allen elf betrachteten jungen Altfahrzeugen zusammengefasst. Anzahl, Zeit und Masse der separierten Komponenten werden jeweils für die 30er-Komponenten, zusätzlich separierte Komponenten und störende Komponenten angegeben. Weiterhin sind die insgesamt benötigte Zerlegezeit sowie die Gesamtmasse separierter Zielkomponenten (30er und zusätzliche Komponenten) erkennbar.

Tabelle 78: Summe der Anzahl, Separationszeit und Masse der Komponenten je Segment

Fahrzeugsegment	3	0er-Kom _l	p.	zu	sätzl. Kor	np. (E)		irende mp. (S)		Komp. + Komp.	∑ Zerl	egezeit	∑ Ge- wichte	Hy	/brid
	N ₃₀	T ₃₀ [min]	M ₃₀ [kg]	N _E	T _E [min]	M _E [kg]	Ns	T _s [min]	N ₃₀ +N _E	T ₃₀ +T _E [min]	T ₃₀ +T _E +T _S [min]	T ₃₀ +T _E +T _S [h]	M _{30+E} [kg]	N _н	T _H [min]
Untere Mittelklasse	57	38,15	38,15	1	2,73	2,73	31	52,88	58	40,88	93,75	1,56	40,88		
Untere Mittelklasse	26	45,37	29,77	2	0,86	0,90	11	10,02	28	46,22	56,24	0,94	30,67		
Kleinwagen	50	37,51	46,36	23	17,72	10,28	32	68,53	73	55,23	123,75	2,06	56,65		
Obere Mittelklasse	39	67,95	26,77	31	11,56	4,63	4	12,50	70	79,50	92,00	1,53	31,40		
Kleinstwagen	37	33,54	26,05	11	11,97	8,51	18	57,55	48	45,52	103,07	1,72	34,56		
Geländew. medium	60	59,44	59,67	24	11,33	2,88	29	53,98	84	70,76	124,74	2,08	62,55		
Mini Van	52	68,53	39,08	5	2,63	3,48	28	48,33	57	71,15	119,48	1,99	42,56		
Geländewagen groß	73	87,45	46,66	16	45,03	20,89	26	74,07	89	132,48	206,55	3,44	67,55		
Hochdachkombi	33	34,27	26,85	2	0,48	4,62	19	41,10	35	34,74	75,84	1,26	31,47		
Großraumlimou- sine	54	63,73	41,62	29	32,00	26,53	29	72,25	83	95,73	167,97	2,80	68,15		
Geländewagen groß (Hybrid)	70	86,00	46,08	18	46,08	20,73	26	72,62	88	132,08	204,70	3,41	66,81	5	12,33

9.7 Einflussfaktoren auf Aufwand und Wirtschaftlichkeit der Separation

Basierend auf Erfahrungen aus dem eigenen Demontagebetrieb und den durchgeführten Studien der Separation wurden wichtige Einflussfaktoren abgeleitet, die Auswirkung auf die Wirtschaftlichkeit haben. Fahrzeugbezogene Faktoren, die Einfluss auf den Aufwand der Separation nehmen, sind

1. Konstruktive Merkmale der Fahrzeuge

- Leichte und schnelle Zugänglichkeit durch ausreichenden Raum zur Bewegung und Handhabung von Werkzeugen
- Anzahl und Art störender Komponenten
- Standardisierung von Verbindungen, Einsatz weniger verschiedenartiger Werkzeuge und Arbeitsmethoden
- Trennen von Verbindungen durch Anwendung zerstörender Methoden

2. Räumliche Lage von Komponenten

• mit Entfernen störender Komponenten werden mehrere 30er-Komp. freigelegt (Synergieeffekte)

Beispielsweise wird durch das Entfernen von Teilen der Front (Radhausschalen, Stoßstange, Schlossträger) der Zugang zu sämtlichen Komponenten im Motorraum erleichtert bzw. möglich gemacht.

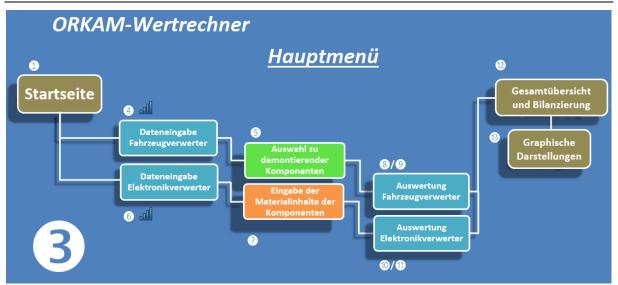
3. Orientierung im Fahrzeug

- Qualifikation und Erfahrungen der Mitarbeiter
- Kenntnis über Existenz, Lage und am besten geeignete Methode zur Zerlegung
- Zweckmäßigkeit von Informationsquellen über Existenz und Lage von Komponenten

In Demontagebetrieben werden die verschiedensten Fahrzeugmodelle, Typen oder Baujahre zerlegt. Eine Orientierungszeit wird daher nicht vermeidbar sein.

4. Fahrzeugalter

- Korrosion, Verfestigung von Verbindungen durch Verschmutzung und Alterung
- Erschwerte Lösbarkeit wird nach langer Nutzungsdauer bei vielen geschraubten Verbindungen auftreten.


Beispielsweise wurden durchschnittlich 31 Sekunden für die Separation von Lambdasonden durch Herausschrauben bei Zugang ohne störende Komponenten bei den neuwertigen Altfahrzeugen benötigt. Bei einem Altfahrzeug im Alter von beispielsweise über 15 Jahren wird eine höhere Zerlegezeit auftreten, denn Lambdasonden sind durch starke Korrosion im Abgaskrümmer i.d.R. alleine durch Herausschrauben nur mit deutlich höherem Zeitaufwand separierbar oder nicht mehr schraubbar. Beispielsweise wird dann mit einer Flex ein Stück des Krümmers ausgeschnitten.

10 Entwicklung eines Werterechners zur Wirtschaftlichkeitsbetrachtung

Im Projekt wurde ein Werterechner entwickelt, mit dem die Wirtschaftlichkeit der Separation relevanter Fahrzeugkomponenten bei bekannten Marktpreisen für kritische Metalle bestimmt werden kann. Im **Anhang (Kapitel 15.2)** werden die Anwendung und die einzelnen Programmseiten im Detail beschrieben.

Das Hauptmenü (Programmseite 3) des Wertrechners (Abbildung 20) ist die zentrale Seite zum Einstieg in die Benutzung des Programms. Es enthält die verschiedenen Ebenen des Programms und ermöglicht einen direkten Zugriff auf fast jeden Bereich der Softwareumgebung.

Abbildung 20: Hauptmenü des ORKAM-Wertrechners

Die Funktion der Programmseiten 4 bis 7 besteht in der Eingabe und Definition von Werten und Daten zum Demontage- bzw. Recyclingprozess. Die Programmseiten 8 bis 11 geben Auswertungen zu den Ergebnissen der Berechnungen, spezifiziert auf den Fahrzeug- bzw. Elektronikverwerter, wieder. Die Seiten 12 bis 20 dienen der übersichtlichen Darstellung der Ergebnisse sowie der Bestimmung der Wirtschaftlichkeit des Gesamtprozesses und seiner einzelnen Prozess-Phasen.

11 Zerlegung von Komponenten und Wirtschaftlichkeitsbetrachtung

Den Wertstoffgehalt und somit grundsätzlich auch den ökonomischen Wert der separierten Komponenten für das Recycling beeinflussen besonders die enthaltenen funktionalen Einheiten (z.B. Magnete in Motoren, Leiterplatten in Steuergeräten, daneben auch Gehäuse, Stecker etc.).

In den Recherchen im Projektverlauf stellte sich heraus, dass die Literaturangaben lediglich pauschale Abschätzungen über die Massen von den Wertstoffen pro Komponente ermöglichten und Wirtschaftlichkeitsbetrachtungen daher auch nur sehr einfache Schätzungen ergeben würden. Außerdem zeigte sich, dass die einzelnen Komponenten hinsichtlich ihrer Gehalte an kritischen Metallen und weiteren Wertfraktionen in Abhängigkeit von dem konkreten Bauteiltyp (z.B. Motorsteuerung \neq Airbagsteuerung) einer starken Variabilität unterliegen.

Deshalb wurden in weiteren Versuchen die relevantesten Komponenten der "30er-Liste" und auch weitere zusätzlich separierte Komponenten aus den Kategorien Motoren, Steuergeräte, Bildschirme, Licht, Verteiler und Sensoren weiter in die Wertstoff-Fraktionen zerlegt, um Informationen über die Wertstoffgehalte zu gewinnen, die eine genauere Aussage über die mögliche Vergütung ermöglichen.

Die Zerlegeergebnisse sowie die daraus ableitbare Wirtschaftlichkeitsbetrachtung werden im Folgenden dargestellt.

11.1 Vorgehensweise

11.1.1 Auswahl der Komponenten zur Zerlegung

Die Auswahl der Komponenten erfolgte auf Grundlage bisheriger Rechercheergebnisse hinsichtlich Informationsmangel und Gewinnbarkeit von zusätzlichen Daten über Gehalte an relevanten kritischen und umweltrelevanten Metallen, siehe Tabelle 79.

Hinzu kommen zusätzliche einzelne Komponenten – Inverter des Hybridfahrzeugs, Infotainment-Steuergerät, Steuerung Lenkung, Abstandsradar – die nur in wenigen Fahrzeugen enthalten sind, jedoch in der Literatur als besonders relevant beschrieben werden.

Insgesamt wurden 131 Komponenten zerlegt, so dass meist die gleichen Komponenten aus je drei bis sechs Altfahrzeugen zerlegt wurden.

Tabelle 79: Begründete Auswahl der weiter zu zerlegenden Komponenten

Lfd. Nr.	Grup- pe	Komponente	Aus- wahl	Erläuterung	Anzahl
1	_	Heizungsgebläse	Ja	Mittelgroßer Motor, Kupfergehalt	6
2	utsprechei	Lenkung Servomotor	Ja	leistungsstarker Motor, Kupfer-, Alumini- umgehalt, Neodym	4
3	Lauts	Anlasser	Ja	Kupfer-, Aluminiumgehalt	5
4	otoren, l	Lüftermotor	Ja	Mittelgroßer Motor, Kupfer-, Aluminium- gehalt	2
5	Mod	Lautsprecher	Ja	Neodym	3

Lfd. Nr.	Grup- pe	Komponente	Aus- wahl	Erläuterung	Anzahl
6		Türverschluss	Ja	Motor klein und leistungsstark, hoher Kunststoffanteil	3
7		Lichtmaschine	Ja	Kupfer-, Aluminiumgehalt	5
8		Heckklappenschließmo- tor	-	ähnlich Türverschluss	-
9		Sitzverstellung	Ja	kleine leistungsstarke Motoren, Kupfer- gehalt, Neodym	9
10		Kraftstoffpumpe	-	sehr kleiner Motor	-
11		Pumpe Scheibenwä- scher	-	sehr kleiner Motor	-
12		Scheibenwischermotor	Ja	Mittelgroßer leistungsstarker Motor, Kup- fergehalt, Neodym	4
13		Scheibenheber	Ja	kleiner leistungsstarker Motor, Kupfer-, Eisengehalt	4
14		Spiegeljustierung	-	sehr kleiner Motor, Kupfergehalt, Neodym	-
15	u u	Navigationssystem	Ja	"Anzeige- und Bedieneinheit" als "TOP 6"- Bauteil in [Schmid 2014], Leiterplatten, Bildschirmgröße	6
16	Bildschirme	Kombiinstrument	Ja	Leiterplatten, Bildschirmgröße, Kunststoff- anteil	6
17	Bild	Multifunktionsanzeige	-	-	-
18		Inverter	Ja	zunehmende Relevanz Hybridfahrz., Lei- terplatten, Kupfer- und Aluminiumgehalt	1
19		Motorsteuerung	Ja	Leiterplatte, Gehäusematerial	6
20		Getriebesteuerung	Ja	Leiterplatte, Gehäusematerial	3
21		Fahrtsteuerung	Ja	mittelgroßer Motor, Kupfer-, Aluminium- gehalt	6
22		Fahrwerksteuerung	Ja	Leiterplatte, Gehäusematerial, selten, nur 1x angetroffen	2
23		Lenkungssteuerung	Ja	Leiterplatte, Gehäusematerial, jedoch selten	1
24		Steuergerät Alarm/Diebstahl	Ja	1x angetroffen, klein	1
25		Klimasteuerung	Ja	Leiterplatte, Gehalt werthaltiger Materia- lien	6
26		Airbagsteuerung	Ja	"TOP 6"-Bauteil in [Schmid 2014]	6
83- 85		CD-Wechsler, TV-Tu- ner, Radiosteuerung	Ja	Leiterplatte, Gehäusematerial, Kupfer-, Aluminiumgehalt, Neodym	3
67	p 0	Komfortsteuergerät	Ja	Leiterplatte	1
82	luni	Infotainment	Ja	"TOP 6"-Bauteil in [Schmid 2014]	2
111	Steuerung	Start/ Stopp Motor		Gehäusematerial, Leiterplatte	2

Lfd. Nr.	Grup- pe	Komponente	Aus- wahl	Erläuterung	Anzahl
27	ŗ	Smarte Verteilerboxen	Ja	Leiterplatte, Kunststoffgehalt	7
28	Verteiler	Passive Verteilerboxen	Ja	Kupfer-, Kunststoffgehalt	2
29		Leuchte hinten	Ja	Gehalt werthaltiger Materialien, LED	6
30	t	Kombileuchte vorn	Ja	Gehalt werthaltiger Materialien, LED	4
31	Licht	Blinker	-	Gehalt werthaltiger Materialien, LED	0
32		ABS-/Raddreh- zahlsensor	Ja	Kunststoffanteil hoch, Metalle nicht identi- fizierbar	0
33		Nockenwellensensor	-	Differenzierung der Metalle nur im Labor möglich	0
34		Kurbelwellensensor	-	Differenzierung der Metalle nur im Labor möglich	0
35		Sauerstoffsensor	-	Differenzierung der Metalle nur im Labor möglich	0
36		Side Assist	Ja	Kupfer, Aluminium, Leiterplatten	1
37		Ultraschall, Nahdistanz- radar	Ja	Kupfer, Aluminium, Leiterplatten	2
38	en	Airbagsensor	Ja	Hoher Kunststoffanteil, Metalle nicht be- kannt	0
39	Sensoren	Klimasensor	Ja	Hoher Kunststoffanteil, Metalle nicht be- kannt	0
40		Zündkerze		Trennung Pt-Spitze möglich	
41	Aktua- toren	Einspritzeinheit	-	Differenzierung der Metalle nur im Labor möglich	

11.1.2 Vorgehen bei der Komponentenzerlegung

1. Manuelle Zerlegung von Komponenten und Bauteilen, so dass das Sortieren in die Materialfraktionen Leiterplatten, Kupfer, Eisen/Eisenmagnete, Aluminium, Messing, Neodym, Kunststoff, Gummi und Displays ermöglicht wurde. Abbildung 21 und Abbildung 22 zeigen beispielhaft die Tiefe der Zerlegung für den Servomotor eines Kleinwagens und das Navigationsgerät eines Mini Vans.

Abbildung 21: Servomotor - Kleinwagen

Abbildung 22: Navigationsgerät - Mini Van

- 2. Motorwicklungen, Spulen oder Kupferdrähte wurden separiert, Leiterbahnen von Anhaftungen befreit, wenn eine signifikante Kupfermasse erkannt wurde. Bei Motoren wurden teils einzelne Wicklungen separiert und gewogen und anschließend auf das Gesamtgewicht von Kupfer von mehreren Wicklungen hochgerechnet.
- 3. Kleinste elektronische Bauteile, die nur einzeln und mit nicht messbarer Masse vorgefunden wurden, wie sehr kleine Spulen oder Motoren, wurden aussortiert.
- 4. Neodym-Magnete wurden von Motorläufern getrennt bzw. von anderen Materialien befreit.
- 5. Kunststoffe wurden von enthaltenen Metallen, wie beispielsweise Schrauben, befreit.
- 6. Die Zerlegung erfolgte teilweise zerstörend, beispielsweise mit Hammer, Meißel oder Flex, so dass die verbleibende Masse durch wegfliegende Teile oder Partikel verringert wurde. Sehr kleine Bruchstücke und Splitter wurden nicht eingesammelt.
- 7. Das Wiegen erfolgte mit einer Präzessionswage oder mit einer elektronischen Briefwage. Letztere hat Massen ab 3 g Gewicht angegeben.
- 8. Dokumentiert wurden Daten über Bauteile, identifizierte Materialien und deren Masse.

11.1.3 Wirtschaftlichkeitsbetrachtung

Die Wirtschaftlichkeitsbetrachtung wird auf zwei Ebenen durchgeführt:

- zum einen die Wirtschaftlichkeit der Separation der Komponenten aus Sicht des Altfahrzeugverwerters (E/A (B) ATF) und
- zum anderen die Gesamtwirtschaftlichkeit der Separation und Verwertung der Komponenten für Altfahrzeug- und Elektroaltgeräteverwerter insgesamt (E/A (B) Ges.).

Für beide Betrachtungsweisen werden der Aufwand und die möglichen Erlöse bestimmt. Für die Kostenfaktoren wurden vom Projektteam beispielhafte, realitätsnahe Werte festgelegt. In Tabelle 80 sind die der Aufwand und die Erlöse getrennt nach Altfahrzeug- und Elektroverwerter sowie die Wirtschaftlichkeitsberechnung dargestellt. Die textlichen Erläuterungen finden sich nachfolgend.

Tabelle 80: Aufwand, Erlöse und Wirtschaftlichkeitsbetrachtung des Altfahrzeug- und Elektroverwerters

	Altfahrzeugverwerter/ Demontagel trieb	be- Elektroverwerter/ Elektroaltgerätebe- handler
Aufwand/ Kosten	 Separationskosten: Separationszeit (mit/ohne Störk ponenten) × Werkstattkosten 35 € Logistikkosten 30 € 	Behandlungskosten200 €/t /h
Erlöse	Komponentenerlöse Anlasser/ Lichtmaschine 0,59 €/kg E-Motor/Servomotor 0,37 €/kg Steuergeräte Aluminium 1,27 €/kg Steuergeräte Kunststoff 1,04 €/kg Fahrtsteuerung 0,70 €/kg Inverter 0,90 €/kg Radio, Navigationsgerät, Multimedia 0,26 €/kg Lambdasonden 6,50 €/kg	 Eisen/Stahl 0,13 €/kg Aluminium 0,85 €/kg Kupfer 4,20 €/kg Kunststoff 0,40 €/kg Messing 3,00 €/kg Behelfsgröße Metallpreise (Börse) Neodym 69,36 €/kg Recyclingquote 80 %
Wirtschaft- lichkeits- betrach- tung	Wirtschaftlichkeitsberechnung für Afahrzeugverwerter Verhältnis E/A ATF = Komponentenerlöse / (Separations- + Logistikkos Altfahrzeugverwerter) Verhältnis E/A (B) ATF: "Brutto". Separationskosten inkl. Entfonung von Störkomponenten Verhältnis E/A (N) ATF: "Netto". Separationskosten bei freier Zugang zur Komponente	(Altfahrzeug- und Elektroverwerter) Verhältnis E/A Gesamt = Material- /Großhandelserlöse ten / (Separations- + Logistikkos- ten Altfahrzeugverwerter + Prozess- + Logistikkosten Elektroverwer ter) Verhältnis E/A (B) Gesamt: "Brutto" Separationskosten inkl. Entfer nung von Störkomponenten Verhältnis E/A (N) Gesamt: "Netto".

Aufwand/ Kosten

Der Aufwand wird wie folgt berechnet:

- Für den Altfahrzeugverwerter: Werkstattkosten (Lohnkosten) von 35 €/h multipliziert mit den Separationszeiten (Separationskosten) sowie Logistikkosten von 30 €/t³9
- Für die Gesamtbetrachtung: Aufwand des Altfahrzeugverwerters ergänzt um die Prozesskosten zur Behandlung der Elektronikkomponenten (200 €/t) sowie Logistikkosten des Elektroverwerters (30 €/t).

Dem Aufwand zum direkten Separieren wird der zusätzliche Aufwand zum Beseitigen von störenden Komponenten zugeschlagen. Der Zuschlag bei mehreren Komponenten erfolgt entsprechend der Vorgehensweise für Komponenten im Motorraum. Der gesamte zusätzliche Aufwand für Komponenten im Motorraum wird proportional zur Masse der einzelnen Komponenten aufgeteilt und den einzelnen Komponenten zugeschlagen.

Erlös

Der Erlös wird wie folgt berechnet:

- Für den Altfahrzeugverwerter: Komponentenerlöse, siehe Tabelle 81 (rechte Spalte).
- Für die Gesamtbetrachtung: Materialerlöse des Elektroverwerters, siehe Tabelle 82. Bei der Wirtschaftlichkeitsbetrachtung wird, basierend auf Erfahrungswerten, eine Rückgewinnungsrate des Elektroverwerters von 80 % angenommen.

Der Erlös des Altfahrzeugverwerters ergibt sich aus einer bekannten pauschalen Vergütung für Komponenten am Markt (siehe Tabelle 81, rechte Spalte). Der Erlös des Elektroverwerters wird auf Basis der Vergütung für die erzeugten Materialfraktionen ermittelt, siehe Tabelle 82. In Einzelfällen, in denen keine Preise für das Metall verfügbar sind, wird mit Börsenpreisen gerechnet, beispielsweise für Neodym und Seltene Erden, siehe Tabelle 83.

Erlös-zu-Aufwand-Verhältnis E/A (B) und E/A (N)

Als Kennzahl für die Wirtschaftlichkeit wird das Verhältnis von Erlös zu Aufwand (E/A) netto oder brutto gebildet.

- E/A (N): Der Netto-Aufwand beinhaltet die Separation ohne das Zuschlagen von Anteilen der Zeit zum Entfernen störender Komponenten.
- E/A (B): Der Brutto-Aufwand schließt den Zuschlag von Anteilen der Zeit zum Entfernen störender Komponenten ein.

Das E/A-Verhältnis wird sowohl für den Altfahrzeugverwerter (E/A ATF 40) als auch insgesamt (E/A Gesamt) gebildet. Für E/A ATF wird der Erlös aus dem Verkauf der Komponente zum Komponentenpreis angesetzt. Für E/A-Gesamt wird das Verhältnis von Materialerlös zum Brutto-Aufwand des Auto- und Elektroverwerters gebildet. Sobald das Verhältnis E/A > 1 ist, werden positive Erlöse erzielt.

11.2 Komponenten- und Materialpreise für die Erlösberechnung

11.2.1 Komponentenpreise

Inzwischen hat sich ein Markt für einige elektrische Komponenten und Fraktionen aus Altfahrzeugen gebildet und es erfolgt eine positive Vergütung durch Verwerter für Elektroaltgeräte (Callparts 2014). Lambdasonden werden beispielsweise von Katalysatorenverwertern abge-

³⁹ Bei den Logistikkosten handelt es sich um die externen Transportkosten der separierten Komponenten vom Altfahrzeugverwerter zum Elektroverwerter. Der angesetzte Wert von 30 €/t setzt eine vollständig gefüllte LKW-Ladung mit ca. 10 Tonnen Transportgewicht voraus.

⁴⁰ ATF = Authorized treatment facility = anerkannter Altfahrzeugdemontagebetrieb

nommen. Preisbeispiele zeigt Tabelle 81. Der Vergleich dieser Daten aus einem Jahr lässt erkennen, wie volatil die Preise sind. Pauschale langfristige Aussagen über die Wirtschaftlichkeit für Fahrzeugelektronik allgemein oder für bestimmte Komponenten sind daher risikobehaftet. Die in der rechten Spalte von Tabelle 81 genannten Daten werden in der Wirtschaftlichkeitsberechnung zugrunde gelegt. Für die Beleuchtungskomponenten wurde angenommen, dass sich hierfür noch keine Erlöse erzielen lassen.

Tabelle 81: Erlösbare Komponentenpreise [€/kg]

Komponente	April 2014	Oktober 2014
Anlasser/Lichtmaschine	0,65	0,59
E-Motoren	0,6	0,37
Steuergeräte Aluminium	1,0	1,27
Steuergeräte Kunststoff	0,7	1,04
Fahrtsteuerung	n.g.	0,70
Radio, Navigationsgerät, Multimedia	0,7-1,0	0,26
Inverter	1,2	0,9
Kupferkabel ummantelt mit Steckern	1,5	
Lambdasonde ⁴¹		6,5

Dennoch muss mit Abweichungen zwischen dem pauschalen Komponentenpreis und tatsächlichem Materialwert gerechnet werden. Die Angabe von Komponentenerlösen durch den Elektroverwerter kann meist nur pauschal entschieden und eingeschätzt werden, nachdem das Material optisch in Augenschein genommen oder eine weitergehende Prüfung durchgeführt wurde. Diese Einschätzung ist oftmals nicht trivial, da es sich meist/häufig um inhomogene Chargen verschiedener Komponententypen in einer Sammelbox handelt.

11.2.2 Mögliche Materialerlöse des Elektroverwerters

Bei der Behandlung der Komponenten durch den Elektroverwerter entstehen typische Outputfraktionen, wie Eisen, Stahl, Kupfer und Leiterplattenfraktionen. Für diese Fraktionen gibt es etablierte Märkte. Die dort erzielbaren Erlöse des Elektroverwerters werden bei der Wirtschaftlichkeitsberechnung berücksichtigt.

Auch nicht-elektronische Bauteile von Komponenten aus Metall oder Kunststoff können den Marktwert positiv beeinflussen. Dazu gehören beispielsweise verbundene mechanische Bauteile oder das Gehäuse. Die Erlöse im April 2014 lagen für Aluminium um ca. 1,3 €/kg, für Eisen/Stahl bei ca. 0,16 €/kg oder für Kunststoff/PA6-GF30 bei ca. 0,48 €/kg.

In Tabelle 82 sind für einige Altmetalle, Leiterplatten und Kunststoff die Großhandelspreise angegeben, die im Expertenkreis als Preisspanne für Wirtschaftlichkeitsuntersuchungen gewählt wurden.

⁴¹ Angabe eines Katalysatorverwerters (Mai 2014), s. Kapitel 11.2.5.

Tabelle 82: Großhandelspreise für Altmetalle und relevante Materialien [€/kg]

Material	Gewählte Preisspanne	Sonstige Quellen	Gewählter Preis für Wirtschaftlichkeitsbe- trachtungen
Eisen	0,12-0,22	Callparts, Schredder	0,13
Aluminium	0,77-1,43	0,85-0,9 Guss-Schrott (EUWID, 2014)	0,85
Kupfer	3,5-6,5	4,2-4,25 Sorte Klima (EUWID, 2014)	4,2
Messing	2,1-3,9	2,5-2,55 Sorte Modus (EUWID, 2014)	3,0
Leiterplatte Klasse 1	2,8-5,2	Klasse II-A (1,3 €/kg) und II-B (0,6 €/kg) (Scheideanstalt, April 2014)	2,8
Kunststoff (verwert- bar)	0,28-0,52		0,4

11.2.3 Metallpreise und andere Wertstoffe

Die oben genannten Preise können nur für etablierte Materialfraktionen erzielt werden. Für weitere Fraktionen mit kritischen Metallen wie beispielsweise Neodymmagneten haben sich noch keine Märkte etabliert, so dass bei der Berechnung der Erlöse hilfsweise auf die börsennotierten Metallpreise zurückgegriffen werden muss, da diese Preise mit den Komponenten- und Materialpreisen in gewisser Weise korrelieren. Der Aufwand für die Zerlegung von Komponenten und die verfahrenstechnische Aufbereitung der Materialien muss durch den Metallwert gedeckt werden können.

Bei den in Tabelle 83 aufgeführten Preisen für kritische Metalle handelt es sich um Daten von Metallbörsen aus dem April und Mai 2014.

Tabelle 83: Börsennotierte Metallpreise (April/Mai 2014)

Rohstoff	Symbol	[€/t]	Rohstoff	Sym- bol	[€/t]
Aluminium ⁴	Al	1.318	Lithium²	Li	47.420
Antimon ⁴	Sb	7.396	Neodym ⁴	Nd	69.360
Cer²	Ce	5.030	Palladium¹	Pd	18.073.312
Dysprosium ²	Dy	290	Platin ¹	Pt	33.543.408
Gadolium ²	Gd	18.140	Praseodym ²	Pr	97.680
Gallium	Ga	198.791	Rhodium ¹	Rh	27.065.273
Germani- umoxid ⁴	Ge	980.216	Ruthenium ²	Ru	2.048.870
Gold ¹	Au	30.467.203	Samarium²	Sm	2.110
Europium ²	Eu	510	Silber ¹	Ag	469.453
Indium ⁴	In	492	Tantalpentoxid ⁴	Та	2.172.216
Iridium²	Ir	12.000.520	Terbium ⁴	Tb	769.040
Kupfer ⁴	Cu	5273	Yttriumoxid ⁴	Υ	44.130
Kobalt ⁴	Со	21.141	Zinn ¹	Sn	16.724
Lanthan ²	La	6.210	Zink ¹	Zn	800

- [1] Boerse.de (4/2014)
- [2] Shanghai Metals Market (5/2014), www.metal.com/metals/rare-earth/prices
- [3] Asian Metal Market (5/2014), www.asianmetal.com
- [4] Deutsche Rohstoffagentur (Ø 5/2013-4/2014), www.bgr.bund.de/DERA/DE

Bei der Beurteilung der Wirtschaftlichkeit müssen die Schwankung von Metallpreisen beachtet werden. Weiterhin muss der Aufwand für die Zerlegung von Komponenten und die Aufbereitung der Materialien durch die aktuell geltenden Marktpreise gedeckt werden. Auto- und Elektroverwerter werden daher nur einen Teilbetrag des Börsenwertes für sich erschließen können und mindestens einen Betrag aushandeln, der ihre Kosten deckt. Daher muss bei der Wirtschaftlichkeitsbetrachtung immer das gesamtwirtschaftliche Saldo des Auto- und Elektroverwerters betrachtet werden.

11.2.4 Metallgehalte von Leiterplatten

Die "30er-Liste" beinhaltet mind. 14 Komponenten mit Leiterplatten, wie Steuerung Infotainment, Steuerung Airbag, Kombiinstrument sowie Motorsteuergerät. Diese werden entsprechend der Literatur als besonders werthaltig beschrieben. Schmid (2014) bestimmte die durchschnittliche Zusammensetzung von 60 Leiterplatten in einem Volkswagen Golf VII. Hagelüken (2010) berichtete über hohe Gehalte, die in Elektroaltgeräten und anderem Geräten der Unterhaltungselektronik gefunden wurden. Sakai et al. (2013) stellt niedrige Gehalte dar (Kap. 3.1).

In der Recyclingpraxis werden Leiterplatten aufgrund der Vielfalt von elektronischen Bauteilen und der Menge und Wertigkeit von enthaltenen Metallen auf den Platinen zur Qualifizierung in drei Klassen (s. Kapitel 15.1) eingeteilt. Die in Tabelle 84 beschriebenen Zusammensetzungen sind Angaben der Scheideanstalt. Es wird erwartet, dass diese alle Arten von Leiterplatten abgegrenzt nach Wert-Gehalten umfassen (unabhängig von den ursprünglichen Geräten). Es wird

ferner angenommen, dass die Kategorisierung der Scheideanstalt nach ökonomischen Gesichtspunkten erfolgt. Ebenfalls entspricht sie der Kategorisierung der von Experten beschriebenen Methode für die Selektion und Bewertung von Leiterplatten bei der Beschaffung am Markt. Daher werden für die ökonomischen Berechnungen von Leiterplatten die Angaben der Scheideanstalt verwendet (Tabelle 84).

Teils hohe Abweichungen des Gehaltes von Metallen zwischen der Berechnungen mit Daten der Literatur und Daten aus der Praxis wirken sich einschränkend auf die Aussagekraft der Daten aus (vergleiche dazu Angaben in Kapitel 3.1, Schmid 2014 und Tabelle 84) Weitere Einschränkungen ergeben sich durch eine Expertenaussage, der zufolge aufgrund der technologischen Rückgewinnbarkeit gegenwärtig nur Gold, Silber und Kupfer ausschlaggebend für den Wert von Leiterplattenfraktionen seien.

Tabelle 84: Zusammensetzungen Leiterplatten unterschieden in Kategorien (Angaben in mg/kg) (Quelle: Scheideanstalt 4/2014)

	Kategorie 1 (hoher Wert)	Kategorie 2 (mittlerer Wert)	Kategorie 3 (niedriger Wert)
Ag	1.000	1.170	220
Au	250	120	94
Ce	3	3	3
Co	15	15	15
Ga	2	2	2
In	120	120	120
Nd	120	120	120
Pd	100	20	130
Pr	2	2	2
Sb	800	800	1.300
Та	2.000	400	14
Υ	5	5	5

Mit Metallpreisen aus Tabelle 83 und dem Metallgehalt aus Tabelle 84 ergeben sich rechnerisch theoretische Materialpreise von Leiterplatten der Kategorie 1 von 14,25 €/kg, Kategorie 2 von 5,45 €/kg und für Kategorie 3 von 5,37 €/kg. Hierbei handelt es sich um die reinen Metallpreise, die in der Realität nicht erzielt werden können.

Es ist zu erwarten, dass Leiterplatten im Inverter in Elektro- und Hybridfahrzeugen gemäß optischer Begutachtung ebenfalls einen hohen Gehalt kritischer Metalle enthalten und der Kategorie 1 zugeordnet werden können.

Für den Autoverwerter und Elektronikverwerter sind die Börsennotierungen in jedem Fall eine Grundlage zur Entwicklung zukünftiger Strategien im Recycling und geben einen Impuls, den Markt zu beobachten, um Optimierungspotentiale bei der Wertstoffvermarktung zu nutzen.

11.2.5 Sauerstoffsensor (Lambdasonde)

Die "30er-Liste" enthält acht Komponenten des Teilsystems Sensoren. Auf der Basis der Angaben in Kapitel 3.5.2 wurden folgende exemplarischen Werte für die Zusammensetzung von Sauerstoffsensoren angesetzt (Tabelle 85).

Tabelle 85: Annahmen zum Materialinhalt eines Sauerstoffsensors mit einem Gewicht von 73 g

Stoff, Mate- rial	Stoffmenge [g/kg]	Stoffmenge [g/Sonde]	Erlös [€/g Metall]	Metallwert [€/kg Sauer- stoffsensor]
Platin	0,6	0,044	33,54	20,00
Palladium	0,3	0,022	18,07	5,00
Yttrium	25	1,83	0,04	1,00
Keramik *1	ca. 80 %	58,4	-	-
Eisen *1	ca. 20 %	14,6	0,0002	0,02

^{*1} Quelle: Annahme ELPRO Elektronik-Produkt Recycling GmbH

Daraus ergibt sich ein reiner Metallwert von 27 €/kg Sauerstoffsensoren bzw. 21 €/kg unter Berücksichtigung einer Rückgewinnungsquote von 80%. Für einen Sauerstoffsensor mit einem Gewicht von 73 g beträgt demnach der Wert zu Preisen der Metallbörsen 1,56 € bzw. 6,50 €/kg gemäß eines Angebotes eines Verwerters (Callparts 2014). Der Erlös für den Autoverwerter beträgt demnach 0,47 € je Sauerstoffsensor mit dem Gewicht von 73 g.

11.3 Ergebnisse der Zerlegeversuche: Materialgehalte und Wirtschaftlichkeitsbetrachtung

Für die Auswertung in Kapitel 9 liegen die separierten Komponenten quasi als "Black Box" vor. Durch die weitere Zerlegung können für die Branche neue Kenntnisse hinsichtlich Wert- und Wertstoffgehalt gewonnen werden, welche für die Förderung der Demontageaktivitäten in der Praxis erforderlich sind. Im Folgenden werden für die einzelnen Komponentengruppen die Ergebnisse der Zerlegung der Komponenten in die Materialfraktionen dargestellt. Für jede einzelne der separierten Komponenten erfolgt eine Wirtschaftlichkeitsbetrachtung auf Basis des Verhältnisses von Erlös zu Aufwand (E/A), siehe Kapitel 11.1.3.

11.3.1 Gruppe Motoranwendungen

Eisen, Kunststoff, Aluminium und Kupfer sind Hauptbestandteile von Komponenten, in denen der Motor das relevante Bauteil ist.

Gehäuse von Anlassern und Lichtmaschinen bestehen aus Eisen und Aluminium und sind mit Eisenmagneten bestückt. Der Stator und Rotor haben Kupferwicklungen, kleine Mengen Kupferleiter und Messing. Kleine Mengen von Kunststoffen sind das Material von elektrischen Bauteilen und am Rotor zu finden.

Neodymmagnete wurden in den Servomotoren (Abbildung 21) und im Motor einer Fahrtsteuerung auf dem Rotor gefunden. Kleinstmengen (geschätzt < 1 g) können in einem kleinen Lautsprecher im Kombiinstrument oder Stellmotor im CD-Player gefunden werden. In anderen kleinen Motoren, beispielsweise Sitzverstellung, Fensterheber, Tür-/ Heckklappenschließmechanismus und Spiegelverstellung sind nur Eisenmagnete enthalten.

Die Menge der einzelnen Stoffe kann sehr verschieden sein. Eisen dominiert. Das werthaltige Kupfer hat in den untersuchten Motoren einen Anteil von ca. 3 bis max. 25 % der Gesamtmasse, Aluminium von 0 % bis zu 44 %, das Mittel der beiden Stoffe liegt bei ca. 10 %. Die höchsten Materialanteile (>10 %) einer Komponente und Menge (> 100 g) haben Lichtmaschine, Anlasser, Heizungsgebläse, Lüftermotor und Servomotor.

Ein schwerer Motor muss nicht in jedem Fall hohe Mengen werthaltiger Materialien enthalten, wie beispielsweise die Anlasser mit einem Gewicht von 2,5 bis 4 kg und einem Kupferanteil von 10-15 %.

Abbildung 23 zeigt die Massenverteilung der unterschiedlichen Elemente/Materialien in den untersuchten Motoren.

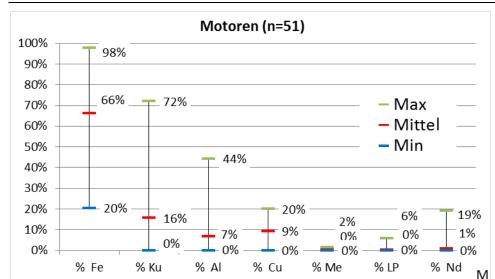


Abbildung 23: Massenverteilung von Materialien in Motoren

Komponente 1 Heizungsgebläse

Das Gebläse befindet hinter dem Armaturenbrett. Nach dem Entfernen des Handschuhfachs ist der Zugang leicht. Wertbestimmend ist Kupfer aus der Motorwicklung. Das E/A (B/N) sind mit

Beträgen von 0,24 bis zu 1,94 stark gestreut. Mit Aufwand zum Entfernen störender Komponenten ist die Wirtschaftlichkeit (E/A >1) für die Separation bei zwei Segmenten erreichbar, ohne störende Komponenten bei drei Segmenten.

Aufgrund der Komponentenlage im Fahrzeug unter dem Armaturenbrett und hinter dem Handschuhfach lässt sich schlussfolgern, dass die Separationszeit je nach Segment und der Konstruktion sehr vielseitig ausfallen kann. Die Studie zeigte, dass eine wirtschaftliche Separationszeit erreichbar ist (d.h. E/A > 1), beispielsweise bei Großraumlimousine, Hochdachkombi und näherungsweise bei der unteren Mittelklasse. Eine allgemeingültige Aussage, für welche Segmente dies

zutrifft, ist aufgrund der Anzahl vergleichbarer Daten

nicht sinnvoll.

Mit zunehmender Erfahrung sollte die Separation optimiert werden können.

Tabelle 86: Materialdaten und Kennzahlen von Heizungsgebläsen

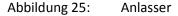
Segment	Masse [g]	Leitplatte [g]	Fe [g]	AL [g]	Cu [g]	Kunststoff [g]	Zeit Sep. [min] Se-	Kosten [€] ATF	Komp erlös [€]	Material- erlös [€]	E/A (B) ATF	E/A (N) ATF
Geländew. G	1870	25,3 5	124 0	57,9 4	168, 1	363, 8	4,38	2,61	0,68	0,91	0,26	0,28
Großraum- lim.	1511	25,0 0	109 0	65,0 0	140, 0	191, 0	0,50	0,34	0,63	0,75	1,84	1,84
Hochdachk.	1687	-	109 0	-	135, 0	462, 0	0,40	0,28	0,54	0,71	1,94	1,94
Kleinstwa- gen	1154	-	744, 0	-	116, 0	294, 0	3,10	1,84	0,44	0,56	0,24	0,88
Mini Van	1357	63,0 5	778, 0	76,5 3	114, 2	320, 8	2,65	1,59	0,57	0,76	0,36	0,47
U. Mittelkl. II	1316	-	833, 0	4,43	112, 0	367, 0	0,88	0,55	0,50	0,58	0,90	1,08

Komponente 2 Servomotor

Der Servomotor (Abbildung 21) befindet sich auf der Achse am Lenkgetriebe oder auf der Lenksäule. Daher ist i.d.R. der Zugang nur mit erheblichem Aufwand realisierbar und fällt je nach Verteilung der Demontagezeit für einen Teilbereich im Fahrzeug auf mehrere Komponenten verschieden hoch aus, beispielsweise ab ca. 4 min beim Kleinwagen und ca. 17 min beim Mini Van. Kupfer ist wertbestimmendes Metall.

Tabelle 87: Materialdaten und Kennzahlen von Servomotoren

Segment	Masse [g]	Leiterplatte [g]	Fe [g]	AL [g]	Cu [g]	Kunststoff [g]	Zeit Sep. [min]	Kosten [€]ATF.	Komp erlös [€]	Material- erlös [€]	E/A (B)ATF	E/A (N)ATF
Kleinst- wagen	1692	25,3 5	1240	57, 94	168, 1	363,8	4,40	2,63	0,74	1,51	0,28	0,84
Kleinwa- gen	5072	25,0 0	1090	65, 00	140, 0	191,0	3,40	2,14	1,94	3,48	0,91	3,83
Mini Van	2873	-	1090	-	135, 0	462	16,5 6	9,74	0,94	2,13	0,10	0,11
U. Mit- telkl.	2695	-	744	-	116, 0	294	4,68	2,80	0,81	1,46	0,29	0,89


Das E/A Brutto (B) beträgt für den Mini Van nur 0,1 wegen hohem Separationsaufwand für den Servomotor. Für den Kleinwagen beträgt das E/A (B) 0,91 wegen besonderer Bauart mit einem hohen Volumen und Gewicht. Ohne störende Komponenten liegt das E/A Netto (N) für drei Fahrzeuge zwischen 0,84 und 3,83.

Die Wirtschaftlichkeit ist maßgeblich durch einen hohen Demontageaufwand aufgrund der Lage im Fahrzeug an der Vorderachse ungünstig. Bei leichtem Zugang erscheint die Demontage sinnvoll. Die Demontageentscheidung sollte daher im Einzelfall je nach Zugänglichkeit getroffen werden.

Im Servomotor wurden auf dem Läufer Neodymmagnete gefunden (nicht beim Kleinwagen). Die Masse liegt zwischen 64 und 107 g. Bei einem zusätzlichen Kleinwagen mit Baujahr 2014, der nicht zum geplanten Fahrzeugumfang gehörte, wurden 69 g Neodym gefunden. Neodymmagnete könnten einen zusätzlichen Erlös ermöglichen.

Komponente 3 Anlasser

Anlasser sind schwerer zugänglich als Anbauteil des Motors verbaut. Eisen hat den höchsten Anteil. Das werthaltige Aluminium und Kupfer haben zusammen nur einen Massenanteil von ca. 25 %, wie auf Abbildung 26 zu erkennen ist.

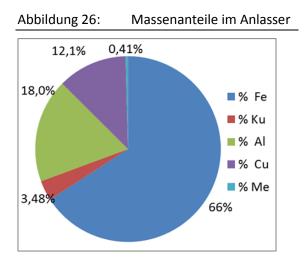


Tabelle 88: Materialdaten und Kennzahlen von Anlassern

Segment	[8]				off	[8] s		[€]		ıl-er-	АТЕ	(N) ATF
	Masse [Fe [g]	AL [g]	[8] nɔ	Kunststoff [g]	Messing	Zeit Sep. [min]	Kosten ATF	Komp erlös [€]	Material-er- Iös [€]	E/A (B)	E/A (N)
Großraum- lim.	3361	2479	472 ,0	397, 0	-	13,0 0	8,24	4,93	2,33	1,94	0,47	1,08
Hochdachk.	4272	2804	617 ,1	509, 2	329,4	-	6,32	3,81	2,51	2,53	0,66	1,34
Kleinstwa- gen	3252	1933	813 ,0	389, 0	100,0	16,5 0	4,43	2,69	2,07	2,13	0,77	6,10
Mini Van	2475	1572	447 ,0	375, 0	66,00	15,0 0	4,06	2,44	1,48	1,78	0,60	1,36
U. Mittelkl.	3682	2415	681 ,0	352, 5	144,7 6	20,6 0	4,75	2,88	2,15	1,99	0,75	0,75

Für einen Anlasser ergibt sich ein E/A (B) von 0,47 und für drei andere ein E/A (B) zwischen 0,66 und 0,77. Das bedeutet, dass die Separation nicht wirtschaftlich ist, aber eine Tendenz zur Deckung von ca. 75 % der Kosten des Autoverwerters möglich erscheint. Bei freiem Zugang liegt das E/A (N) bei 4 von 5 Segmenten zwischen 1,08 und 6,1.

Eine Demontageentscheidung sollte daher im Einzelfall je nach Zugänglichkeit getroffen werden.

Hinterfragt werden sollte aber das Ergebnis für das E/A (B) Gesamt. Dieses liegt für alle fünf Komponenten zwischen 0,33 – 0,61, was nach der Aufbereitung aufgrund der berechneten Beträge für Materialerlöse keine ausreichende Deckung des Aufwandes von beiden, Auto- und Elektroverwerter, signalisiert.

Komponente 4 Lüftermotor

Der Lüfter des Kühlers ist Teil der Lüfterzarge und befindet sich an der vordersten Front des Motorraumes. Die Separation ist leicht, wenn die Stoßstange entfernt wurde. Die Zeit ist die Summe des direkten Zugangs zur Lüfterzarge zzgl. Anteil zum Entfernen störender Komponenten der Front. Hauptbestandteil des Motors ist Eisen. Kupfer hat einen Anteil von ca. 10 %.

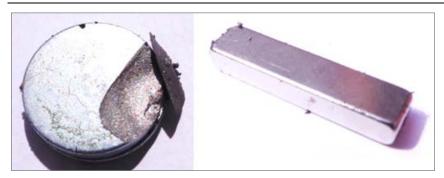
Tabelle 89: Materialdaten und Kennzahlen von Lüftermotoren

Segment	Masse [g]	Fe [g]	AL [g]	Cu [g]	Kunststoff [g]	Messing [g]	Zeit Sep. [min]	Kosten [€] ATF	Komp erlös [€]	Material-er- Iös [€]	⋖	E/A (N) ATF
Kleinstwa- gen	1563	1031	-	177,0	1031	24,00	3,11	1,87	0,65	0,87	0,35	0,93
Mini Van	3891	1730	176,5	328,5	1730	-	5,45	3,31	1,59	1,93	0,48	0,89

Das E/A (B) mit Beträgen unter 0,5 zeigt eine Kostendeckung von weniger als 50 %. Günstiger liegt das E/A (N) mit ca. 90 %, welches durch Demontageoptimierung möglicherweise gesteigert werden kann, so dass die Wirtschaftlichkeit erreicht wird.

Komponente 5 Lautsprecher

Lautsprecher sind i.d.R. an den Türen verbaut. Die kleinen Ausführungen enthalten Neodymmagnete. Der in einem zerlegten Lautsprecher (Abbildung 27) gefundene Magnet besteht aus zwei Scheiben mit einer Höhe von insgesamt 4 mm, mit einem Durchmesser von 18 mm und einem Gewicht von 7 g. Gemäß optischer Beurteilung bestehen diese aus unterschiedlichen Metallen. Die vermutlich neodymhaltige Scheibe hat eine Höhe von ca. 2,5 mm. Aus dem Verhältnis der Masse und Dimensionen der Scheiben ergibt sich ein Gewicht von ca. 4,375 g Neodymmagnet.


Tabelle 90: Materialdaten und Kennzahlen von separierten Lautsprechern

Segment	Masse [g]	Fe [g]	AL [g]	Cu [g]	Kunststoff [g]	Nd-Magnet [g]	Zeit Sep. [min]	Kosten [€] ATF	Komperlös [€]	Material-er- Iös [€]	E/A (B) Ges.
Geländew. G	42,00	29,00	-	-	5,00	8,00	0,75	0,44	-	0,01	0,01

Großraumlim.	293,0	60,00	3,00	-	211,0	19,00	0,13	0,07	-	0,08	0,99
U. Mittelkl. II	206,0	60,00	0,00	5,00	129,0	12,00	0,17	0,11	-	0,06	0,54

Festgestellt wurde auch, dass Neodym außerhalb von der Fahrzeugelektronik Anwendung findet, beispielsweise in einem Mini Van zur Befestigung einer Verkleidung der Sicherheitsgurtdurchführung innen am Himmel. Die Masse des Magneten beträgt 7 g (Abbildung 27).

Abbildung 27: Neodymmagnet eines Lautsprechers (links) und einer Verkleidung (rechts)

Ein Markt für Neodymmagnete ist noch nicht realisiert. Eisen und Kunststoff bilden die Grundlage für Erlöse. Diese Materialien decken jedoch nicht den Aufwand. E/A (B) liegt unter 0,1.

Die Demontage kann für Lautsprecher gegenwärtig nicht empfohlen werden.

Komponente 6 Türverschluss

Der Türverschluss enthält 30-50 % Eisen und 20-50 % Kunststoff. Kupfer wurde in Mengen von 3-72 g im Motor gefunden.

Tabelle 91: Materialdaten und Kennzahlen von separierten Türverschlüssen

Segment	Masse [g]	Leiterplatte [g]	Fe [g]	AL [g]	Cu [g]	Messing [g]	Zeit Sep. [min]	Kosten [€]ATF	Komp erlös [€]	Material-er- Iös [€]	E/A (B) ATF
Geländew. G	790,0	-	383,0	0,81	358,0	7,90	5,37	3,16	0,30	0,27	0,09
Großraum- lim.	1.794	104	751,0	-	867,0	-	2,60	1,57	0,66	0,83	0,42
U. Mittelkl. II	456,0	-	281,0	3,00	3,00	-	5,00	2,94	0,17	0,10	0,06

Das E/A liegt zwischen 0,1 und 0,4. Die Wirtschaftlichkeit erscheint nicht realisierbar.

Komponente 7 Lichtmaschine

Es gelten vergleichbare Aussagen wie für den Anlasser. Die Massenanteile betragen 63 % Fe, 19 % Cu und 15 % Al.

Abbildung 29: Ø Materialanteile in 5 - Licht-Abbildung 28 Lichtmaschine - Großraumlimaschinen mousine Lichtmaschine 0,0% (n=5) 18,5% ■ % Fe % Ku ■ % Al ■% Cu 14,5% % Me 65%

Tabelle 92: Materialdaten und Kennzahlen von Lichtmaschinen

Segment	Masse [g]	Fe [g]	AL [g]	Cu [g]	Kunststoff [g]	Zeit Sep. [min]	Kosten [€] ATF	Komp erlös [€]	Materialer- Iös [€]	E/A (B) ATF	E/A (N) ATF
Groß- raumlim.	7600	4881	867,0	1336	50,0	11,12	6,71	4,48	5,60	0,67	3,22
Hoch- dachk.	7150	4338	1140	1406	171,0	7,98	4,87	4,22	6,01	0,87	2,61
Kleinst- wagen	5350	3278	1104	942,0	83,0	7,65	4,62	3,16	4,28	0,68	3,05
Mini Van	7200	4588	1061	1310	168,4	7,29	4,47	4,25	5,65	0,95	2,23
U. Mit- telkl. II	6200	4413	559,4	1120	159,5	5,63	3,47	3,66	4,65	1,05	1,63

Das E/A (B) liegt zwischen 0,67 und 1,12. Das E/A (N) steigt auf Beträge von 1,63 bis 3,22. Mit etwas Optimierung der Separation und schnellerem Entfernen störender Komponenten erscheint die Wirtschaftlichkeit erreichbar. Bei freiem Zugang ist die Wirtschaftlichkeit bei allen Segmenten erreichbar.

Demnach kann für die Lichtmaschine eine Demontageempfehlung ausgesprochen werden.

Komponente 9 Elektrische Sitzverstellung

Zur Sitzverstellung gehören mehrere kleine Motoren seitlich in der Lehne und unter dem Sitz mit einem Einzelgewicht von 277-580 g. Der Sitz muss ausgebaut werden. Die Massenanteile betragen 65-91 % Fe, 10 % Cu, <1 % Al. Hohe Eisenanteile (ca. 90 %) ergeben sich durch das Mitwiegen von Gelenken aus Fe am Motor, während der Anteil ohne Gelenke bei ca. 60 % liegt. Aufgrund der Größe beträgt die Kupfermenge in den elf zerlegten Motoren 10,31 – 57 g je Stück.

Tabelle 93: Materialdaten und Kennzahlen von Motoren der Sitzverstellung

Segment	Masse [g]	Fe [g]	AL [g]	Cu [g]	Kunststoff [g]	Messing [g]	ZeitSep. ſminl	Kosten [€] ATF	Komp erlös [€]	Material- erlös [€]	E/A (B) ATF
Geländew. G	448	293	-	36,3	119,6	2,00	1,81	1,07	0,17	0,20	0,15
Geländew. Med.	402	645	-	38,0	20,00	5,00	0,75	0,45	0,15	0,21	0,33
Geländew. Med.	294	236	-	35,0	20,00	3,00	0,40	0,24	0,11	0,16	0,45
Geländew. G	378	326	-	48,6	2,81	-	1,57	0,92	0,14	0,20	0,15
Geländew. G	359	310	-	46,2	2,67	-	1,50	0,89	0,13	0,19	0,15
Geländew. Med.	469	459	-	57,0	35,00	-	0,75	0,45	0,17	0,25	0,38
Geländew. G	463	402	3,55	41,4	20,50	-	1,86	1,10	0,17	0,19	0,16
Geländew. Med.	440	339	-	40,0	20,00	5,00	0,75	0,45	0,16	0,19	0,36
Geländew. G	587	397	-	49,8	112,2	1,49	2,30	1,36	0,22	0,25	0,16
Geländew. G	277	143,2	35,71	10,31	73,93	1,43	1,21	0,72	0,10	0,10	0,14
Geländew. Med.	277	143,2	35,71	10,31	73,93	1,43	0,43	0,26	0,10	0,10	0,40

Das E/A (B) deckt mit einem mittleren Betrag nur ein Viertel des Aufwandes ab. Die Separation erscheint daher nicht sinnvoll.

Komponente 12 Scheibenwischermotor vorne

Zwei zerlegte Motoren enthalten jeweils ca. 90 g Kupfer mit einem Anteil von 3-4 % der Gesamtmasse der Komponente. Grund für den geringen Anteil ist das Mitwiegen des Gestänges, welches zur Komponente mit einem Gewicht von 1,7 bzw. 1,8 kg beiträgt. Aluminium wurde mit 9 bzw. 31 % Massenanteil ermittelt. Den größten Massenanteil stellt Eisen dar.

Tabelle 94: Materialdaten und Kennzahlen von Scheibenwischermotoren

Segment	Masse [g]	Leiterplatte [g]	Fe [g]	AL [8]	Cu [g]	Kunststoff [g]	Zeit Sep. [min]	Kosten [€] ATF	Komp erlös [€]	Material- erlös [€]	E/A (B) ATF	E/A (N) ATF
Gelän- dew. G	2350	23,88	1467	845	89,1	151,7	3,50	2,11	0,87	1,13	0,41	0,63
Groß- raumlim.	2950	25,00	2348	339	119	99,00	3,75	2,28	1,09	0,96	0,48	2,87
Kleinwa- gen	2250	-	1780	185	90,0	18,00	4,10	2,46	0,83	0,62	0,34	1,99
Mini Van	2700	-	2418	3,0 4	127	126,2	4,38	2,64	1,00	0,72	0,38	1,68

Das E/A (B) deckt mit einem mittleren Betrag nur ein Drittel bis knapp die Hälfte des Aufwandes ab. Ohne das zeitaufwendige Entfernen von störenden Komponenten könnte das E/A (B) auf Beträge von 0,63 und in drei Fällen auf 1,68 bis 2,87 steigen. Es müsste das schnelle Entfernen der Waschkastenabdeckung erreicht werden. Je nach Zugänglichkeit erscheint das Separieren für den Autoverwerter sinnvoll.

Der Erlös aus den Materialien ist jedoch gering, so dass das E/A (B) Gesamt für Auto- und Elektroverwerter nur im Bereich von 0,21-0,43 liegt. Der Elektroverwerter sollte die Wirtschaftlichkeit kritisch hinterfragen.

Komponente 13 Scheibenheber

Der Scheibenheber in der Tür (350-1050 g) besteht aus einem kleinen Motor und relativ großem Kunststoffgehäuse, welches ein Getriebe enthält. Der Eisenanteil beträgt zwischen 62-89 %, Kupfer maximal 11 % der Gesamtmasse.

Tabelle 95: Materialdaten und Kennzahlen von Scheibenhebern

Segment	Masse [g]	Fe [g]	AL [g]	Cu [g]	Kunststoff [g]	Messing [g]	Zeit Sep. 「min]	Kosten [€] ATF	Komp erlös [€]	Material- erlös [€]	E/A (B) ATF
Geländew. G	600	421	0,44	45,6	156,8	2,8	2,9 8	1,76	0,22	0,25	0,13
Großraum- lim.	600	360	-	43,0	181,0	0,0	0,8 3	0,50	0,22	0,24	0,44
Kleinstwagen	500	311	-	38,0	-	2,0	1,2 5	0,74	0,19	0,16	0,25
U. Mittelkl. II	1100	943	-	19,0	95,0	1	5,0 0	2,95	0,41	0,19	0,14

Die möglichen Materialerlöse sind im Verhältnis zum Aufwand gering. Die Lage in der Tür und die Konstruktion lassen Optimierungspotential bei der Separation nicht erkennen. Die Separation erscheint nicht sinnvoll.

Komponente 53 Stellmotoren Getriebe

Drei Stellmotoren in einem Kleinstwagen mit einem Gewicht von 498 g und zwei Stück mit jeweils 580 g enthalten ca. 82 % Eisen, 9% Kupfer, 1,5 % Messing und ca. 7,5 % Kunststoff.

Tabelle 96: Materialdaten und Kennzahlen von Stellmotoren Getriebe

Segment	Masse [g]	Fe [g]	Cu [g]	Kunststoff [g]	Messing [g]	Zeit Sep. [min]	Kosten [€] Autoverw.	Komp erlös [€]	Materialerlös [€]	E/A (B) ATF	E/A (N) ATF
Kleinstwager	580,0	480,0	52,00	40,00	8,00	0,92	0,56	0,21	0,26	0,39	0,58
Kleinstwager	498,0	403,0	47,00	40,00	8,00	0,92	0,56	0,21	0,23	0,39	0,58

Der Komponenten- oder Materialerlös rechtfertigt die Zeit von ca. 1 min zur Separation nicht. Die Separation ist nicht sinnvoll.

11.3.2 Gruppe Steuerungen und Verteiler

Das wesentliche Interesse liegt auf Leiterplatten und ggf. Aluminium-Gehäusen. Die zerlegten Steuerungen haben in der Mehrzahl ein Leiterplattengewicht von 5 bis 210 g. Nur bei zwei Steuerungen wurde ein höheres Gewicht von 459 g bzw. 766 g gemessen. Aluminium wurde in Mengen von 0 bis 2.800 g bzw. im Mittel von 239 g gemessen. Lediglich der Inverter bildet eine Ausnahme mit 7.900 g durch das Aluminiumgehäuse.

Die Gehäuse sind je nach Anwendung und Lage im Fahrzeug (außen oder innen) aus Eisen, Aluminium oder Kunststoff. Teils sind auch kleinere Bauteile aus den Metallen innerhalb der Komponente zu finden. Kupfer ist Bestandteil von Leitern, Spulen oder kleinen Motoren, aber nur in sehr geringer Menge vorhanden, wie in sehr kleine Motoren im Navigationsgerät für Zeiger oder im CD-Laufwerk. Der Gehalt von Metallen ist sehr unterschiedlich.

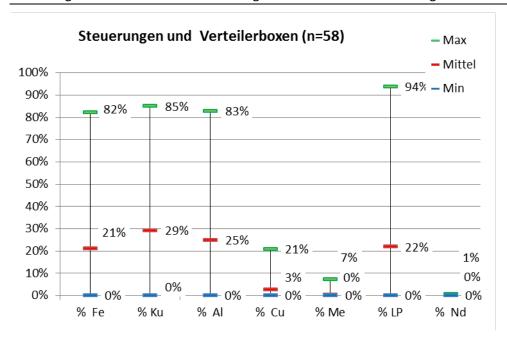
Stecker aus Kunststoff sind Bestandteile, die Metalle als Leiter enthalten.

Wie im vorangegangenen Kapitel zu Motoranwendungen genannt, können kleine Mengen Neodym in einer Steuerung zu finden sein, wenn beispielsweise ein kleiner Motor Bauteil auf einer Leiterplatte ist.

Radio, Radio-Verstärker oder CD-Wechsler sind bezüglich der Materialien mit gewöhnlichen Steuerungen vergleichbar (Gehäuse aus Eisen, etwas Aluminium, Leiterplatte, Stecker). Teils sind kleinste Motoren und Bauteile zur Bedienung enthalten.

In der Fahrtsteuerung hat Kupfer einen hohen Anteil, denn zum gesamten Steuer-Modul gehört ein Motor.

Der Inverter, eine besondere Komponente zur Steuerung der Energieversorgung und Rückgewinnung im Hybridfahrzeug, enthält insbesondere die werthaltigen Materialien Aluminiumgehäuse (66,5 %), Kupfer (10 %) und Leiterplatten (364 g) bei einem Gesamtgewicht von 12 kg.


Infotainment sind klassische Steuerungen in einer Box mit Aluminium- und Eisengehäuse. In den zwei zerlegten Steuerungen aus einem Geländewagen Groß und einer Unteren Mittelklasse wurden je eine Leiterplatte mit einem Gewicht von 766 g bzw. 266 g gefunden. Im Vergleich zur Gesamtmasse lag der Anteil im ersten Beispiel mit 41 % außergewöhnlich hoch. Im zweiten Beispiel lag der Anteil bezüglich Masse mit 16,5 % nicht wesentlich höher als bei vielen anderen Steuerungen.

Die Lenkungsteuerung in einem Mini Van fällt mit einem Gesamtgewicht von 398 g und einer kleinen Leiterplatte mit 34 g vergleichsweise klein aus. Lediglich Kupfer hat ein relativ hohes Gewicht von 67 g bzw. 20,8 Massen-%.

Smarte Verteilerboxen enthalten Leiterplatten, die Gehäuse sind aus Kunststoff oder Eisenblech. Sicherungsboxen bestehen aus einem Kunststoffgerüst und enthalten Sicherungen. Einen typischen Verteiler in einer Kunststoffbox mit ausschließlich elektrischen Leitern (passive Verteilerbox) wurde in der unteren Mittelklasse II separiert und zerlegt.

In Abbildung 30 werden für Steuerungen und Verteilerboxen die Minimal- Maximal- und mittleren Gehalte an verschiedenen Metallen und Materialien angegeben. Die nachfolgenden Tabellen liefern einen Eindruck über das Leiterplattengewicht in verschiedenen Komponenten und den Aufwand für die Separation bzw. Aufbereitung beim Elektroverwerter. Vor allem die Zeit für die Separation wirkt sich als Kostentreiber aus.

Abbildung 30: Massenverteilung von Materialien in Steuerungen und Verteiler

Komponente 19 Motorsteuerung und Komponente 20 Getriebesteuerung

Tabelle 97: Materialdaten und Kennzahlen von Motor- und Getriebesteuerungen

Segment	Komp. Nr.	Masse [g]	Leiter- platte [g]	[8]	. [8]	[8] -	[8]	ınststoff]	Messing [g]	Zeit Sep. [min] Se-	osten [€] TF	Komp erlös [€]	Material- erlös [€]	A (B) TF	'A (B) esamt	E/A (N) ATF
	장	Σ	Le pl	Fe	AL	Cu	PZ	Ku [8]	Me [8]	Ze [n	Kosi ATF	Кс er	e Z	E/ A1	E/A Ges	E/A ATF
Großraumlim.	19	1150	155	224	413,0	8,0		325,0	-	1,88	1,13	1,46	0,78	1,29	0,56	4,48
Kleinstwagen	19	400	54,58	171	105,2	-		38,63	-	1,22	0,73	0,51	0,22	0,70	0,27	0,85
Kleinwagen	19	800	61,0	244	288,0	5,0		190,0	-	1,63	0,97	1,02	0,44	1,04	0,38	2,07
Mini Van	19	850	271,9	7,0	529,5			1,36		1,12	0,68	1,08	0,97	1,59	1,11	2,87
U. Mittelkl.	19	550	169,7	-	270,6			105,2	-	1,21	0,72	0,70	0,60	0,97	0,70	2,80
U. Mittelkl. II	19	700	210	101	224,5			118,5	-	0,17	0,12	0,83	0,67	7,40	2,39	6,92
Geländew. G	20	350	133,4	-	-	-		186,3	-	0,40	0,24	0,36	0,36	1,49	1,11	1,49
Geländewagen Med.	20	5700	14,0	993	2877	351,0		499,0	13,00	2,30	1,51	7,24	3,46	4,79	1,23	1,39
Kleinstwagen	20	550	126,5	-	219,7	-		48,22	-	1,21	0,72	0,70	0,45	0,97	0,53	1,29

Für sechs der neun Komponenten liegt das E/A (B) ATF mit 1,29 7,4 teils erheblich über der Wirtschaftlichkeitsschwelle von 1. Das E/A (N) steigt teilweise deutlich weiter an. Für vier Komponenten gibt es zwischen E/A (B) und E/A (N) bedingt durch die Messung des Separationsprozesses bzw. der Zuschläge von Zeit für die Separation von störenden Komponenten keine größeren Unterschiede. Die Separation ist bei den meisten Segmenten sinnvoll.

Komponente 21 Fahrtsteuerung

Tabelle 98: Materialdaten und Kennzahlen von Fahrtsteuerungen

Segment	Masse [g]	Leiter- platte [g]	Fe [g]	AL [g]	Cu [g]	Nd [g]	Kunststoff [g]	Messing [g]	Zeit Sep. [min]	Kosten [€] ATF	Komp erlös [€]	Material- erlös [€]	E/A (B) ATF	E/A (B) Gesamt	E/A (N) ATF
Geländew. G	2900	95,98	1546	591,9	238,6	-	208,4	27,19	2,35	1,46	2,03	1,71	1,39	1,17	2,44
Großraumlim.	2600	ohne	858,0	1216	135,0	-	197,0	-	5,25	3,14	1,82	1,43	0,58	0,46	1,38

Segment	Masse [g]	Leiter- platte [g]	Fe [g]	AL [g]	Cu [g]	Nd [g]	Kunststoff [g]	Messing [8]	Zeit Sep. [min]	Kosten [€] ATF	Komp erlös [€]	Material- erlös [€]	E/A (B) ATF	E/A (B) Gesamt	E/A (N) ATF
Kleinstwagen	2000	58,00	766,6	846,0	108,0	-	167,0	3,00	2,52	1,53	1,40	1,21	0,92	0,79	1,60
Kleinwagen	2500	69,00	301,0	985,0	134,0	12,00	197,0	-	4,25	2,55	1,75	1,37	0,69	0,54	1,29
Mini Van	3100	118,1	1381	836,7	272,0	-	240,9	-	3,87	2,35	2,17	1,97	0,92	0,84	1,50
U. Mittelkl. II	2400	5,00	1454	421,0	250,2	-	249,3	-	4,17	2,50	1,68	1,37	0,67	0,55	0,66

Der Wert des E/A (B) ATF beträgt für alle Komponenten mindestens 0,58. Bei einer von sechs Komponenten beträgt E/A (B) ATF 1,39 bzw. liegt in zwei Fällen mit 0,92 nahe eins. Das E/A (N), also Separation ohne störende Komponenten, liefert deutlich höhere Beträge von teils größer 1,29 bis zu 2,44. Im Kleinwagen wurden 12 g Neodym gefunden.

Die Separation ist sinnvoll, wenn der Aufwand für die Separation der Komponente selbst oder der Zuschlag für das Entfernen störender Komponenten gering ausfällt.

Komponente 25 Klimasteuerung

Tabelle 99: Materialdaten und Kennzahlen von separierten Klimasteuerungen

Segment	se [g]	ter- tte [g]	[8]	[8]	[8]	nststoff	essing]	lay]	Sep.	en [€]	ıp s [€]	Material- erlös [€]	lay [€]	(B)	(B) Ge- t
	Masse	Leite platt	Fe [ɛ	AL [§	Cu [§	Kuns [g]	Mes [g]	Display [cm²]	Zeit Se [min]	Kost ATF	Komp. erlös [Mate erlös	Display	E/A ATF	E/A sami
Geländew. G	450,0	53,49	24,96	4,74	2,73	323,6	-	-	1,58	0,94	0,47	0,24	-	0,50	0,23
Hochdachk.	450,0	39,00	22,00	8,00	-	292,0	-	-	0,80	0,48	0,47	0,19	-	0,97	0,32
Kleinstwagen	250,0	66,00	-	3,00	-	156,0	-	-	0,21	0,13	0,26	0,20	-	2,00	1,07
Kleinwagen	250,0	66,00	-	-	-	156,0	-	-	0,70	0,42	0,26	0,20	-	0,63	0,42
Mini Van	350,0	76,15	1,49	3,99	0,57	223,5	-	-	0,75	0,45	0,36	0,25	-	0,81	0,47
U. Mittelkl. II	412,0	62,00	-	-	-	350,0	-	20,74	0,25	0,16	0,43	0,25	0,0021	2,70	0,99

Das E/A liegt bei zwei von sechs Segmenten deutlich über eins, bei den anderen Segmenten zumindest bei/über 0,5. Die Komponentenerlöse liegen durchgängig höher als die kalkulierten Materialerlöse. Deshalb liegen auch die Werte des E/A (B) Gesamt (Auto- und Elektroverwerter) unter dem E/A (B) des Autoverwerters. Für den Autoverwerter und Elektroverwerter erscheint die Separation und Aufbereitung nicht sinnvoll.

Komponente 26 Airbagsteuerung

Tabelle 100: Materialdaten und Kennzahlen von separierten Airbagsteuerungen

Segment	[8]	[8]				toff	ρū	ep.	[€]) [€]	rial- [€]		-eg-	
	Masse	Leiter- platte	Fe [g]	AL [g]	Cu [g]	Kunststoff [g]	Messing [g]	Zeit Se [min]	Kosten ATF	Komp erlös [€	Material erlös [€]	E/A (B) ATF	E/A (B) samt	E/A (N) ATF
Geländew. G	450,0	109,5	39,5	147,1	53,9	71,81	-	0,98	0,59	0,57	0,55	0,98	0,80	0,98
Großraumlim.	250,0	76,0	43,0	175,0	-	36,00	-	3,95	2,31	0,32	0,31	0,14	0,13	0,17
Kleinstwagen	250,0	32,0	96,0	-	-	96,00	-	19,30	11,27	0,26	0,11	0,02	0,01	0,10
Kleinwagen	250,0	34,0	96,0	-	3,0	95,00	-	1,44	0,85	0,26	0,13	0,31	0,14	0,37
Mini Van	300,0	75,3	42,9	155,2	-	19,15	-	2,05	1,20	0,38	0,28	0,32	0,22	0,48
U. Mittelkl.	300,0	91,0	46,0	160,0	-	83,00	-	2,05	1,20	0,38	0,34	0,32	0,27	0,48
U. Mittelkl. II	400,0	142,8	117,3	179,7	-	-	-	2,95	1,73	0,51	0,45	0,29	0,25	0,38

Das E/A (B) der Airbagsteuerung beträgt bei vier Segmenten ca. 0,3 und bei zwei anderen Segmenten 0,14 und weniger. Grund sind die hohen Demontagezeiten. Eine Ausnahme liegt beim Geländewagen Groß vor, bei dem der Wert mit 0,98 nahe eins liegt. Aufgrund dessen, dass das E/A (B) Gesamt generell niedrig ausfällt, kann für die Airbagsteuerung keine Demontageempfehlung gegeben werden.

Komponente 27/28 smarte/passive Verteilerboxen

Tabelle 101: Materialdaten und Kennzahlen von Verteilerboxen

Segment	Komp. Nr.	Kompo- nenente	Masse [g]	Leiter- platte [g]	Fe [g]	AL [g]	Cu [g]	Kunststoff [g]	Zeit Sep. [min] Se-	Kosten [€] ATF	Komp erlös [€]	Material- erlös [€]	E/A (B) ATF	E/A (B) Ge- samt	E/A (N) ATF
Großraumlim.	27	Interfacebox	250,0	103,0	-	20,00	-	185,0	0,28	0,17	0,26	0,30	1,55	1,35	-

Segment	Nr.	- 4	[8]	[8]				nststoff	ep. Se-	۱ [€]) [€]	ial- [€]		Ge-	
	Komp.	Kompo- nenente	Masse	Leiter- platte	Fe [g]	AL [g]	Cu [g]	Kunsts [g]	Zeit Se [min] \$	Kosten ATF	Komp. erlös [Material· erlös [€]	E/A (B) ATF	E/A (B) samt	E/A (N) ATF
Hochdachk.	27	smarte Verteilerbox	343,0	137,0	-	-	-	205,0	2,90	1,70	0,36	0,37	0,21	0,21	0,21
Kleinstwagen	27	smarte Verteilerbox	400,0	157,0	-	-	-	248,0	0,80	0,48	0,42	0,43	0,87	0,76	2,22
Kleinwagen	27	smarte Verteilerbox	450,0	167,0	-	-	-	237,0	2,54	1,50	0,47	0,45	0,31	0,28	0,35
Mini Van	27	smarte Verteilerbox	450,0	132,0	-	-	-	264,0	1,65	0,97	0,47	0,38	0,48	0,35	0,89
Obere Mittelklasse	27	smarte Verteilerbox	600,0	134,0	-	-	-	338,0	8,75	5,12	0,62	0,41	0,12	0,08	0,12
U. Mittelkl. II	27	smart Verteilerbox	1400	81,86	29,82	258,4	202,1	803,1	3,58	2,13	1,46	1,30	0,68	0,53	0,68
Geländew. G	27	smarte Verteilerbox	500,0	136,0	-	99,00	3,00	204,0	4,25	2,49	0,52	0,45	0,21	0,17	3,23
Mini Van	28	passive Verteilerbox	1260	-	141,0	122,0	132,0	450,0	2,42	1,45	1,31	0,69	0,90	0,39	-
U. Mittelkl. II	28	passive Verteilerbox	150,0	49,87	0,94	4,73	33,12	72,9	2,00	1,17	0,16	0,25	0,13	0,21	-

Bei den Verteilerboxen sind die Leiterplatten und in einigen Fällen Kupfer und Aluminium die Quellen für Erlöse. Das Gehäuse besteht meistens vollständig aus Kunststoff. Die smarten Verteilerboxen haben ein E/A (B) ATF von 0,12 bis zu 0,87. Die beiden Beispiele für die passiven Verteilerboxen haben ein E/A (B) ATF von 0,25 bzw. 0,69. Teils ist das E/A (B) Gesamt kleiner als E/A (B) ATF, denn der hohe Kunststoffanteil wirkt sich ungünstig auf den berechneten Materialerlös aus. Lediglich die Interfacebox in der Großraumlimousine ist schnell separierbar, sodass das E/A (B) ATF 1,55 beträgt.

Folglich ist die Separation im Allgemeinen nicht sinnvoll. In Einzelfällen, beispielsweise bei der schnell separierbaren Interfacebox, kann die Separation sinnvoll sein.

Komponente 82 Infotainment

Das Infotainment im Geländewagen Groß besitzt eine große Leiterplatte und ein Eisen- bzw. Aluminiumgehäuse. Bei der Unteren Mittelklasse sind eine kleine Leiterplatte und ein Eisengehäuse vorhanden.

Tabelle 102: Materialdaten und Kennzahlen vom Infotainment

Segment	Masse [g]	Leiter- platte [g]	Fe [g]	AL [g]	Cu [g]	Nd [g]	Kunststoff [g]	Messing [g]	Zeit Sep. [min] Se-	Kosten [€] ATF	Komp erlös [€]	Material- erlös [€]	E/A (B) ATF	E/A (B) Gesamt
Geländew. G	1900	766,1	924	122,3	-	1,98	66,06	-	2,73	1,65	2,41	1,92	1,46	0,92
U. Mittelkl.	1650	266,4	1118	109,5	2,2	-	140,8	-	2,73	1,64	1,72	0,84	1,05	0,42

Das E/A (B) für den Autoverwerter zeigt eine gute Ausgangsbasis für die Wirtschaftlichkeit. Das E/A (B) Gesamt (Auto- und Elektroverwerter) liegt jedoch unter eins.

Für den Autoverwerter erscheint die Separation grundsätzlich sinnvoll. Aus Sicht des Elektroverwerters ist der Komponentenpreis zu hoch oder der Materialerlös zu gering.

Komponente 22 Fahrwerksteuerung/22 Niveauausgangsregelung/23 Lenkungskontrolle

Tabelle 103: Materialdaten und Kennzahlen von Fahrwerksteuerung, Niveauausgangsregelung, Lenkungskontrolle

Segment	Komp. Nr.	Masse [g]	Leiterplatte [g]	Fe [g]	AL [g]	Cu [g]	Kunststoff [g]	Zeit Sep. [min]	Kosten [€] ATF	Komp erlös [€]	Materialer- Iös [€]	E/A (B) ATF	E/A (B) Ge- samt
Geländew. G	22	400,0	151,0	0,0	229,0	0,0	-	7,88	4,61	0,51	0,49	0,11	0,11
Großraumlim.	22	400,0	55,0	123,0	159,0	2,0	82,00	0,25	0,16	0,51	0,28	3,22	1,11
Mini Van	23	750,0	34,0	11,0	85,0	67,0	125,0	11,05	6,47	0,78	0,40	0,12	0,06

Diese Komponenten kommen selten vor. Der Stichprobenumfang lässt keine hinreichend genaue Aussage hinsichtlich der Wirtschaftlichkeit zu. Teils hoher Demontageaufwand liefert ein niedriges E/A (B) ATF. In einem Fall ist der Aufwand jedoch so gering, dass ein E/A (B) ATF von 3,22 erreicht wird. Bei einer Separationszeit von mehreren Minuten kann keine wirtschaftliche Separation erreicht werden. Je Einzelfall sollte bei der Fahrwerk- und Niveauausgangsregelung der erfahrene Mechaniker entscheiden. Für die Lenkungskontrolle ermöglicht das Beispiel keine Demontageempfehlung.

Komponente 83 CD-Wechsler/84 TV-Tuner/85 Radiosteuerung (Multimedia)

Tabelle 104: Materialdaten und Kennzahlen von Multimediaanwendungen

Segment	Komp. Nr.	Masse [g]	Leiterplatte [g]	Fe [g]	AL [g]	Cu [g]	Nd [g]	Kunststoff [g]	Messing [g]	Zeit Sep. [min]	Kosten [€] ATF	Komp erlös [€]	Materialer- Iös [€]	Neodym [€]	E/A (B) ATF	E/A (B) Ge- samt
Geländew. G	83	1700	184	1368	75,00	-	1,00	34,00	2,00	5,79	3,43	0,44	0,62	0,13	0,16	5,79
Geländew. G	84	1150	377	665	-	-	-	-	-	6,24	3,67	0,30	0,91	0,08	0,23	6,24
Geländew. G	85	650	184	386	65,00	-	-	-	-	7,14	4,20	0,26	0,50	0,06	0,11	7,14

Für die Multimediaanwendungen fallen die Separationszeiten hoch aus. Mit dem angesetzten Komponentenerlös ist das E/A (B) ATF gering. Jedoch fällt das E/A (B) Gesamt (Auto- und Elektroverwerter) mit Werten von 5,79 bis 7,14 deutlich höher aus. Ursache sind hohe Wertstoffgehalte. Durch einen höheren Komponentenerlös kann die Wirtschaftlichkeit für den Autoverwerter ermöglicht werden.

Komponente 18 Inverter

Tabelle 105: Materialdaten und Kennzahlen des Inverters

Segment	Masse [g]	Leiter- platte [g]	Fe [g]	AL [g]	Cu [g]	[8] pN	Kunststoff [8]	Messing [g]	Zeit Sep. [min]	Kosten [€] ATF	Komper- lös [€]	Material- erlös [€]	Neodym [€]	E/A (B) ATF	E/A (B) Ge- samt	E/A (N) ATF
Geländew. G	13550	364	2107	7900	1077	-	341,0	84,00	3,04	2,18	12,20	10,34	-	5,59	1,95	11,18

Für den Inverter liegt der Erlös mit einem Wert von 5,59 für das E/A (B) ATF deutlich höher als der Aufwand. Das E/A (N) liegt sogar bei einem Wert von 11,18. Die Separation ist empfehlenswert.

Sonstige Steuerungen

Tabelle 106: Materialdaten und Kennzahlen sonstiger Steuerungen

Segment	Komp. Nr.	Komponente	Masse [g]	Leiter- platte[g]	Fe [g]	AL [g]	Cu [g]	Kunst- stoff [g]	Messing [g]	Zeit Sep. [min]	Kosten [€] ATF	Komp erlös [€]	Material- erlös [€]	E/A (B) ATF
U. Mittelkl. II	111	Start/Stopp innen	400,0	87,3	255	-	3,40	19,36	-	0,49	0,30	0,42	0,24	1,40
U. Mittelkl. II	111	Start/Stopp Motor- raum	500,0	93,9	175	228,0	2,80	28,17	-	0,20	0,13	0,64	0,40	4,82
Geländew. G	64	Rückfahrkamera	450,0	70,00	-	339,0	-	34,00	-	6,25	3,66	0,57	0,40	0,16
Großraumlim.	64	Heckkamerasteue- rung	390,0	86,00	307,0	-	-	-	-	1,40	0,83	0,41	0,22	0,49
Geländew. G	73	Steuerung Sitzhei- zung	135,0	135,1	8,00	-	-	0,45	-	0,48	0,28	0,14	0,30	0,49
Großraumlim.	24	Alarmanlagenhupe	320,0	28,0	128,0	-	-	101,0	4,00	0,75	0,45	0,33	0,12	0,74
Geländew. G	67	Komfortsteuerung	450,0	175,5	4,00	13,73	30,8	208,8	-	3,25	1,91	0,47	0,57	0,25
Geländew. G	9 SL	Steuerung Lehne	201,0	50,35	9,0	-	3,4	123,6	14,73	0,95	0,56	0,21	0,20	0,37

Für zwei Steuerungen (Start/Stopp) wurde ein E/A (B) ATF größer eins bestimmt. Die Separation ist empfehlenswert.

Für die Alarmanlagenhupe ist der Aufwand zumindest zu 74 % gedeckt. Bei fünf anderen Steuerungen beträgt das E/A (B) ATF weniger als 0,5. Diese Komponenten sind daher nicht wirtschaftlich separierbar.

11.3.3 Gruppe Bildschirmanwendungen

Bildschirmanwendungen sind bezüglich der Materialien vergleichbar mit Steuerungselektronik (Gehäuse aus Metall, Kunststoff, Leiterplatte, Stecker).

Abbildung 31: Kombiinstrument – Kleinstwagen

Abbildung 32: Navigationsgerät - Geländewagen Medium

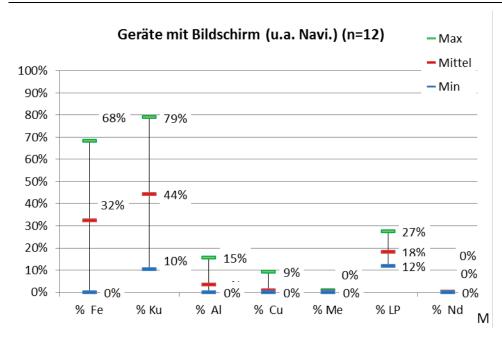

Im Kapitel 3.3 wird dargestellt, dass in Bildschirmen auch Seltene Erden enthalten sind. Der Gehalt der Metalle und der resultierende Beitrag zur Wirtschaftlichkeit, vorausgesetzt ein Verfahren zur Rückgewinnung und ein positiver Marktpreis existieren, wird in Tabelle 107 gezeigt. Die Massen der Metalle liegen je Quadratzentimeter im Bereich von Mikrogramm (10⁻⁶ Gramm). Nur Indium erreicht einen signifikant höheren Gehalt von bis zu 0,45 g/cm². Der Wert je cm² Bildschirmfläche ist bei allen drei Beispielkomponenten mit 0,022 bis 0,00001 Cent/cm² gering. Dementsprechend ist der modellhaft berechnete Metallwert des Displays eines Kombiinstrumentes mit einer Fläche von 147 cm² im Geländewagen Groß mit 1,5 Cent ebenfalls gering.

Tabelle 107: Metallgehalte [μg/cm²] und resultierender Metallwert [€/ cm²] je Komponente

Komponente	Fläche [cm²]	Yttrium	Europium	Lanthan	Cer	Terbium	Gadolinium	Indium	Metall- wert
Infotainment	60,00	17,67	1,33	1,00	0,67	0,33	0,17	445.900	2,20E-04
Navigationssystem	150,00	1,33	0,07	0,07	0,07	0,03	0,01	201.700	9,93E-05
Mittelkonsole	324,00	1,51	0,12	0,09	0,06	0,03	-	79,00	1,30E-07

Aus Abbildung 33 lassen sich die Anteile verschiedener Materialien bezogen auf die Masse der zwölf zerlegten Komponenten mit Bildschirmanwendungen ablesen.

Abbildung 33: Massenverteilung von Materialien in Bildschirmanwendungen

Komponente 15 Navigationssystem

Das Eisen des Gehäuses besitzt den höchsten Anteil der Metalle. Den zweithöchsten Anteil hat Kunststoff. Kupfer und Aluminium verfügen nur über geringe Anteile.

Tabelle 108: Materialdaten und Kennzahlen von Navigationssystemen

Segment	Masse [g]	Leiter- platte [g]	Fe [g]	AL [g]	Cu [g]	Kunststoff [g]	Messing [g]	Display [cm²]	Zeit Sep. [min] Se-	Kosten [€] ATF	Komp erlös [€]	Material- erlös[€]	Display [€]	E/A (B) ATF	E/A (B) Gesamt
Geländew. Med.	2300	417,0	1386	15,00	0,00	210,0	-	73,44	2,10	1,29	0,60	1,16	0,0073	0,46	0,63
Hochdachk.	1700	197,9	874,6	7,10	154,0	438,7	-	15,04	0,98	0,62	0,44	1,20	0,0015	0,71	1,18
Kleinstwagen	1750	220,0	1110	15,00	0,00	279,0	10,00	29,37	1,42	0,88	0,46	0,73	0,0029	0,52	0,57
Mini Van	2200	323,9	1431	148,8	17,51	278,5	-	37,86	2,01	1,24	0,57	1,12	0,0038	0,46	0,64
U. Mittelkl.	850	131,6	302,3	74,30	0,64	209,0	-	65,67	0,70	0,43	0,22	0,45	0,0065	0,51	0,71
U. Mittelkl. II	3399	459,0	2046	526,0	0,0	368,0	-	109,3	5,00	3,02	0,88	1,72	0,0109	0,29	0,45

Das E/A (B) ATF ist niedrig. Der Aufwand kann durch den Komponentenerlös nicht gedeckt werden. Das E/A (B) Gesamt (auf Basis der Materialerlöse) ist etwas höher. Ursache für das niedrige E/A sind relativ geringen Massen werthaltiger Materialien (Cu, Al) bzw. ein zu hoher Aufwand für deren Separation. Die Separation erscheint nicht wirtschaftlich.

Komponente 16 Kombiinstrument

Das Kombiinstrument eines einfachen Segments besteht überwiegend aus Kunststoff und enthält eine große Leiterplatte. Kombiinstrumente hochwertiger Segmente enthalten auch ein Display mit einer Fläche von 14 bis 46 cm².

Tabelle 109: Materialdaten und Kennzahlen von Kombiinstrumenten

Segment	Masse [g]	Leiterplatte [g]	Fe [g]	AL [g]	Cu [g]	[8] pN	Kunststoff [g]	Messing [g]	Display [cm²]	Kommentar	Zeit Sep. [min]	Kosten [€] ATF	Komp erlös [€]	Material- erlös [€]	Display [€]	E/A (B) ATF	E/A (N) ATF	E/A (B) Ge- samt
Geländew. G	1600	219,0	426,0	56,00	3,5	1,00	794,5	-	147,0	12 LED	1,30	0,81	0,42	0,84	0,0146	0,52	0,52	0,71
Großraumlim	700,0	186,0	-	-	0,0	-	494,0	-	46,17	-	0,83	0,51	0,18	0,57	0,0046	0,36	0,36	0,86

Segment	Masse [g]	Leiterplatte [g]	Fe [g]	AL [g]	Cu [g]	[8] pN	Kunststoff [g]	Messing [g]	Display [cm²]	Kommentar	Zeit Sep. [min]	Kosten [€] ATF	Komp erlös [€]	Material- erlös [€]	Display [€]	E/A (B) ATF	E/A (N) ATF	E/A (B) Ge- samt
Kleinstwagen	731,0	155,0	-	-	0,0	-	576,0	-	13,70	-	1,35	0,81	0,19	0,53	0,0014	0,23	0,25	0,54
Kleinwagen	600,0	114,0	1,00	7,00	0,0	1,00	455,0	-	-	-	1,30	0,78	0,16	0,41	-	0,20	0,20	0,44
U. Mittelkl.	800,0	214,7	4,53	-	0,0	-	607,7	-	-	-	0,80	0,49	0,21	0,68	-	0,42	0,76	1,00
U. Mittelkl. II	900,0	195,8	77,02	1,15	0,0	-	712,4	-	16,00	-	2,30	1,37	0,23	0,68	0,0016	0,17	1,28	0,43

Der Erlös auf Komponentenbasis ist gering, so dass das E/A (B) ATF zwischen 0,17 und 0,52 liegt. Ohne den Einfluss störender Komponenten – das ist der Rahmen – fällt das E/A (N) ATF etwas günstiger aus. Das E/A (B) Gesamt auf Basis der Materialerlöse liegt mit 0,43-1,0 auch etwas höher. Grundsätzlich erscheint eine Empfehlung zur Separation als nicht sinnvoll.

11.3.4 Gruppe Licht

Komponente 29 Rückscheinwerfer, *Dritte Bremsleuchte und Komponente 30 Kombileuchte

Abbildung 34 zeigt Bauteile einer zerlegte Kombileuchte der Oberen Mittelklasse – das Kunststoffgehäuse, drei Leiterplatten und deren Gehäuse aus Kunststoff und Eisenblech, Kupferdraht von zwei Motoren und einer Spule, Kleinteile einer Xenon-Leuchte, Kabel und diverse andere Kleinteile.

Abbildung 34: Kombileuchte - Obere Mittelklasse

Abbildung 35: Rückleuchte - Obere Mittelklasse

Abbildung 36: LED Beleuchtung

Die Kombileuchte der Oberen Mittelklasse enthält 2.601 g Kunststoff (76 % des Gesamtgewichtes). Die drei Leiterplatten wiegen zusammen 104 g. Weiterhin sind 346 g Eisen, 229 g Aluminium und 125 g Kupfer enthalten. Für diese Materialien wurde ein Großhandelserlös von 1,68 € ermittelt.

Häufig werden LED-Beleuchtungen eingesetzt, die Seltene Erden enthalten (Kap. 3.4) Am Beispiel der Kombileuchte eines Geländewagen Groß mit LED-Beleuchtung ergibt sich aus den Bestandteilen der LED-Beleuchtung (Tabelle 110) ein Materialwert von 0,14 € (nach Abzug von angenommenen 20% Prozessverlusten bei der Aufbereitung). Die kritischen Metalle einer Modell-LED mit 15 LED-Modulen gemäß Tabelle 32 ergeben auf Basis von Metallpreisen in Tabelle 83 einen zusätzlichen Wert von 0,0085 € (Tabelle 111) nach Abzug von 20% Prozessverlusten.

Tabelle 110: Bauteile einer Kette von LED in einer Kombileuchte

Bauteil	Material	Masse (g)
15 Linsen	Kunststoff	12,0
15 LED-Module	Aluminiumplättchen mit Leuchtdioden durch Leiterband verbunden	10,0
	Kupferklammern	29,0

1 Chip	Chip auf Aluminiumplättchen	3,0
Gehäuse	Kunststoff	77,0

Die O. Mittelklasse enthält einen Rückscheinwerfer mit mehreren Leiterplatten, die insgesamt 32 LED tragen. Ein Rückscheinwerfer (82 g) eines Geländewagen Groß enthält eine Leiterplatte (5 g), auf der sich 6 LED befinden. Aus einem Geländewagen Groß des zusätzlich hinzugekommenen Herstellers, hier Geländewagen Groß II genannt,⁴² wurde eine Rückleuchte (1.431 g) separiert, die ein Aluminiumblech (49 g) mit 13 Leuchtdioden (mit transparentem Kunststoffgehäuse) enthielt. Der weite Rückscheinwerfer dieses Fahrzeuges (309 g) enthält zwei LED auf einer Leiterplatte (8 g).

Tabelle 111: Masse und Wert in 15 LED-Modulen einer Kombileuchte

Element	Masse in LED (Mikrogramm)	Metallwert [€]
Ga	387,0	7,69E-06
In	0,225	1,11E-11
Au	3097,50	9,44E-03
Ag	165,00	7,75E-06
Ge	12112,50	1,19E-03
Υ	945,00	4,17E-06

Die Bewertung des Gehalts kritischer Metalle in den LEDs muss unter dem Vorbehalt erfolgen, dass tatsächlich die angegebenen Mengen von Indium, Gallium, Germanium und Yttrium vorhanden sind. Germanium und Yttrium sind nach Expertenaussage in weißen LEDs nicht enthalten. Weitere andere (Leucht-)Stoffe können enthalten sein, beispielsweise Lutetium, Erbium und Terbium. Die Ungewissheit hinsichtlich der Inhalte von LEDs beruht auf der Tatsache, dass die Gehalte stark vom Herstellungsdatum der LEDs, der verwendeten Lichtfarbe und dem jeweiligen Hersteller der LEDs abhängen. Ein realistischer Erlös kann auch deshalb nicht angesetzt werden, weil zum derzeitigen Zeitpunkt keiner dieser Stoffe zurückgewonnen werden kann. Jedoch ist der Betrag von 0,0085 € für 15 LEDs eines Scheinwerfers sehr gering und leistet damit nur einen vernachlässigbaren Beitrag für die Wirtschaftlichkeit der Separation der Komponente und für nachfolgende Prozesse.

⁴² Dieser Geländewagen wurde im übrigen Projekt nicht berücksichtigt. Aus ihm wurde nur die genannte Rückleuchte separiert.

Tabelle 112: Materialdaten und Kennzahlen der Komponente 30 (Kombileuchte) und der Komponente 29 (Rückleuchte)

Segment	Komp. Nr.	Masse [g]	Leiterplatte [g]	[8]	L [8]	[8] n	Kunststoff [g]	Kommen- tar	Zeit Sep. [min]	Kosten [€] ATF	Komp erlös [€]	Material- erlös [€]	E/A (B) ATF	E/A (B) Ge- samt
Coländow C II	29*			- E	AL	Cn						ľ		
Geländew. G II	29.	85,0	5,0	-	-	-	77,0	6 LED	0,18	0,11	-	0,04	-	0,28
Geländew. G	29	750,0	-	21,0	-	1,5	717,5		0,85	0,52	-	0,24	-	0,34
Obere Mittel- klasse	29	1200	123,0	45,0	-	-	925,0	32 LED	0,66	0,42	-	0,58	-	0,83
Obere Mittel- klasse	29	700,0	66,0	-	-	-	590,0	21 LED	0,66	0,41	-	0,34	-	0,59
Geländew. G II	29 a	1431	31,0	-	49,0	-	1400	13 LED	3,00	1,79	-	0,55	-	0,26
Geländew. G II	29 b	500,0	8,0	-	-	-	301,0	2 LED	3,00	1,77	-	0,11	-	0,06
Geländew. G	30	4150	167,0	183,0	223,0	139,0	2976	15+2 LED	1,89	1,23	-	1,96	-	0,90
Geländew. Med.	30	4200	97,0	183,0	147,0	42,0	3282		0,83	0,61	-	1,53	-	0,97
Obere Mittel- klasse	30	3950	104,0	346,0	229,0	125,0	2601	14+2 LED	2,74	1,72	-	1,68	-	0,64
Geländew. G II	30	3594	67,0	135,0	474,0	20,0	2898	6 LED	3,00	1,86	-	1,48	-	0,55

Das E/A (B) ATF kann auf Komponentenbasis wegen fehlender Information über den Komponentenerlös nicht bestimmt werden. Das E/A (B) auf Basis von Materialerlösen ist sehr variabel.

Es muss abgewartet werden, ob sich ein Marktpreis für die Komponenten bildet. Für die Kombileuchte ergibt sich ein E/A (B) Gesamt auf Basis von Materialerlösen von 0,55-0,9, so dass die Wirtschaftlichkeit noch nicht erkennbar ist. Etwas schlechter fallen die Beträge für die Rückleuchten aus.

11.3.5 Gruppe Sensoren

Von der Gruppe der Sensoren eignen sich aufgrund nicht aussagekräftiger Größe der Komponenten und teilweise mangelnder Informationen über den Gehalt kritischer Metalle, welchen teilweise eine besondere Relevanz beigemessen wird, nur wenige zur Bewertung.

Komponente 31 Sauerstoffsensor

Unter Anwendung der Modellwerte aus Kap. 11.2.5 ergeben sich für die Segmente folgende, in Tabelle 113 dargestellte Ergebnisse.

Tabelle 113: Materialdaten und Kennzahlen von Sauerstoffsensoren

Segment	Anzahl	Masse je Stück [kg]	t Sep. in]	Kosten ATF [€]	Gesamt- kosten [€]	Komper- Iös [€]	Material- erlös [€]	4 (B) F	E/A (B) Gesamt	4 (N) F
	An	Ma Stü	Zeit So [min]	Kost ATF	Ge ko	Kor Iös	Mate erlös	E/A ATF	E// Ge	E/A ATF
Untere Mittelkl. II	2	-	0,26	0,30	0,30	-	-	-	-	-
Geländewagen Groß	4	0,075	0,25	0,59	0,61	1,95	6,3	3,29	10,37	3,29
Geländewagen Groß (H)	4	0,075	0,25	0,59	0,61	1,95	6,3	3,29	10,37	3,29
Obere Mittelklasse	1	0,11	0,50	0,29	0,30	0,72	2,31	2,42	7,69	2,42
Untere Mittelklasse	1	0,07	0,13	0,08	0,08	0,46	1,47	5,84	18,05	5,84
Großraumlimousine	1	0,077	0,38	0,22	0,22	0,50	1,617	2,26	7,19	2,26
Mini Van	2	0,07	0,20	0,24	0,24	0,91	2,94	3,83	12,02	3,83
Geländewagen Medium	4	0,07	0,38	0,90	0,91	1,82	5,88	2,03	6,47	2,03
Kleinwagen	2	0,07	0,30	0,35	0,36	0,91	2,94	2,57	8,14	2,57
Kleinstwagen	2	0,07	0,30	0,35	0,36	0,91	2,94	2,57	8,14	2,57

Grundsätzlich kann der Sauerstoffsensor für die Separation empfohlen werden. Es muss aber berücksichtigt werden, dass bei den noch jungen Altfahrzeugen der Studie noch keine Korrosion am Abgaskrümmer vorhanden war und folglich die Separation sehr leicht und schnell erfolgen konnte. Bei älteren Altfahrzeugen ist starke Korrosion am Abgaskrümmer zu erwarten, so dass die Lösbarkeit stark eingeschränkt sein kann. Beispielsweise kann die Separation durch Zerschneiden des Krümmerrohrs mit einer Flex noch die schnellste Methode sein. Doch auch dann sind solch kurze Demontagezeiten, wie in Tabelle 113 enthalten, nicht zu erreichen. Es muss mit mehrere Minuten gerechnet werden, bis ein Teilstück des Rohres vom Krümmer herausgetrennt wurde.

Ergebnis: Die Demontage des Sauerstoffsensors ist nur bei direktem Zugang zur Komponente zu empfehlen.

Komponente 36 Side Assist, 37 Abstandssensor/Nahdistanzradar

Die hier gezeigten Anwendungen wurden entsprechend den Eigenschaften von Steuerungen mit der Leiterplatte als dem relevantesten Bauteil berechnet. Das sind die Abstandssensoren (Komponente 36) in der Oberen Mittelklasse oder im Geländewagen oder das Nahdistanzradar (Komponente 37) in der Front der Oberen Mittelklasse. Aluminium als Hauptbestandteil des Gehäuses und eine kleine Leiterplatte ergeben einen Komponentenerlös von 0,33-0,48 € bzw. einen Großhandelserlös für die Materialien von 0,16-0,39 Cent. Dem stehen Kosten von 0,34-1,66 € für die Separation gegenüber. Beispielsweise muss der Stoßfänger entfernt werden, hinter dem die Abstandssensoren liegen.

Tabelle 114: Materialdaten und Kennzahlen von Abstandssensoren

Segment		Komponente	Masse [g]	Leiterplatte [g]	Fe [g]	AL [g]	Cu [g]	Kunststoff [g]	Messing [g]	Zeit Sep. [min]	ᅜᄔ	Komp erlös [€]	Material-er- Iös [€]	E/A (B) ATF	E/A (B) Ge- samt	E/A (N) ATF
Geländew. G	36	Side Assist	263	260,0	47,0	0,0	166,0	50,00	-	0,57	0,34	0,33	0,23	0,97	0,59	2,65
Geländew. G	37	Abstandssensor	314	375,0	0,0	5,0	205,0	56,00	-	1,40	0,83	0,48	0,16	0,58	0,17	3,72
Obere Mittel- klasse	37	Nahdistanzradar	291	291,0	32,0	42,0	214,0	3,00	-	1,63	0,96	0,37	0,22	0,39	0,22	1,42

Das E/A (B) liegt auf Basis von Erlösen für Komponenten oder Materialien unter eins. Im Falle des direkten Zugangs zu den Komponenten, weil beispielsweise der Stoßfänger als Gebrauchtteil demontiert wird, beträgt das E/A (N) 1,42 bis 3,72. Im Fall eines leichten Zugangs kann die Separation als wirtschaftlich angesehen werden.

Abbildung 37: Abstandssensor - Obere Mittelklasse

Abbildung 38: Nahdistanzradar - Obere Mittelklasse

11.3.6 Gruppe Aktuatoren

Komponenten 41 Einspritzeinheit, Gaseinspritzventil

Die Komponenten bestehen überwiegend aus Metallen, über deren Zusammensetzung die Literatur keine Angaben liefert und augenscheinlich keine Beurteilung möglich ist. Auf eine Zerlegung wurde daher verzichtet.

Komponenten 40 Zündspulen, Zündkerzen

Zündspulen wurden im Detail nicht untersucht, weil der weitaus größte Anteil aus Metall besteht, dem keine wichtige Metallart und Werthaltigkeit beigemessen werden konnte.

Zündkerzen erscheinen hinsichtlich der Angaben über kritische Metalle (Platin, Yttrium, Iridium, Rhodium) als Bestandteil von Elektroden interessant (Kapitel 3.6). Bei den untersuchten Fahrzeugen mit Benzinmotor wurde festgestellt, dass jeweils die Mittelelektrode der Zündkerze eine metallisch hell silber glänzende Kuppe enthält. Dies lässt den Schluss zu, dass die genannten Platingruppenmetalle enthalten sind. Vergleiche mit Zündkerzen aus anderen jungen Fahrzeugen bestätigten vorgenannte Beobachtung.

11.4 Szenarien für die Separation von Komponenten aus dem Motorraum

Es existieren verschiedenste Faktoren, die die Zugänglichkeit und damit die Zeit für die Separation positiv oder auch negativ beeinflussen. Die folgenden Szenarien sollen die Auswirkungen auf die Separation von Komponenten aus dem Motorraum zeigen.

Fall 1

Der Zugang zu den Komponenten im Motorraum ist frei, beispielsweise durch schnelles zerstörendes Entfernen des Motors zum Zweck der selektiven Sammlung von Motor- und Getriebeschrott. Das Separieren des Motors durch manuelle Demontage oder durch das herausreißen mit einem Demontagegerät, wie mit Abbildung 14 vorgestellt, oder einem Bagger soll daher den elektronischen Komponenten nicht zugerechnet werden. Der Aufwand für die Separation sollte am geringsten sein. Dieses Vorgehen wurde im Rahmen dieser Studie nicht erprobt.

Fall 2

Die Demontage von mehreren Komponenten aus dem Motorraum inkl. der störenden Komponenten entspricht der Vorgehensweise bei der Separation der Altfahrzeuge dieser Studie. Dabei kann für die Komponenten ein wirtschaftliches Ergebnis erreicht werden, für die eine Deckung des Demontageaufwandes festgestellt werden konnte. Eine Verbesserung der Deckung ist dann möglich, wenn auch gleichzeitig Gebrauchtteile und Materialien zur Verwertung, beispielsweise Stoßfänger, separiert werden, so dass der anzurechnende Demontageaufwand geringer ausfällt. Dementsprechend ist die Separation mehrerer Komponenten zu empfehlen.

Fall 3

Die Separation von einer oder wenigen einzelnen Komponenten kann je nach Lage der Komponenten und Zugang im Motorraum am aufwendigsten sein. Bei den zerlegten Altfahrzeugen war generell zu erkennen, dass ein direkter Zugang zu Komponenten wie Lichtmaschine, Getriebesteuerung, Lüftermotor, Anlasser, allen Sauerstoffsensoren oder Fahrtsteuerung nur durch das Entfernen störender Komponenten möglich

ist. Diese Vorgehensweise würde den höchsten möglichen Demontageaufwand ergeben und ist grundsätzlich nicht zu empfehlen.

11.5 Zusammenfassung der Ergebnisse aus Kapitel 11.3 und Schlussfolgerungen

In Abbildung 39 wurde für 131 Komponenten der Großhandelserlös in Relation zum Gesamtaufwand (Demontage + Aufbereitung) aufgetragen. Bei Komponenten oberhalb der Diagonalen liegt eine positive Deckung vor, bei Komponenten unterhalb der Linie können die Aufwendungen für Separation und Aufbereitung nicht gedeckt werden.

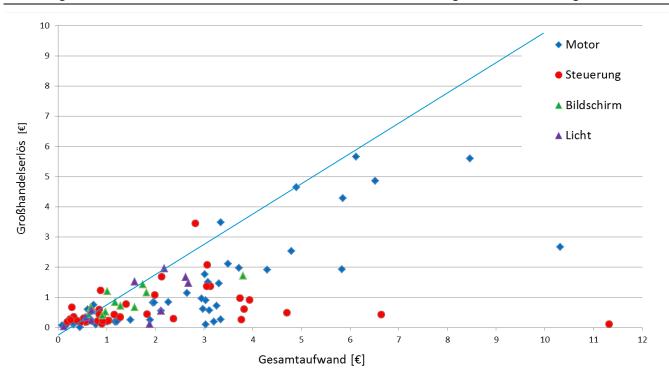


Abbildung 39: Großhandelserlöse in Relation zu Aufwand für Demontage- und Aufbereitung

Die Abbildung lässt die qualitative Aussage zu, dass nur wenige Komponenten wirtschaftlich separiert und aufbereitet werden können. Dazu gehören aus der Gruppe der Motoren Heizungsgebläse oder Servomotoren, die Steuerungen Start-Stopp, Motor- und Getriebesteuerung, Fahrwerk- und Klimasteuerung, die Interfacebox und aus der Gruppe der Bildschirme das Navigationssystem oder Kombiinstrument. Eine Kostendeckung von weniger als 10% durch die möglichen Materialerlöse weisen ein Scheibenheber, Türverschlüsse, Lautsprecher, eine Airbag- und eine Kamerasteuerung, Lenkungskontrolle und smarte Verteilerbox sowie ein Rückscheinwerfer auf.

Demontageempfehlungen für die einzelnen Komponenten ergeben sich aus den Ergebnissen in Kapitel 11.3 und werden in Tabelle 115 dargestellt. Die Aussagen erfolgen auf Grundlage des Verhältnisses des Erlöses zum Aufwand unter Beurteilung drei verschiedener Faktoren:

- für den Autoverwerter mit Störkomponenten (E/A (B) ATF),
- für den Autoverwerter ohne Störkomponenten (E/A (N) ATF) und

• für den Auto- und Elektroverwerter gemeinsam (E/A (B) Ges.)

Die in der Tabelle angegebene "Anzahl" ist die Menge separierter, zerlegter und bewerteter Komponenten.

Eine Demontageempfehlung (+) wird für acht Komponenten festgestellt. Dazu gehören aus der Gruppe Motoren das Heizungsgebläse und die Lichtmaschine, aus der Gruppe der Steuerungen Motor-/Getriebesteuerung, Inverter, Fahrtsteuerung, Start-Stopp-Steuerung und aus der Gruppe der Sensoren der Sauerstoffsensor.

Bei neun Komponenten erscheint eine Empfehlung für oder gegen die Demontage nicht eindeutig möglich (+/-). Dazu gehören aus der Gruppe Motoren der Servomotor, Anlasser, Lüfter- und Wischermotor, aus der Gruppe Steuerungen das Infotainment, Fahrwerksteuerung und die Multimediaanwendungen CD-Wechsler, TV-Tuner, Radiosteuerung sowie die Sensoren Side Assist, Ultraschall und Nahdistanzradar.

Bei 19 Komponenten kann auf eine Wirtschaftlichkeit nicht geschlossen werden (-), beispielsweise kleine Motoren, Navigationsgerät, Klimasteuerung, Verteilerbox, Beleuchtung.

Signifikant unterschiedliche E/A-Verhältnisse für gleiche Komponenten aus unterschiedlichen Altfahrzeugen werden teilweise gezeigt. Deren Ursachen liegen beispielsweise in den verschiedenen Fahrzeugmodellen mit verschiedenartigen Komponenten hinsichtlich Materialien und Materialmengen, in den verschiedenen Demontagezeiten, dem unterschiedlichen Verteilen von Zeit zum Entfernen störender Komponenten auf mehrere Zielkomponenten oder verschiedenen Demontageabläufen.

Weitere Schlussfolgerungen aus der Wirtschaftlichkeitsbetrachtung:

- Der Komponenten- bzw. Materialwert wird vor allem durch die Bestandteile Kupfer, Aluminium und Leiterplatten geprägt, die bezüglich des Gesamtgewichtes einer Komponente i.d.R. keinen wesentlichen Massenanteil ausmachen. Der Materialerlös beträgt über alle zerlegten 121 Komponenten (ohne Lambdasonden) im Mittel 0,96 € je Komponente. Dem steht der Separationsaufwand mit Personalkosten in Höhe von 0,58 €/min entgegen. Bei der Bewertung der Ergebnisse muss daher beachtet werden, dass nur ein kleiner Puffer existiert, um zusätzliche Zeit für die Separation aufzufangen. Bereits eine oder wenige zusätzliche Minuten Separationszeit können die Wirtschaftlichkeit gefährden.
- Das Potential zur Verringerung des Aufwandes der Separation bei der manuellen Demontage wird in Expertenkreisen als gering eingeschätzt. Eine Mechanisierung oder gar Automatisierung und einheitliche Prozessabläufe für die Separation sind unwahrscheinlich, denn ständige Wechsel von Modellen oder Typen von Fahrzeugen erfordern permanente Anpassungen im Recyclingprozess. Zudem erlaubt eine nur geringe Anzahl von Altfahrzeugen in den Demontagebetrieben gegenwertig keine industriellen Standards in Prozessen.
- Altfahrzeuge im Alter von über 15 Jahren befinden sich in der Realität durch ihre Nutzung in verschiedenen Zuständen. Im Vergleich zu den sehr jungen Altfahrzeugen dieser Studie werden sich zusätzliche Verzögerungen im Demontageprozess ereignen, welche nicht abgeschätzt, vorhergesagt oder kalkuliert werden können. Dies macht eine allgemeine Aussage hinsichtlich der Wirtschaftlichkeit schwierig.

Tabelle 115: Zusammenfassende Komponentenbewertung

Lfd. Nr.	Grup- pe	Komponente	Anzahl	E/A (B) ATF	E/A (N) ATF	E/A Ges. (B)	Urteil
1		Heizungsgebläse	6	0,24-1,94	0,28-1,94	0,3-1,17	+
2		Lenkung Servomotor	4	0,1-0,9	0,11-3,38	0,21-1,04	+/-
3		Anlasser	5	0,47-0,77	0,75-6,1	0,33-0,61	+/-
4		Lüftermotor	2	< 0,5	> 0,89	-	+/-
5	_	Lautsprecher	3	0,01-0,99	n.r.	-	-
6	chei	Türverschluss	3	0,1-0,4	n.r.	-	-
7	spre	Lichtmaschine	5	0,7-1,1	1,6-3,2	-	+
9	aut.	Sitzverstellung	9	0,15-0,45	n.r.	-	-
12	Motoren, Lautsprecher	Scheibenwischermo- tor	4	0,34-0,48	0,63-2,87	0,21-0,43	+/-
13	Μ To	Scheibenheber	4	0,1-0,44	n.r.	-	-
15	, E	Navigationssystem	6	0,29-1,18	-	0,2-1,7	-
16	Bild- schirm e	Kombiinstrument	6	0,17-0,52	-	0,43-1,0	-
18		Inverter	1	7,45	11,18	-	+
19		Motorsteuerung	6	0,7-7,4	0,85-6,92	0,27-2,39	+
20		Getriebesteuerung	3	0,97-4,79	1,29-1,49	0,53-1,23	+
21		Fahrtsteuerung	6	0,5-1,5	1,4-2,7	0,26-0,81	+
22		Fahrwerksteuerung	2	0,1-3	-	-	+/-
23		Lenkungssteuerung	1	0,15	-	0,07	-
24		Steuergerät Alarm/Diebstahl	1	0,74	-	-	-
25		Klimasteuerung	6	0,5-2,7	0,5-2,71	0,23-1,07	-
26		Airbagsteuerung	6	0,1-0,98	-	0,01-1,1	-
83- 85		CD-Wechsler, TV-Tu- ner, Radiosteuerung	3	0,11-0,23	-	5,79-7,14	+/-
67	bo	Komfortsteuergerät	1	0,25	0,25	0,28	-
82	erun§	Infotainment	2	1,05-1,46	1,28-1,46	0,42-0,92	+/-
111	Steuerung	Start/ Stopp Motor	2	1,4-4,82	1,76-1,94	0,62-1,63	+
27	Ver- teiler	Smarte Verteilerbo- xen	7	0,1-1,6	0,12-0,87	0,08-0,76	-

Lfd. Nr.	Grup- pe	Komponente	Anzahl	E/A (B) ATF	E/A (N) ATF	E/A Ges. (B)	Urteil
28		Passive Verteilerbo- xen	2	0,13-0,9	n.b.	0,21-0,39	-
29	ı t	Leuchte hinten	6	n.b.	n.b.	0,1-1,22	-
30	Licht	Kombileuchte vorn	4	n.b.	n.b.	0,5-0,9	-
35		Sauerstoffsensor	0	2-6	n.b.	n.b.	+
36	en	Side Assist	1	0,97	2,65	0,59	+/-
37	Sensoren	Ultraschall, Nahdis- tanzradar	2	0,39-0,58	1,42-3,72	0,17-0,22	+/-

12 Empfehlungen und Optimierungsvorschläge zur Separation von Fahrzeugelektronik

Aus den Erkenntnissen der vorherigen Schritte wird ein praxisorientiertes Szenario für Altfahrzeugverwerter abgeleitet. Dabei werden die Ergebnisse an den bekannten Demontage- und Marktaktivitäten beispielhaft gespiegelt.

12.1 Komponentenverwertung: Szenario 2025

Die untersuchten jungen Altfahrzeuge waren Baujahr 2011 bis 2014 (vgl. Tabelle 69) und werden erst in 13 bis 15 Jahren (BMUB/UBA 2014 und eigene Auswertung) in größeren Mengen in die Verwertung in Deutschland gelangen. Kleine Mengen an Unfallfahrzeugen fallen sicher auch früher an.

Deshalb wird für die Komponentenverwertung das Jahr 2025 als durchschnittliches Zulaufdatum der untersuchten Altfahrzeuge ausgewählt und als Szenario 2025 tituliert. Für dieses Szenario wird angenommen, dass

- Preise für Eisen-Metalle, Aluminium, Kupfer, kritische Metalle und Seltene Erden das heutige Niveau übersteigen,
- sich Verfahren zur Rückgewinnung kritischer Metalle etablieren,
- sich geeignete Verwertungskreisläufe für Fahrzeugelektronik entwickelt haben,
- der Zulauf von Altfahrzeugen größer als 2013 ist,
- Gebrauchtteileerlöse sich mindestens auf dem heutigen Niveau bewegen und der Nachbau von Ersatzteilen oder freier Onlinehandel Gebrauchtteile von Autoverwertern nicht weiter verdrängen.

Vor diesem Hintergrund werden nachfolgend drei verschiedene Varianten zur Vermarktung von Komponenten aus Altfahrzeugen betrachtet.

12.1.1 Vermarktungsvarianten

Variante 1: Gebrauchtteilegewinnung

Die Abfall-Rahmenrichtlinie stuft die Wiederverwendung in ihrer Prioritäten-Hierarchie vor der Verwertung ein. Wiederverwendung bedeutet im Fall von Altfahrzeugen den Ausbau von Komponenten, die in ihrer ursprünglichen Funktion weiterhin/erneut eingesetzt werden. Altfahrzeugverwerter "produzieren" daher umgangssprachlich ausgedrückt "gebrauchte Ersatzteile". Diese Variante der Ersatzteilgewinnung (Variante 1) umfasst die zerstörungsfreie Demontage, die Prüfung der ausgebauten Komponenten, die zum Teil mehrjährige Lagerung mit Stockpflege und die immer aufwendigere Angebots- und Verkaufsabwicklung.

Variante 2: stoffliche Verwertung der Fahrzeugelektronik

Eine weitere Möglichkeit besteht im Ausbau der Komponenten im Rahmen eines Zerlegeprozesses und in der Selektion nach Fraktionen (Variante 2). Wie in diesem Projekt praktiziert, kann die Demontage zerstörend erfolgen. Wichtigstes Kriterium ist die Erzeugung eines hohen Metall- oder Wertstoffgehaltes, z.B. von Stahl, Aluminium, Kupfer oder einer Mischung davon, Leiterplatten oder Motoren. Hauptkriterium ist die Gewinnung von Fraktionen, die sich vermarkten lassen und für die deutlich höhere Preise erzielt werden können als für Karossenschrott. Marktpreise verschiedener Wertstofffraktionen werden anhand einiger Beispiele in Kap. 11.2.2 vorgestellt. Variante 2 war Hauptuntersuchungsgegenstand in diesem Bericht.

Variante 3: Schreddern

Variante 3 wäre das Belassen der Komponenten in der Restkarosse und die wertstoffmäßige Vermarktung der Komponenten zum Marktpreis für Karossenschrott.

Altfahrzeugverwerter wählen Variante 2 erfahrungsgemäß nur, wenn der Mehrerlös aus gezielter Fraktionierung der Ware den Mehraufwand der Separation und Klassifizierung dauerhaft deutlich übersteigt.

Die Separation kritischer Metalle könnte in Zukunft je nach Technologieentwicklung und Marktsituation weitere Anreize für den Ausbau elektronischer Komponenten bieten und damit zu einer Stärkung der Variante 2 führen.

12.1.2 Variantenvergleich und Handlungsoptionen

Die Erlöse und Kosten der drei oben genannten Vermarktungsvarianten der Altfahrzeugverwerter wurden fünf Komponenten der "30er-Liste" beispielhaft ermittelt und die Salden in Tabelle 116 gegenübergestellt. Unten stehend werden die Ergebnisse für die einzelnen Varianten erläutert.

Tabelle 116: Vermarktungsvarianten für Fahrzeugelektronik aus Altfahrzeugen

	Ge- wicht¹	Zur Bere Komp Preis ²	chnung Er- lös³	von Var Aufwa paratio	nd Se-	Variante 1 Saldo Erlös Gebraucht- teile	Variante 2 Saldo Erlös stoffliche Verwertung	Variante 3 Saldo Erlös Schrott ⁴
	[Kg]	[€/t]	[€]	Zeit [min]	Kosten [€]	[€/Komp.] (Jahr 2025)	[€/Komp.]	[€/Komp.]
1) Lichtmaschine ³	6,5	650	4,2	2	1,16	15	3,05	0,85
2) Motorsteue- rung	0,85	1000	0,85	0,5	0,29	38	0,56	0,11
3) Kombiinstru- ment	1,1	700	0,77	0,55	0,48	17	0,29	0,14
4) Navigationssystem	1,8	700	1,26	0,6	0,525	251	0,735	0,23
5) Lambdasonde	0,08	6500	0,52	0,8	0,26	-2	0,26	0,01

- [1] Durchschnittsgewicht aller zerlegten Komponenten
- [2] Erlösbarer Komponentenpreis bei stofflicher Verwertung, s. Tabelle 81, Preise für April 2014.
- [3] Komponentenerlös = Gewicht × Komponentenpreis
- [4] Berechnet mit einem Erlös von ca. 130 €/t für Restkarossen.

Variante 1 - Gebrauchtteileverkauf

Bei der Berechnung der Gebrauchtteileerlöse wurde die heutige Preissituation gemäß Tabelle 117 über einen Abschlag von 50% auf eine zu erwartende Marktlage in 2025 angepasst. Dabei liegt die Einschätzung zugrunde, dass die untersuchten jungen Altfahrzeuge in nennenswertem Umfang erst etwa 2025 in Altfahrzeugverwertungsbetriebe gelangen. Der Abschlag ist damit begründet, dass davon auszugehen ist, dass die Altfahrzeuge Spuren einer jahrelangen Nutzung mit entsprechendem Verschleiß und deutlicher Alterung aufweisen werden. Zusätzlich ist der Aufwand für die Gewinnung der Gebrauchtteile zu berücksichtigen, der durch Fahrzeugankauf und Separation entsteht, sowie die Lagerund Verkaufskosten anzusetzen, die den geschätzten Erlös in Variante 1 ergeben.

Tabelle 117: Preisbeispiele [€] für gebrauchte Kfz-Elektronik

	Kompo- nente	Großraum Van			Untere Mittelklasse			Kleinstwagen		
	Ersatzteil	Call- parts	Call- parts Online- shop	Ebay	Call- parts	Call- parts Online- shop	Ebay	Call- parts	Call- parts Online- shop	Ebay
1	Generator/ Lichtma- schine	140 (2012)	175 (2011)	80 (30T km)	149	214	97	139		294
2	Anlasser			159 (neu)	129	178	119	99		69
3	Motorsteu- erung	300		249	299	950	240	250		300
4	Getriebe- steuerung							249		
5	Navigati- onssystem			1100			549			375
6	Lamb- dasonde			89			40			30
7	Kombi- instrument	150		179	219	285	220	120	178	199
8	Airbag- steuerung			169			169			

Ferner wurde eine Lagerzeit für die Gebrauchtteile von durchschnittlich drei Jahren zugrunde gelegt. Als Risiko ist allerdings grundsätzlich zu berücksichtigen, dass nicht eingeschätzt werden kann, ob eine Vermarktung der Teile in Zukunft und insbesondere 2025 überhaupt möglich ist.

Der Erlössaldo für die Variante 1, Wiederverwendung als Gebrauchtteil, zeigt bis auf die Lambdasonde einen positiven Deckungsbetrag, der bis auf den letzten Fall deutlich über den Erlösen bei stofflicher Verwertung (Variante 2) liegt.

Variante 2 - stoffliche Verwertung nach Separierung

Der Verwertungserlös über Fraktionen bietet auf Basis aktueller Werte in allen in Tabelle 116 betrachteten Beispielen einen positiven Saldo. Die aktuellen Markterlöse und die ermittelten Kosten auf Basis der Zerlegezeit (primäre Zerlegezeit mit Zuschlag 1,5) bei einem Werkstattkostensatz von 35 €/Std. wurden gegenübergestellt. Es wurden keine Zeiten für die Demontage von störenden Komponenten angerechnet. Das Ergebnis könnte sich bei Variante 2 durch zusätzliche Zeiten zum Ausbau störender Komponenten zu Gunsten der Variante 3 verschlechtern (Tabelle 78).

Variante 3 - Schreddern der Komponenten mit der Restkarosse

Diese Variante liefert die geringsten Deckungssalden und erscheint am wenigsten attraktiv.

Sofern eine Vermarktung der Komponenten als Ersatz-/Gebrauchtteil nicht möglich ist, sollte die Variante 2 gegenüber der Variante 3 bevorzugt werden. Allerdings sind die Demontage-Rahmenbedingen jedes Einzelfalls zu beachten, die von den im Projekt vorgefundenen abweichen können.

12.2 Anmerkungen zur Logistik von Fahrzeugelektronik zur Verwertung

Gegenstand der Logistik für Elektroschrott sind im Wesentlichen Sammlung, Trennung, Transport, Umschlag und Lagerung sowie der Informationsfluss und die Auftragsabwicklung.

Hinsichtlich des Transports von Elektroschrott aus Altfahrzeugen sind zunächst abfallrechtliche Aspekte des Kreislaufwirtschaftsgesetzes (KrWG) und der Altfahrzeugverordnung zu beachten. Daraus ergibt sich auch eine Abgrenzung zum Elektro- und Elektronikgerätegesetz (ElektroG). Fahrzeugelektronik aus Altfahrzeugen fällt nicht unter den Anwendungsbereich des ElektroG.

Beförderer müssen abfallrechtlich relevante Transporte anzeigen, sofern der Elektroschrott als nicht gefährlicher Abfall eingestuft und beispielsweise gemäß Abfallverzeichnisverordnung mit dem Abfallschlüssel 16012200 und der Bezeichnung "Bauteile a. n. g. nicht differenzierbar" transportiert wird. Das bedeutet, dass nur rechtlich qualifizierte Beförderer für Abfälle eingesetzt werden dürfen, welches die Auswahl von Partnern in einem Logistiksystem einschränkt.

Ein weiterer Aspekt ist eine flächendeckende Logistik, welche ca. 1200 Altfahrzeugdemontagebetriebe in Deutschland erfassen muss. Einerseits suchen Verwerter die für sie selbst ökonomischste verfügbare Lösung in ihrer Region. Andererseits könnte mit großflächigen Logistiknetzwerken, vergleichbar mit Rücknahmesystemen, ein Service angeboten werden, der zusätzliche ökonomische, soziale und ökologische Vorteile brächte und auch eine wirkungsvollere Steuerung der Materialflüsse ermöglicht.

Es muss eine Logistik organisiert werden, so dass typische standardisierte Transportmittel zum Einsatz kommen, die in der Lagerwirtschaft und in der gewerblichen oder kommunalen Entsorgungslogistik Anwendung finden, wie beispielsweise:

- Betriebliche Infrastruktur mit Regalanlagen und Lagerflächen
- LKW und Nutzkraftfahrzeuge als Verkehrsträger, eventuell Kurier-Express-Paket-Logistiker für Kleinstmengen
- Kunststoff- oder Gitterboxen mit beispielsweise bis zu 0,5-0,75 m³ zur Sammlung von Materialien am Arbeitsplatz
- Mulden mit 60 Liter bis 6 m³ zur Sammlung von Fraktionen im Betrieb und Transport über kurze Entfernungen zu einer Sammelstelle
- Mulden bzw. Abrollcontainer in Größen von 5 bis 20 m³ für gebündelte große Mengen im Ferntransport

Logistische Einflussfaktoren sind die Material- und Informationsflüsse, das sind

- Standorte (Anzahl, Lage, Dichte) der Altautoverwerter
- Transportketten, Sammeltransporte, Umschlagpunkte
- Einschalten von Transportdienstleistern
- Nutzung vorhandener Strukturen von Rücknahmesystemen für Elektroaltgeräte
- Regional aktive Beförderer bzw. Anzahl und Entfernung zu Elektroverwertern
- Einsatz von IT-Technologie, z.B. Bestandsmanagement beim Autoverwerter, Tourenplanung beim Beförderer
- Beschaffung/Einkauf von Betriebsmitteln

Weitere Aspekte

• Kosten und Qualität

- Ökologische Faktoren
- Chancen f
 ür den KMU-Betriebe

Wichtigstes Kriterium für die Auswahl der genannten Mittel und Methoden sind die Mengen von Elektroschrott und die Wirtschaftlichkeit für die Unternehmen. Die zu erwartende und planbare Menge wird ausschlaggebend für die Bereitschaft von Autoverwertern sein, Investitionen für Technik und Methoden zu tätigen, um Fahrzeugelektronik aus Altfahrzeugen zu gewinnen und sie den am besten geeigneten Stoffkreisläufen zuzuführen.

Faktoren, die auf ein Logistiknetz Einfluss nehmen, sind in der Branche der Autoverwerter vielseitig, dynamisch stark veränderlich und je Verwerter sehr individuell. Praxiserfahrungen der Callparts Recycling GmbH bei der Konzeption von Netzen zum Bündeln und Steuern von Materialflüssen zeigen, dass Autoverwerter vielfach selbst eine bessere Lösung finden, sehr flexibel handeln wollen und sich eher nicht auf feste Termine festlegen lassen.

Eine wirksame Wiederverwertung der getrennten Fahrzeugelektronik kann durch eine enge Zusammenarbeit zwischen dem Autoverwertern und Elektroverwertern erreicht werden. Die Errichtung eines Sammel- und Logistiksystems für die getrennten Komponenten ist schwierig, weil nur kleine Mengen von Elektronik in jedem Altfahrzeug ausgebaut werden können. Die Masse von einer Tonne Sauerstoffsensoren (80 g pro Einheit) kann beispielsweise eine geeignete Masse für den Transport zu einem Elektronikrecycler sein. Dazu müssen 12.500 Altfahrzeuge demontiert werden, was bei einen durchschnittlichen Input in Altfahrzeugdemontagebetrieben (500 Altfahrzeuge pro Jahr) mehr als 20 Jahre dauern würde. Aber beispielsweise kann durch die Integration in vorhandene Sammlungssysteme, wie die Werkstattentsorgung, die Optimierung von Sammlung und Logistik der getrennten elektronischen Komponenten erfolgen. Eine andere viel versprechende Optimierung kann durch Kombination der Logistik von Fahrzeugbestandteilen mit anderen Abfallströmen ähnlicher Zusammensetzung erreicht werden, wie beispielsweise die Logistik für Elektroaltgeräte mit Systemen zur Zwischenlagerung und dem Sortieren, um die angesammelten Materialien an spezialisierte Verwerter zur Behandlung und Wiederverwertung zu leiten.

Der Aufbau von Technik und Methoden zur Steuerung von Materialflüssen hinsichtlich Menge und Wirksamkeit wird sich auch nur dann lohnen, wenn der Zufluss von Altfahrzeugen für die Entsorgung in die Altfahrzeugdemontageanlagen erfolgt. Autoverwerter müssen auch einen ökonomischen Nutzen erzielen können, um sie zur Beteiligung an Logistiksystemen zu motivieren, statt Restkarossen ohne Separation elektronischer Komponenten an Schredderbetriebe zu geben.

12.3 Empfehlungen für die Separation von Komponenten mit kritischen und umweltrelevanten Metallen bei der Altfahrzeugdemontage

Komponentenschwerpunkte in Altfahrzeugen

Die Tabelle 71 zeigt die Verteilung der ausgewählten Komponenten nach Masse und Anzahl in den untersuchten Segmenten. Massemäßig befinden sich ca. 65 % der Komponenten im Motorraum oder sind vom Motorraum her zu erreichen. Ein zweiter Schwerpunkt ist der Innenraum mit einer zusätzlichen Konzentration im Bereich des Cockpits. Hier sind ca. 29 % der Komponenten vorzufinden. Als dritter Bereich ist das Heck bzw. der Stauraum über den Radkästen zu nennen, die elektrische Komponenten aufnehmen.

Daher zeigt die Verteilung der Anzahl und Masse von Komponenten mit kritischen und umweltrelevanten Metallen auf Fahrzeugbereiche (Tabelle 71), dass der Schwerpunkt bei der Separation auf den Motor- und Innenraum gesetzt werden sollte. Dort sind werthaltige Komponenten wie Motor und Getriebe mit hohem Eisen- und Aluminiumgehalt sowie Vor- und Hauptkatalysatoren kombiniert mit der Fahrzeugelektronik zu finden.

Separationsempfehlungen

Demontageempfehlungen für die einzelnen Komponenten werden aus den Ergebnissen der Wirtschaftlichkeitsbetrachtung (Kapitel 11.5, Tabelle 115) abgeleitet, bei der die möglichen Erlöse und der Separations- und Logistikaufwand ins Verhältnis gesetzt wurden. Eine Demontageempfehlung (+) wird für acht Komponenten festgestellt. Bei neun Komponenten erscheint eine eindeutige Empfehlung für oder gegen die Demontage nicht möglich (+/-). Ob im für diese Komponenten eine Demontage wirtschaftlich realisierbar ist, hängt stark von den Randbedingungen im Einzelfall ab. Bei 19 Komponenten kann, basierend auf den durchgeführten Untersuchungen der 11 jungen Altfahrzeuge, auf eine Wirtschaftlichkeit nicht geschlossen werden (-), beispielsweise kleine Motoren, Navigationsgerät, Klimasteuerung, Verteilerbox, Beleuchtung.

Tabelle 118: Separationsempfehlung (vergleiche Tabelle 115)

Lfd. Nr.	Komponente	Ur- teil					
М	Motoren, Lautsprecher						
1	Heizungs-ge- bläse	+					
7	Lichtmaschine	+					
2	Lenkung Servo- motor	+/-					
3	Anlasser	+/-					
4	Lüftermotor	+/-					
12	Scheibenwi- schermotor	+/-					

Lfd. Nr.	Komponente	Ur- teil
	Steuerung	
18	Inverter	+
19	Motorsteuerung	+
20	Getriebesteuerung	+
21	Fahrtsteuerung	+
111	Start/ Stopp Motor	+
22	Fahrwerksteuerung	+/-
83- 85	CD-Wechsler, TV-Tu- ner, Radiosteuerung	+/-
82	Infotainment	+/-

Lfd. Nr.	Komponente	Ur- teil
	Sensoren	
35	Sauer- stoffsensor	+
36	Side Assist	+/-
37	Ultraschall, Nahdistanzra- dar	+/-

Modellfahrzeug und Grenzaufwand der Separation

Auf Basis der in dieser Studie untersuchten jungen Altfahrzeuge und der dabei ermittelten Daten für die Komponentenseparation wurde rechnerisch aus den Mittelwerten der jeweiligen Komponentendaten (unabhängig von der Anzahl des Vorkommens) ein Modellfahrzeug mit 40 Fahrzeugelektronikkomponenten konstruiert (Tabelle 119). Dieses Beispiel zeigt Eckpunkte der Wirtschaftlichkeit bei der Separation von möglichst vielen elektronischen Komponenten. Allein das Verhältnis von Erlös zum Aufwand, welches für den Autoverwerter über alle 40 Komponenten gemittelt bei 43 % und für den Elektroverwerter bei nur 37 % liegt (Tabelle 119), zeigt, dass eine pauschale Separation diverser Komponenten nicht wirtschaftlich möglich ist. Selbst wenn die Anzahl der Komponenten auf diejenigen reduziert wird, die in Tabelle 115 mit einer Demontageempfehlung bzw. mit einer Aussicht auf Wirtschaftlichkeit bewertet wurden, erhöht sich das durchschnittliche Verhältnis von Erlös zum Aufwand des Autoverwerters nur auf 55 %.

Eine sehr wichtige Information der Tabelle ist der Grenzaufwand. Dieser ist die maximal zur Verfügung stehende Zeit für die Separation, so dass die resultierenden Kosten durch den Komponentenerlös (abzüglich der Logistikkosten) gedeckt werden.

Ein Autoverwerter kann anhand des Grenzaufwandes beispielhaft prüfen, ob die Separation für ihn sinnvoll ist. Empfehlenswert ist es, eine eigene Studie an einigen Fahrzeugen durchzuführen, um den eigenen betriebsspezifischen Aufwand zu ermitteln. Selbst gewonnene Daten lassen für den jeweiligen Betrieb eine exaktere Bewertung zu, unabhängig davon, wie positiv oder realistisch die in dieser Studie gezeigten Ergebnisse bewertet werden.

Tabelle 119: Wirtschaftlichkeitsbewertung anhand eines Modellfahrzeuges

Funkt. Einheit	Komponente	Auf- wand ATF ⁴³ [min]	Grenzauf- wand ATF [min]	Kosten ATF [€]	Kompo- nenten- erlös [€]	Kosten gesamt [€]	Groß-han- dels-erlös [€]
1	Heizungsgebläse	1,99	0,88	1,20	0,56	1,55	0,71
2	Servomotor	7,26	1,75	4,33	1,11	5,02	2,14
3	Anlasser	5,56	3,43	3,35	2,11	4,17	2,08
4	Lüftermotor	4,28	1,76	2,59	1,12	3,28	1,40
5	Lautsprecher*	0,35	0,08	0,21	0,05	0,23	0,05
6	Türverschluss	4,32	0,59	2,55	0,38	2,79	0,40
7	Lichtmaschine	7,93	6,43	4,83	3,95	6,37	5,24
9	Sitzverstellungen	1,30	0,25	0,77	0,16	0,87	0,20
13	Scheibenheber	2,52	0,41	1,49	0,26	1,65	0,21
13	Scheibenwischermotor	3,93	1,49	2,37	0,95	2,96	0,86
15	Navigationssystem	2,04	0,80	1,25	0,53	1,72	1,06
16	Kombiinstrument	1,31	0,35	0,79	0,23	1,00	0,62
19	Motorsteuerung	1,21	1,58	0,73	0,94	0,90	0,61
20	Getriebesteuerung	1,30	4,63	0,83	2,77	1,33	1,42
21	Fahrtsteuerung	3,74	2,97	2,26	1,81	2,85	1,41
22	Fahrwerksteuerung	0,25	0,85	0,16	0,51	0,25	0,28
23	Stellmotor Getriebe	0,92	0,34	0,56	0,21	0,69	0,25
23	Lenkungskontrolle	11,05	1,30	6,47	0,78	6,64	0,40
24	Alarmanlagenhupe	0,75	0,55	0,45	0,33	0,52	0,12
25	Klimasteuerung	0,72	0,62	0,43	0,37	0,51	0,22
26	Airbagsteuerung	4,67	0,64	2,74	0,38	2,81	0,31
27	Interfacebox	0,28	0,43	0,17	0,26	0,23	0,30
27	smarte Verteilerbox	3,48	0,79	2,04	0,48	2,15	0,41
28	passive Verteilerbox	2,21	1,22	1,31	0,73	1,47	0,47
29	dritte Bremsleuchte*	0,18	0,06	0,11	0,04	0,13	0,04

⁴³ Aufwand inklusive Separation von Störkomponenten. Im Falle mehrerer Zielkomponenten pro Störkomponente wurde der Aufwand für die Störkomponente proportional zur Masse der einzelnen Zielkomponenten aufgeteilt und den einzelnen Komponenten zugeschlagen.

Funkt. Einheit	Komponente	Auf- wand ATF ⁴³ [min]	Grenzauf- wand ATF [min]	Kosten ATF [€]	Kompo- nenten- erlös [€]	Kosten gesamt [€]	Groß-han- dels-erlös [€]
29	Rückscheinwerfer*	1,63	0,58	0,98	0,36	1,19	0,36
30	Kombileuchte*	2,11	2,65	1,35	1,66	2,27	1,66
36	Side Assist	0,57	0,55	0,34	0,33	0,40	0,23
37	Nahdistanzradar	1,63	0,62	0,96	0,37	1,03	0,22
37	Abstandssensor	1,40	0,80	0,83	0,48	0,91	0,16
46	Drosselklappe	4,75	0,76	2,81	0,48	3,11	0,57
63	Kamerasteuerung	3,83	0,82	2,24	0,49	2,34	0,31
67	Komfortsteuerung	3,25	0,78	1,91	0,47	2,01	0,57
73	Steuerung Sitzheizung	0,48	0,23	0,28	0,14	0,32	0,30
82	Infotainment	2,73	3,45	1,65	2,06	2,05	1,38
83	CD-Wechsler	5,79	0,67	3,43	0,44	3,82	0,62
84	TV-Tuner	6,24	0,45	3,67	0,30	3,94	0,91
85	Radiosteuerung	7,14	0,39	4,20	0,26	4,43	0,50
111	StartStopp innen	0,49	0,69	0,30	0,42	0,39	0,24
111	StartStopp Motorraum	0,20	1,06	0,13	0,64	0,25	0,40
	Summe	115,79	48,70	69,04	29,91	80,53	29,67
	Anteil Erlös/Kosten				43%		37%

^{*} ersatzweise Großhandelserlös für nicht bekannten Komponentenerlös eingesetzt

Optimierungsmöglichkeiten zur Steigerung der Wirtschaftlichkeit

Für den **Autoverwerter** ist entscheidend, dass seine Aufwendungen für Separation und Logistik wirtschaftlich sinnvoll sind, um das Unternehmen zu erhalten und fortentwickeln zu können. Er hat hinsichtlich der Fahrzeugelektronik die Möglichkeiten,

- die Separation zu beschleunigen, indem er für qualifizierte Mechaniker sorgt, eine durchdachte Ablauforganisation bei der Separation schafft und geeignete Arbeitsmittel einsetzt,
- zweckmäßige Mittel für die betriebsinterne Logistik bereitstellt,
- ausreichende Informationsquellen über die Fahrzeugelektronik, Fahrzeugkonstruktion, und Märkte zur Vermarktung der Komponenten zur Verfügung hat.

Seine Handlungsoptionen werden insbesondere durch die Fahrzeugkonstruktion, der damit verbundenen manuellen Demontage, Verwendung von einfachen Handwerkzeugen, das erreichbare Fahrzeugvolumen und Materialerlöse beim Verkauf an den Elektroverwerter eingeschränkt.

Vor diesem Hintergrund steht der Autoverwerter bei jeder Komponente vor der **Frage: Wieviel Zeit steht für die Separation zur Verfügung, um nachhaltig zu Wirtschaften?**

Für den **Elektroverwerter** ist ausschlaggebend, dass seine Materialerlöse höher sind als die gezahlten Beträge für Fraktionen zzgl. seiner Logistik- und Prozesskosten. Seine Handlungsoptionen umfassen:

- Aufbau von Partnerschaften mit Lieferanten von Elektronik aus verschiedenen Branchen und Abnehmern der gewonnenen Materialien
- Aufbau eines selbst betriebenen oder extern genutzten Transportlogistiksystems
- Beschaffung einer geeigneten Verfahrenstechnik zur Aufbereitung
- Ausreichende Informationen zur Steuerung seiner Aufbereitungsprozesse und des Handels

Seine Handlungsoptionen werden insbesondere durch die verfügbare Aufbereitungstechnik, die gegebenen Bestandteile und Materialien in der Fahrzeugelektronik, Transportkosten und vom Weltmarkt geprägten Großhandelspreise beeinflusst.

Somit stellt sich für den Elektroverwerter für jede Komponente die Frage: Wieviel kann er dem Autoverwerter für Komponenten zahlen?

Für den Auto- und Elektroverwerter ist gleichermaßen ein transparenter Markt wichtig, um auf externe Faktoren reagieren zu können. In Expertengesprächen wurden hierzu folgende konkrete Marktinformationen und Aktivitäten erkannt:

- Informationen über Art und Menge der Materialien in Komponenten, die für Elektroverwerter als Grundlage zur Bildung realistischer Preise für die Beschaffung von Fahrzeugelektronik dienen.
- Index zur Beschreibung des Materialwertes in einem ausgewählten konkreten Komponentenmix in den Altfahrzeugen, die zu einem aktuellen Zeitpunkt den Altfahrzeuginput der Autoverwerter darstellen. Dabei wird unterstellt, dass diese Fahrzeuge zeitnah in die Demontage gelangen und die Elektronik an Elektroverwerter vermarktet wird.
- Verfügbarkeit von Daten aus Herstellerdatenbanken oder aus herstellerunabhängigen Fahrzeugdemontagestudien inkl. Komponentenanalyse.
- Forum zum Austausch von Informationen über Separation von Komponenten aus Altfahrzeugen, Logistiksysteme und Elektroverwerter.
- Förderung der Entwicklung von Recyclingverfahren für relevante und kritische Metalle.

12.4 Informationen zur Planung der Separation von Fahrzeugelektronik für Autound Elektroverwerter

Wie die Recherche in Kapitel 3 zeigt, sind einzelne Informationen zur Verwendung von kritischen und umweltrelevanten Metallen aus der Literatur zu entnehmen. Grundsätzlich liegen aber zurzeit noch keine ausreichenden Informationen über die Verwendung von ORKAM-Metallen in elektronischen Komponenten vor. Außerdem hat sich gezeigt, dass sich die Verwendung von Metallen (Art und Menge) in Fahrzeugen im Zeitverlauf konstruktions- und technologiebedingt sowie unter dem Einfluss von Marktpreisen für Rohstoffe sprunghaft verändern kann. Nach Kenntnis der Verfasser sind Angaben über Metalle in elektronischen Komponenten den Fahrzeugherstellern und Bauteilezulieferern (teilweise) bekannt. Die Hersteller unterhalten eine IMDS – Datenbank (International Material Data System), in der Informationen über Zusammensetzung und Stoffe von Komponenten gesammelt werden (IMDS 2013). Eine solche umfassende Informationsquelle erscheint nützlich.

Für Elektroverwerter wären Informationen sinnvoll, welche ORKAM-Metalle in welchen Komponenten mit welchen Mengen vorhanden sind, um realistische Angebote für Autoverwerter abgeben zu können. Die Informationen wären auch für Autoverwerter nützlich, wenn eine Einzelbetrachtung je Fahrzeugmarke, Typ und Komponente zur Separationsentscheidung nötig ist.

Altautoverwerter müssen einerseits über Informationen verfügen, für welche elektronischen Komponenten ein Markt existiert, welche Abnehmer sowie Logistiker existieren und insbesondere welche

Komponentenerlöse erzielt werden können. Andererseits benötigen sie Informationen zur Lokalisierung und Identifikation der relevanten Komponenten. Informationen über praxiserprobte Methoden zur Demontage, um die kleinstmögliche Demontagezeit zu erreichen, sind ebenfalls hilfreich.

Diese Daten und Informationen müssen in geeigneter Form und Anwendbarkeit bereitgestellt werden und sollten allen Autoverwertern in geeigneter Weise leicht zugänglich sein. Das kann beispielsweise eine elektronische Datenquelle im Internet sein, die für ein bestimmtes Fahrzeug Informationen über relevante elektronische Komponenten, Elektroverwerter, Logistiksysteme und ggf. wichtige Informationen über Lage und Demontage der Komponenten enthält und die auf wenigen Blättern DIN A4 ausdruckbar sind.

Jede Nutzung zusätzlicher Informationen setzt voraus, dass der damit verbundene Aufwand durch die Komponentenerlöse gedeckt wird. Je seltener sich gleiche Fahrzeugmarken und -typen bei der Demontage wiederholen, desto weniger Zeit kann für die Demontageplanung investiert werden, um die Wirtschaftlichkeit zu erhalten.

Bei der Bereitstellung von Informationen sollte berücksichtigt werden, dass in der werkstattartigen Altautodemontage der Gegenwart keine umfangreichen Planungsprozesse in Verbindung mit Recherchen oder Kalkulationen in jedem einzelnen mittelständischen Betrieb mit 2 bis 25 Beschäftigten erwartet werden können.

Mit dem IDIS ist auf Grundlage der Altfahrzeugverordnung ein Informationsmedium für Autoverwerter geschaffen worden. Es enthält nach Erkenntnissen der Verfasser aber keine Materialinformationen, die einen Rückschluss auf das Vorhandensein von ORKAM-Metallen zulassen. Mit Herstellern und Importeuren könnte abgestimmt werden, ob mit dem IDIS auch oben skizzierte Informationen für Verwerter bereitgestellt werden können.

13 Ausblick

Die Empfehlungen zur Verwertung von Fahrzeugelektronik aus Altfahrzeugen orientieren sich neben den Ergebnissen dieses Projektes an den praktischen Erfahrungen der aktuellen branchenüblichen Altfahrzeugdemontage.

Aus der Elektroaltgeräteverwertung existieren Verfahrung und Anlagen zur Aufbereitung und Verwertung, die für Komponenten der Fahrzeugelektronik angewendet werden können.

Die Rückgewinnung von kritischen Metallen wird unter anderem durch die Wirtschaftlichkeit beeinflusst. Faktoren sind einerseits die Marktpreise für Metalle, andererseits die Verfügbarkeit geeigneter Verfahrenstechnik. Für Gold, Silber, Platin sowie auch Kupfer existieren die Märkte. Für die meisten anderen kritischen Metalle sind derzeit die bekannten Verfahren nicht wirtschaftlich oder existieren noch nicht. Ein Fortschritt ist vor allem durch den steigenden Einsatz der Metalle zu erwarten, beispielsweise werden Neodym und Praseodym für Magnete von Windkraftanlagen verwendet. Daraus können sich Chancen zur baldigen Entwicklung entsprechender Verfahrenstechnik zur Rückgewinnung der Magnetwerkstoffe ergeben. Um den Prozess zu beschleunigen, wird empfohlen, dass die öffentliche Hand weiter Forschung zur Wiederverwertung unterstützen und anschließend Investitionen in solche Anlagen sichern sollte.

Die kritischen Metalle haben im Verhältnis zum gesamten Fahrzeug nur einen sehr geringen Massenund Volumenanteil. Nach dem Schreddern sind die Metalle in Stäuben oder Agglomeraten verschiedener Materialien so stark verteilt, dass die Ergiebigkeit der Rückgewinnung deutlich sinkt oder sogar unmöglich ist. Im Rahmen eines Fachgesprächs zu diesem Projekt wurde von Expertenseite betont, dass die Rückgewinnung von kritischen und umweltrelevanten Metallen deutlich ergiebiger ist, wenn die Komponenten vor dem Schreddern separiert werden. Grundsätzlich ist es sinnvoll, die PRE-Schredder- der POST-Schredderaufbereitung vorzuziehen.

Besonders für Komponenten mit einem negativen Saldo von Kosten und Erlösen bei der Demontage und dem Recycling, die aber Stoffen und Materialien mit einer hohen strategischen und langfristigen volkswirtschaftlichen Bedeutung oder Umweltrelevanz enthalten, können beispielsweise zusätzliche Ausbauvorgaben die Rückgewinnung der Metalle und ihre hochwertige Verwertung stärken. Voraussetzung hierfür ist, dass der zusätzliche Aufwand des Altfahrzeug- und Elektroverwerters gedeckt wird.

Nachfolgende Projekte sollten die Analytik der empfohlenen Komponenten umfassen und sich mit Mengenstromabschätzungen befassen. Ferner ist auch an Logistiksystemen zu arbeiten, die der Kleinteiligkeit der Komponenten und dem z.T. zu erwartenden geringen Metallgehalt Rechnung tragen sollten. Mit Blick auf Informationskonzepte für Auto- und Elektroverwerter sollten die relevanten Informationen ermittelt werden, welche für die Anwender nützliche aber auch in der Praxis anwendbare Informationsgehalte umfassen. Die Bereitstellung sollte branchengerecht (einfacher Zugang, wenig Folgearbeit, klare Entscheidungsgrundlage) erfolgen.

14 Quellenverzeichnis

Al-jon (2013): Online-Produktpräsentation "Scrap & Auto Recycling Equipment". http://www.aljon.com/scrap-and-auto-recycling-equipment/end-of-life-vehicle-recycling-system/

Alonso, E., Field, F., Roth, R., Kirchain, R. (2011): Evaluating Dynamic Factors that Affect Rare Earths Scarcity, ISIE, Juni 2011.

Alonso, E., Wallington, T., Sherman, A., Everson, M., Field, F., Roth, R., Kirchain, R. (2012): An assessment of rare earth element content of conventional and electric vehicles. In: SAE, Int. J. Mater. Manf. 5(2):2012.

Angerer, G., Erdmann, L., Marscheider-Weidemann, F., Scharp, M., Lüllmann, A., Handke, V.r, Marwede, M. (2009): Rohstoffe für Zukunftstechnologien. Einfluss des branchenspezifischen Rohstoffbedarfs in rohstoffintensiven Zukunftstechnologien auf die zukünftige Rohstoffnachfrage. Stuttgart.

Arnaiz, S., Bains, N., Geraghty, K., Goosey, M., Greif, A., Malaina, M. (2006): The SEES Project, Chemical and Mechanical Recycling Techniques for End-of-Life Automotive Electronic Devices.

Audi (2013): http://m.audi-technology-portal.com/var/site/storage/images/atp/fahrwerk/radaufhaengungen-lenkung/servolen-kung/elektromechanische-servolenkung/12836-1-ger-DE/Elektromechanische-Servolenkung_full_iphone_retina_cropped.jpg, Zugriff Oktober 2013

Audi 2013a: http://m.audi-technology-portal.com/de/atp/Elektrik-Elektronik/Lichttechnologie/LED-Scheinwerfer/LED-Scheinwerfer, Zugriff Oktober 2013

Audi 2013b: http://m.audi-technology-portal.com/de/atp/Elektrik-Elektronik/Lichttechnologie/LED-Tagfahrlicht/LED-Tagfahrlicht, Zugriff Oktober 2013

Audi 2013c: http://m.audi-technology-portal.com/de/atp/Elektrik-Elektronik/Lichttechnologie/LED-Heckleuchten/LED-Heckleuchten, Zugriff Oktober 2013

AUTOHAUS (2013): Rubrik Daten & Studien, Marktdaten zum Download - Hersteller, Konzerne, Modelle und Segmente im Detail, Archiv: Neuzulassungen Dezember 2013,

 $http://www.autohaus.de/sixcms/media.php/2141/Segmente_12_2013.pdf.$

Batteryuniversity (2013): Types of Lithium-ion. http://batteryuniversity.com/learn/article/types of lithium ion, Zugriff Oktober 2013.

Becker, W., Simon-Hettich, B. et al. (2003): Toxicological and Ecotoxicological Investigations of Crystals and Disposal of LCDs.

BeST 2012: Uses & Applications of Beryllium. http://beryllium.eu/about-beryllium-and-beryllium-alloys/uses-and-applications-of-beryllium/, Zugriff 5.6.2012.

Blaser, F., Widmer, R. und Wäger, P. (2012a): Verwertung seltener Metalle aus der Automobilelektronik in der Schweiz: Systemübersicht und Probenahmekonzept. Bern.

Blaser, F., Castelanelli, F., Wäger, P., Widmer, R. (2012b): Seltene Metalle in Elektro- und Elektronikaltgeräten -Vorkommen und Rückgewinnungstechnologien. Bern.

BMUB, UBA (2014): Jahresbericht über die Altfahrzeug-Verwertungsquoten in Deutschland im Jahr 2012. www.bmub.bund.de/N50180/, Zugriff: 14. Juli 2016.

Bogdanski, G. (2009): Entwicklung und Analyse von Handlungsoptionen zur Umsetzung von Recyclingkonzepten für Flüssigkristall-bildschirme (LCD) für ein Unternehmen der Elektro(nik)altgeräterecyclingbranche.

Böni H., Widmer, R. (2011): Disposal of Flat Panel Display Monitors in Switzerland. EMPA, St. Gallen.

Bosch (2013a): Technik und Anwendung. http://rb-aa.bosch.com/boaasocs/neutral/html/de/kenngroessen.htm, Zugriff Oktober 2013.

Bosch (2013b): Pressemitteilung der Bosch AG, http://www.bosch-presse.de/presseforum/details.htm?txtID=6242, Zugriff Oktober 2013.

Buchert, M., Manhart, A., Bleher, D., Pingel, D. (2012): Recycling kritischer Rohstoffe aus Elektronik-Altgeräten - LANUV-Fachbericht 38. https://www.lanuv.nrw.de/uploads/tx_commercedownloads/30038.pdf, Zugriff 08.06.2016.

bvi (2013): BVI Magnet GmbH: Hartferritmagnete. http://www.bvi-magnete.de/hartferrit_magnete.php. Zugriff Oktober 2013.

Callparts (2014): Preise für Fahrzeugelektronik und deren Materialien zum Recycling aus Angeboten von diversen Recyclern.

Chancerel, P. et al. (2009): Assessment of Precious Metal Flows During Preprocessing of Waste Electrical and Electronic Equipment. Journal of Industrial Ecology, 13(5), pp.791–810.

Classen, M., Althaus, H.-J., Blaser, S., Tuchschmid, M., Jungbluth, N., Doka, G. et al. (2009): Life Cycle Inventories of Metals. Final report ecoinvent data v2.1, No. 10.Hg. v. Swiss Centre for Life Cycle Inventories. Dübendorf, Schweiz.

Cullbrand K., Magnusson, O. (2012): The Use of Potentially Critical Materials in Passenger Cars. Department of Energy and Environment, Chalmers University of Technology, Gothenburg, Sweden, Report No. 2012:13.

Delphi (2012): Elektromobilität – Thema für Zulieferer. http://www.energieregion.nrw.de/_database/_data/datainfopool/090508-1110-Delphi-E-Mobilitaet.pdf. Zugriff Februar 2012.

DisplaySearch (2012): Demand for Automotive Displays Forecast to Grow Nearly 50% by 2015, Santa Clara, Calif., February 22, 2012. www.displaysearch.com. Zugriff August 2012.

Du, X., Graedel, T. E. (2011): Global Rare Earth In-Use Stocks in NdFeB Permanent Magnets. In: Journal of Industrial Ecology, Volume 15, Number 6, S. 836-843.

Du, X., Restrepo, E., Wäger, P., Widmer, R. (2014): Scarce Metals in Conventional Passenger Vehicles and End-of-Life Vehicle Shredder Output.

Elbaz, M. (2008): Silicon Germanium Hetrojunction Bipolar Transistor Amplifiers Replace Gallium Arsenide for Wireless and Broadband Applications. Global Semiconductor Alliance (GSA).

EUWID (2014): Europäischer Wirtschaftsdienst, Recycling und Entsorgung, Ausgabe 45, Großhandelsankaufpreise für Altmetalle.

Erdmann, L., Behrendt, S., Feil, M. (2011): Kritische Rohstoffe für Deutschland "Identifikation aus Sicht deutscher Unternehmen wirtschaftlich bedeutsamer mineralischer Rohstoffe, deren Versorgungslage sich mittel- bis langfristig als kritisch erweisen könnte", im Auftrag der KfW Bankengruppe, Anhang zum Abschlussbericht.

ESG (2014): Recycling von Leiterplattenschrott. http://www.scheideanstalt.de/leiterplatten-recycling/. Zugriff Januar 2014.

ETKA (2013): Elektronischer Ersatzteilkatalog der Volkswagen AG, Version 7.4.

Fraunhofer-Institut für Angewandte Festkörperphysik (2012): Halbleiter Galliumnitrid spart Energie in Elektroautos und Solaranlagen, Pressemitteilung 7.9.2012. http://www.iaf.fraunhofer.de/de/news-medien/pressemitteilungen/presse-2012-09-07.html. Zugriff Oktober 2013.

Geraghty, K., Goosey, M., Malaina, M, Rodrigo, J., Larranaga, M. (2006): SEES - Sustainable Electrical & Electronic System for the Automotive Sector, Specific Targeted Research or Innovation Project (STREP), Priority 6.2: Sustainable surface transport, D4: Analysis and Demonstration Activity for E&E Recycling.

Goonan, T. G. (2011): Rare Earth Elements - End use and Reyclability. Scientific Investigations Report 2011-5094. Hg. v. USGS - U.S. Geological Survey und U.S. Department of the Interior. Reston, Virginia, http://pubs.usgs.gov/sir/2011/5094/pdf/sir2011-5094.pdf. Zugriff Juli 2012.

Greif, A. et al. (2006): Eco-Design of Automotive Electrical and Electronic System – The SEES Project –, Proceedings LCE.

Guberman, D. E. (2008 - 2011): Germanium. 2007 - 2010 Minerals Yearbook. Hg. v. USGS - U.S. Geological Survey, http://minerals.usgs.gov/minerals/pubs/commodity/germanium/myb1-2010-germa.pdf. Zugriff Oktober 2013.

Hagelüken, Christian (2005): Der Kreislauf der Platinmetalle - Recycling von Katalysatoren. In: Christian Hagelüken (Hg.): Autoabgas-katalysatoren. Grundlagen - Herstellung - Entwicklung - Recycling - Ökologie; mit 65 Tabellen. 2. Aufl. Renningen. http://www.preciousmetals.umicore.com/PMR/Media/spentAutocats/show_derKreislaufDerPlatinmetalle.pdf. Zugriff Oktober 2013.

Hagelüken, C. (2010): Edelmetallrecycling-Status und Entwicklungen, Gesellschaft der Metallurgen und Bergleute e.V., Sondermetalle und Edelmetalle. Vorträge beim 44. Metallurgischen Seminar des GDMB, 2012.

Hagen (2013), Sensoren und ihr Einsatzgebiet in der Automobilindustrie. http://www.fernuni-hagen.de/imperia/md/content/fakultaetfuermathematikundinformatik/agjob/vortrag_hassouna.pdf. Zugriff Oktober 2012.

HdT (2013): 5. Tagung Sensoren im Automobil, Haus der Technik, München.

Hella (2011): Fahrzeugelektronik leicht gemacht! Teil 1. http://www.hella.com/produktion/HellaPortal/WebSite/InternetSpezial/Spezial_d/e_rallye_08/documents/EE08_06_B_Electronics_Part1.pdf. Zugriff Oktober 2013.

Hella (2013): Karosserieelektronik. http://www.hella.com/hella-at/1017.html?rdeLocale=de. Zugriff Oktober 2013.

Hellmann, U., Teusch, D. (2006): Platin im Auto - Sensoren, deren Funktion auf dünnen Platin-Schichten beruht, machen zurzeit das Renne. In: Sensor-Magazin 1,2006.

ieee (2011): Long-Distance Car Radar. http://spectrum.ieee.org/green-tech/advanced-cars/longdistance-car-radar. Zugriff Oktober 2013.

ieee (2013): Evolution of a radar. http://spectrum.ieee.org/image/1928415. Zugriff Oktober 2013.

IMDS (2013): Informationen zur IMDS-Datenbank; verfügbar unter http://www.mdsystem.com. Zugriff Oktober 2013.

Infineon (2008): Bosch setzt auf Radarchip von Infineon – Wirtschaftspresse - 1. Dezember 2008. http://www.infineon.com/cms/de/corporate/press/news/releases/2008/INFATV200812-015.html. Zugriff Oktober 2013.

IPA (2013): International Platinum Group Association. www.ipa-news.com/en/55-0-Others.htm. Zugriff Oktober 2013.

Johnson Matthey (2012): Platinum Yearbook 2012. Hertfordshire. http://www.platinum.matthey.com/up-loaded files/PT 2012/platinum 2012 publication.pdf, Zugriff 2.11.2012.

Kempf (2005): SiGe BICMOS Play a growing role in mobile platform, WD&D, 12, 2005.

kfztech (2013): Sensoren im Auto. www.kfztech.de/kfztechnik/elo/sensoren/sensoren.htm. Zugriff Oktober 2013.

Knode, M. (2007): Demontage von elektronischen Baugruppen aus ELV. Präsentation auf dem Statusseminar des ReECar-Projekts am 9.10.2007. http://www.reecar.org/servlet/is/724/7-KnodeDemontage.pdf?command=downloadContent&filename=7-KnodeDemontage.pdf. Zugriff Oktober 2013.

Knode, M. (2008): Demontage von elektronischen Baugruppen aus ELV: Auswirkungen der komplexen Fahrzeuggestaltung. Präsentation auf dem Abschluss-Workshop des Projekts ReECar am 13.11.2008 in Dortmund. http://www.reecar.org/servlet/is/951/06-Knode-Demontage.pdf?command=downloadContent&filename=06-Knode-Demontage.pdf. Zugriff Oktober 2013.

Knode, M. (2009): Kapitel 5.2.3 Demontage von elektronischen Baugruppen aus Altahrzeugen. In: ReECar – Nachhaltigkeit durch den Einsatz von Gebrauchtteilen in der Kfz-Elektronik. Abschlussbericht. Berlin.

Lachner, R. (2008): ICs für Kfz-Radar auf SiGe-Basis. GMM Workshop: "Hochfrequenz-Halbleitertechnologien für Automobilanwendungen" München, 23. Juni 2009.

Li, H., Rein, H.-M., Suttorp, T., Bock, J. (2004): Fully integrated SiGe VCOs with powerful output buffer for 77-GHz automotive Radar systems and applications around 100 GHz. In: IEEE Journal of Solid-State Circuits. 39, Nr. 10, 2004, S. 1650–1658.

Lim, S-R., Kang, D., Ogunseitan, O.A., Schoenung, J.M., Potential Environmental Impacts from the Metals in Incandescent, Compact Fluorescent Lamp (CFL), and Light-Emitting Diode (LED) Bulbs, Environ. Sci. Technol., 2013, 47 (2), pp 1040–1047.

Lorek, F. (2013): Blaulicht-Tempo: LEDs im Auto kommen voran, Posted on 28.5.2013 by Fritz Lorek unter http://fast-voice.net/2013/05/28/blaulicht-tempo-leds-im-auto-kommen-voran/. Zugriff Februar 2014.

Martin, R. (2009): Verwendung von Flüssigkristall- Displays sowie Verfahren zu deren Verwertung.

MDSYSTEM (2013): IMDS Benutzerhandbuch. http://www.mdsystem.com/html/data/imds_usermanual_de_7.2.pdf. Zugriff Oktober 2013.

Mercedes-Benz (2005): Umwelt-Zertifikat Mercedes-Benz S-Klasse. http://nachhaltigkeit.daimler.com/daimler/annual/2009/nb/German/pdf/Umweltzertifikat Mercedes-Benz S-Klasse.pdf. Zugriff Oktober 2013.

Mercedes-Benz (2007): Umwelt-Zertifikat C-Klasse T-Modell. http://nachhaltigkeit.daimler.com/daimler/annual/2009/nb/German/pdf/Umweltzertifikat_Mercedes-Benz_C-Klasse_T-Modell.pdf. Zugriff Oktober 2013.

Mineta, K., Okabe, T. H. (2005): Development of a recycling process for tantalum from capacitor scraps. Journal of Physics and Chemistry of Solids 66.

MMPA (o.J.): Magnetic Materials Producers Association: Standard Specifications for Permanent Magnet, mmpa Standard No. 0100-00. www.intl-magnetics.org/publications.php. Zugriff Oktober 2013.

Moskalyk, R. (2004): Review of germanium processing worldwide, in: Minerals Engineering 17 (2004), 393-402.

NGK (2012a): NGK-Pressemitteilung vom 01.06.2012 http://www.ngk.de/presse/ngk-pressemitteilung/article/bmw-setzt-im-neuen-20-liter-vierzyliner-auf-doppel-edelmetall-zuendkerzen-von-ngk-spark-plug-europe/ Zugriff Oktober 2013

NGK (2012b) NGK Pressemitteilung: http://www.ngk.de/presse/ngk-pressemitteilung/article/neue-zuendkerze-fuer-den-aftermar-ket-doppel-platin-fuer-mercedes-benz-fahrzeuge/; Zugriff Oktober 2013

NGK (2013a): NGK Zündkerzen - damit der Funke überspringt. http://www.ngk.de/vertrieb/produkte-und-sortimente/zuendkerzen/. Zugriff Oktober 2013.

NGK (2013b): Informationen zu Zündkerzen unter http://www.ngk.de/produkte-technologien/zuendkerzen/zuendkerzentechnologien/edelmetallzuendkerzen/. Zugriff Oktober 2013.

Niessner, W. (2009): Zündkerze und Verfahren zu ihrer Herstellung, Patent DE 102007052266 A1.

Oguchi, M., Murakami, S., Sakanakura, H., Kida, A., & Kameya, T. (2011). A preliminary categorization of end-of-life electrical and electronic equipment as secondary metal resources. National Institute for Environmental Studies, The University of Tokyo, Yokohama National University.

ReEcar (o.J.) Nachhaltigkeit durch den Einsatz von Gebrauchtteilen in der Kfz-Elektronik" (ReECar): http://www.reecar.org/serv-let/is/1/. Zugriff Oktober 2013.

RePro (2012): Sander, K. et.al.: Weiterentwicklung der abfallwirtschaftlichen Produktverantwortung unter Ressourcenschutzaspekten am Beispiel von Elektro- und Elektronikgeräten (RePro). Laufendes Forschungsvorhaben im Auftrag des Umweltbundesamtes, UFOPLAN, FKZ 3711 95 318, Meilensteinbericht AP 1 "Ressourcenrelevante Metalle in Elektroaltgeräten". http://www.oeko-pol.de/archiv/material/RePro%20Meilensteinbericht%201.pdf. Zugriff Oktober 2013.

ReStra (2013): Sander, K. et.al.: Ermittlung von Substitutionspotenzialen von primären strategischen Metallen durch Sekundärmaterialien. Kurztitel: Recyclingpotenzial strategischer Metalle – ReStra. Laufenkdes Forschungsvorhaben im Auftrag des Umweltbundesamtes, UFOPLAN, FKZ 3711 93 339, Bericht zu Arbeitspaket 2 Ermittlung von Recycling- und Substitutionspotenzialen strategischer Metalle in bestimmten Abfällen, Dessau, unveröffentlicht.

RICHTLINIE 2007/46/EG DES EUROPÄISCHEN PARLAMENTS UND DES RATES vom 5. September 2007 zur Schaffung eines Rahmens für die Genehmigung von Kraftfahrzeugen und Kraftfahrzeuganhängern sowie von Systemen, Bauteilen und selbstständigen technischen Einheiten für diese Fahrzeuge (Rahmenrichtlinie),

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:2007L0046:20110224:DE:PDF. Zugriff 08.06.2016.

Rieger, R. (2009): Die Verwendung von seltenen Erdmetallen in der Elektrogeräte- und Fahrzeugproduktion und ihre Erfassungsmöglichkeiten im Materialrecycling; Diplomarbeit, TU Dresden.

Rodrigo, J., Castells, F. (2004): Sustainable Electrical & Electronic System for the Automotive Sector - Integrated Assessment of Automotive EES, Brüssel.

Sakai, S., Yano, J., Muroi, T., Waranabe, N. (2013): Dismantling of conventional and hybrid vehicles for End-of Life Vehicle Management.

Scharnhorst, W., Althaus, H.J., Classen, M., Jolliet, O., Hilty, L. (2005): The end of life treatment of second generation mobile phone networks: Strategies to reduce the environmental impact. Environmental Impact Assessment Review 25 (2005), 540–566.

Scharp, M. (2009): Seltene Metalle und Zukunftstechnologien. Institut für Zukunftsstudien und Technologiebewertung. BewarE, 2009. http://www.hss.de/fileadmin/migration/downloads/FachforumPhysik_Scharp.pdf. Zugriff April 2011.

Scheideanstalt (4/2014): Leiterplatten Klasse I. http://www.scheideanstalt.de/leiterplatten-klasse-1/.

Schmid, D., Zur-Lage, L. (2014): Perspektiven für das Recycling von Altfahrzeugen, Recycling und Rohstoffe, Band 7.

Schweimer, G. & Levin, M. (1999): Sachbilanz des Golf A4, ohne Ort zitiert nach Blaser 2012.

SEES (2005): Kriegl, M. et al.: SEES - Sustainable Electrical & Electronic System for the Automotive Sector, Bericht D3: Dismantling Manuals for EES.

SEES (2007): Sustainable Electrical & Electronic System for the Automotive Sector, Abschlussbericht. http://cordis.europa.eu/publication/rcn/11885 en.html. Zugriff Oktober 2013.

Sigma-Aldrich, C. (2010): Indium tin oxide ITO. http://www.sigmaaldrich.com/catalog/ProductDetail.do?N4=494682|ALD-RICH&N5=SEARCH_CONCAT_PNO|BRAND_KEY&F=SPEC. Zugriff Oktober 2013.

Skinner, B. (1979): Earth Resources. In: Proceedings of the National Academy of Sciences of the United States of America. pp. 4212–4217.

Socolof, M. L., Overly J. G. et al. (2005): Environmental life-cycle impacts of CRT and LCD desktop computer displays. In: Journal of Cleaner Production 13: 1281-1294.

Spengler, L., Reihlen, A., Sander, K., Jepsen, D., Reintjes, N. (2012): Expertise Leuchtdioden, Studie im Auftrag des Umweltbundesamtes, Forschungskennzahl (UFOPLAN) 3709 93 306, Dessau.

Stephan, J. et al. (2010): Verwertungspotential Autoelektronik - Studienkonzept für Rohstoffrückgewinnungspotentiale aus der Fahrzeugelektronik, Berlin, Deutschland: Fraunhofer-Institut für Mikroelektronik, Bundesamt für Umwelt BAFU.

Stevenson, R. (2011): Long-Distance Car Radar. Affordable radar will let every car see through fog, brake on its own, and track other vehicles hundreds of meters ahead. http://spectrum.ieee.org/green-tech/advanced-cars/longdistance-car-radar/0.Zugriff Oktober 2013.

Stephenson, R. et al. (2004): Electrical Performance Characteristics of MLCC's with low Laydown AgPd Powders. In "CARTS Europe 2004: 18th Annual Passive Components Conference, Oct. 18 – 21, 2004.

Stiftung Autorecycling Schweiz: Newsletter "Info Nr. 17," Mai 2012. http://c1940652.r52.cf0.rack-cdn.com/50c853b2fb4f440e78000221/2012.pdf. Zugriff Oktober 2013.

Szweda, R. (HG) (2006): Silicon Germanium Materials & Devices - A Market & Technology Overview to 2006.

TDK (2009): NTC Thermistors, SMD, Mai 2009. https://www.tdk.co.jp/tefe02/eb221_ntcg.pdf. Zugriff Oktober 2013.

TDK (2011): Neodymium-Iron-Boron Magnets, Issue date: May 2011. http://www.tdk.co.jp/tefe02/magnet.htm. Zugriff Oktober 2013.

TDK (2013a): Magnetanwendungen. www.tdk.co.jp/tefe02/magnet.htm. Zugriff Oktober 2013.

TDK (2013b): Chip Varistors - Countermeasure for surge voltage and static electricity, 2013.

http://www.tdk.co.jp/tefe02/e9c11_avr.pdf. Zugriff Oktober 2013.

Techniklexikon (o.J.): Technik auf den Punkt gebracht. http://www.volkswagen.de/de/technologie/technik-lexikon.html. Zugriff 17.06.2016.

TU Clausthal (2012): Projekt CarRing II. http://www.in.tu-clausthal.de/abteilungen/technische-informatik-und-rechnersysteme/forschung/abteilung-rechnernetze/projekt-carring-ii/. Zugriff Februar 2012.

UBA / BMU 2013: Kohlmeyer, R.: Altfahrzeug-Verwertungsquoten in Deutschland im Jahr 2011 gemäß Art. 7 Abs. 2 der Altfahrzeug-Richtlinie 2000/53/EG, Qualitätsbericht: Beschreibung der verwendeten Daten. Dessau-Roßlau.

USGS (2006): U.S. Geological Survey: Mineral Commodities, Reston, USA.

USGS (2007) U.S. Geological Survey: Mineral Commodity Summaries 2007 Minerals Yearbook: Volume I. -- Metals and Minerals. http://minerals.usgs.gov/minerals/pubs/commodity/myb/ http://minerals.usgs.gov/minerals/pubs/mcs/2007/mcs2007.pdf. Zugriff Oktober 2013.

Volkswagen (2013a): http://www.volkswagen.de/de/Volkswagen/InnovationTechnik/technik-lexikon/elektromechanische_servolenkung.html. Zugriff Oktober 2013.

Volkswagen (2013b): http://www.volkswagen.de/de/Volkswagen/InnovationTechnik/technik-lexikon/elektrohydraulischeservolenkung.html. Zugriff Oktober 2013.

Wäger, P., Widmer, R., Stamp, A. (2011): Scarce technology metals – applications, criticalities and intervention options. St. Gallen.

Wäger, P., Widmer, R., Restrepo, E., Du, X. (2013): Recovery of scarce metals from automobile electronics in Switzerland. Davos.

Widmer, R., Wäger, P. (2013): Entsorgung von Automobilelektronik. In: Fachbericht Swico, SENS, SLRS 2013, S. 27-30. http://www.swicorecycling.ch/downloads/dokumente/swicosensfachbericht2013dpdf.pdf/1296. Zugriff Oktober 2013.

Wikipedia (2008): Indium-Gallium-Arsenide. http://en.wikipedia.org/wiki/indium_gallium_arsenide. Zugriff Oktober 2013.

wiwo (2014): Audi baut Tablet-Display ins Auto ein, Pressemitteilung vom 08.01.2014. http://www.wiwo.de/unternehmen/auto/ces-audi-baut-tablet-display-ins-auto-ein/9304324.html. Zugriff Februar 2014.

Yano (2013): Diskussion zur Verwendung strategischer Metalle in Autos, pers.com. Oktober 2013.

ZVEI (2013): Umbrella Specifications. http://www.zvei.org. Zugriff Oktober 2013.

15 Anhang

15.1 Anhang 1: Leiterplattenqualitäten

Beispielhafte Differenzierung von Leiterplattenqualitäten nach ESG (2014):

Leiterplatten der Sortierklasse I zeichnen sich dadurch aus, dass sie neben vielen kleinen Bauteilen wie Chips, ICs, E-Proms, Prozessoren, Quarzen und Transistoren viele sichtbare Vergoldungen haben. Vergoldete Kontakte können entweder in Form von Steckern bzw. Slots zur Aufnahme von Speicher-RAM, Karten, Prozessoren, etc. auf der Platine sein, als auch am Rande der Leiterplatte in Form von Steckerleisten oder Flachkontakten, um die Platine damit, z. B. bei Großrechnern oder Maschinensteuerungen in die entsprechenden Rückwände einstecken/verbinden zu können. Innerhalb der klassischen Klasse I gibt es inzwischen 3 Unterkategorien/Preis- bzw. Sortierungsgruppen für den Leiterplatten-Ankauf bzw. die jeweilige Ankaufpreiskalkulation:

Bei Leiterplatten der Klasse 1-A handelt es sich um alte Leiterplatten mit galvanisch vergoldeten Kontakten/Steckerleisten, sehr vielen kleinen und dicht gesetzten Chips, meist aus alten Großrechnern/Servern. Die Platinen dürfen nicht beraubt sein, Anhaftungen wie Bleche, Rahmen und Kühlkörper sind entfernt.

Bei Leiterplatten der Klasse 1-B handelt es sich um Leiterplatten aus Computern/Industriegeräten welche sichtbare Vergoldungen, zahlreiche edelmetallhaltige Chips/Transistoren und Steckkontakte haben. Bei Motherboards fallen nur jene mit grüner Grundplatte hierunter. Bleche und Kühlkörper sind entfernt, ebenso Batterien.

Bei Leiterplatten der Klasse 1-C handelt es sich um bunte Motherboards aus Computern (gelb, blau, orange, lila,...). Außerdem um Platinen der Klassen 1-A und 1-B, bei denen Eisen- und Aluminiumanhaftungen wie Bleche und Kühlkörper nicht entfernt, bzw. von denen edelmetallhaltige Bauteile wie Chips entfernt wurden.

Einser Platinen können z. B. Computerplatinen, Großrechnerplatinen/Serverplatinen, Industriesteuerungs-Platinen, Telefonplatinen, Grafikkarten, Soundkarten und Maschinensteuerungsplatinen sein.

Leiterplatten der Klasse 2 unterscheiden sich von denen der Leiterplatten Klasse 1 dadurch, dass es weniger sichtbare Goldkontakte gibt. Platinen der Klasse II enthalten viele kleine Bauteile wie Chips, evlt. Relais, Transistoren, Quarze, etc. aber keine Aufbauten größer als ein Daumen. Der Edelmetallgehalt ist deutlich geringer als bei Klasse I Platinen, aber immer noch höher als bei Leiterplatten Klasse III. Leiterplatten dieser Preisgruppe stammen oft aus Maschinensteuerungen, Flachbildschirmen, Videorekordern, CD-Playern, Autoelektronik, Autoradios, etc.

Leiterplatten der Klasse 3, auch als Low-Grade Leiterplatten bezeichnet, sind Platinen mit großen Bauteilen wie Kühlkörper, Trafos, Spulen, Kondensatoren etc., bei denen es beim Recycling weniger um die in nur sehr geringer Konzentration enthaltenen Edelmetalle geht, als vielmehr um die enthaltenen NE-Metalle. Bei diesen Platinen sind kaum sichtbare Vergoldungen vorhanden und nur wenige Chips, dafür aber viele große Bauteile. Eine Faustregel, ab wann eine Platine auf jeden Fall zur Klasse III gehört, ist, wenn sich Bauteile auf der Leiterplatte befinden, welche größer sind als ein Daumen. Klasse 3 Platinen kommen zum Beispiel aus Fernsehern, Monitoren, Netzteilen, Hifi-Anlagen, Radios, KFZ, usw.

15.2 Anhang 2: Programmbeschreibung des Werterechners

15.2.1 Hinweise zur Excel-Datei und der Sicherung des Programms

Der Werterechner wurde mit Hilfe einer Microsoft Excel Version innerhalb eines Microsoft Office 2010-Pakets erstellt. Es zeigte sich, dass das Programm in vielen Bereichen nicht kompatibel zu älteren MS Office-Versionen ist. Eine volle Funktionsfähigkeit des Werterechner-Programms kann somit nur bei Verwendung einer MS Office Version ab 2010 gewährleistet werden.

Der entwickelte Rechner besteht hauptsächlich aus insgesamt 20 Haupt-Programmseiten und 41 Materialdatenblättern der einzelnen ORKAM-Elemente. Diese Programmseiten ermöglichen dem Benutzer die weitestgehend freie Eingabe von Daten zum Gesamtprozess und den zu demontierenden ORKAM-Elementen.

Das Programm ist so aufgebaut, dass eine Programmführung allein durch Benutzung der Pfeiltasten, des Nummernfeldes und der Tastatur möglich ist. Die Benutzung nur dieser aufgeführten Optionen zum Navigieren durch das Programm und den einzelnen Tabellenblättern, kann an dieser Stelle als die effizienteste und sicherste Methode der Benutzung des Wertrechners empfohlen werden.

Im Programm werden farbige Formen als "Taster" für die Ausführung eines Programmschrittes verwendet, die im Folgenden als "Schaltflächen" bezeichnet werden. Durch einen Mausklick auf diese, wird die auf der Schaltfläche benannte Funktion ausgeführt.

Vielfach besteht im Programm die Gefahr der unbeabsichtigten Änderung des Programmcodes durch den Benutzer. Dies führt u. U. zu einer fehlerhaften Ausführung der hinterlegten Rechenroutinen. Daher wurden einige Maßnahmen zur Sicherung des Programms vor unsachgemäßer Benutzung und (ungewollter) Veränderung des Programmcodes durch den Benutzer eingerichtet.

Folgende Maßnahmen wurden angewandt, um dem Benutzer alle notwendigen Zugriffsmöglichkeiten bereitzustellen, die Fehlerträchtigkeit durch falsche Bedienung und Eingriffe in das Programm jedoch weitestgehend einzuschränken:

- Die Gitternetzlinien, Überschriften sowie die Bearbeitungsfenster der einzelnen Tabellenblätter wurden ausgeblendet.
- Die Bildlaufleisten zum "Scrollen" der Ansicht sowie die Registerkarten der einzelnen Tabellenblätter sind ausgeblendet.
- Die Fensteransichten auf den Tabellenblättern sind auf den jeweiligen Arbeitsbereich fixiert.
 Ein Scrollen des Bildes durch die Pfeiltasten der Tastatur oder dem Scrollrad der Maus funktioniert daher nur eingeschränkt.
- Das Programm läuft permanent im "Vollbild"-Modus.
- Die Arbeitsmappe bzw. einzelne Tabellenblätter sind durch ein Passwort geschützt. Das Passwort zur Aufhebung der Sicherung aller Tabellenblätter des Programms lautet: "ORKAM" (Bitte Großschreibung aller Buchstaben beachten).

Zur Verbesserung der Orientierung und Navigation im Programm, wurden die Haupt-Programmseiten des Rechners durchnummeriert. Diese Nummerierung wird nicht nur in dieser Anleitung als Referenz benutzt, sondern soll auch im Programm helfen, die Übersicht zu behalten. Abbildung 43 zeigt die verwendeten Nummerierungen, wie sie auch auf den Programmseiten wiederzufinden sind.

Abbildung 40: Nummerierung der Haupt-Programmseiten des Werterechners

Es ist möglich, dass sich die in dieser Anleitung dargestellten optischen Ausführungen der Programmseiten leicht von jenen im Programm unterscheiden. Die Unterschiede sind jedoch nicht inhaltlicher Natur. Möglich ist beispielsweise, dass ein geringfügig anderer Aufbau der Seiten oder eine Verschiebung des Spektrums der benutzten Farben auftritt.

Es ist im Rechner darauf geachtet worden, möglichst überall konsistente Einheiten für die Eingabewerte zu verwenden, um Irritationen des Benutzers hinsichtlich der Eingabewerte zu vermeiden. Größtenteils sind die Eintragungen der Daten auf die Einheit Euro pro Kilogramm ausgerichtet. Nur bei den Eintragungen der Rahmendaten sowie der Absatzpreise der unterschiedlichen Komponenten-Fraktionen ist bewusst eine Ausnahme von dieser Einheitlichkeit gemacht worden. Hier müssen Werte in Euro pro Tonne eingegeben werden, da in der Verwertungsbranche meist diese Einheit angewandt wird.

15.2.2 Verwendung des Werterechners

Im Folgenden werden die Verwendung des Werterechners und die einzelnen Programmseiten näher beschrieben.

15.2.2.1 Die Startseite und Optionen der Datenlöschung (Programmseite 1 und 2)

Der Rechner ist so eingerichtet, dass das Programm nach jedem Neustart bei dem ersten Tabellenblatt der Excel-Datei beginnt. Das erste Fenster des Programms ist die sogenannte "Startseite". Abbildung 41 gibt die Ansicht der Startseite wieder.

Abbildung 41: Startseite (Programmseite 1)

Bei der Benutzung des Rechners kann es schnell zu einer immensen Anzahl unterschiedlicher Werte und Daten im Eingabebereich kommen. Es besteht daher die Gefahr, dass dem Benutzer die Übersicht über eingegebene Daten schwer fällt und ungewollte Datenfragmente alter Berechnungen übersehen werden. Daher wurde die Option einer automatischen Löschung der Daten durch ein Unterprogramm

des Rechners eingerichtet, um unter Umständen übersehene Fehleintragungen zu korrigieren und letzte Datenspuren vorheriger Projekte zuverlässig zu entfernen.

Auf der Startseite können hierzu, per gekennzeichneter Schaltfläche, weitere Schaltflächen zur Ausführung von automatischen Löschungen eingeblendet werden. Um eine Löschung von Daten durch unbeabsichtigte Benutzung dieser Schaltflächen weitestgehend vermeiden zu können, sollten diese nur zur direkten Benutzung eingeblendet und dann sofort nach Datenlöschung wieder durch die entsprechende Schaltfläche ausgeblendet werden.

Da die Datenlöschung eine sehr wichtige und nützliche Funktion des Rechners ist, jedoch auch Gefahren durch die unbeabsichtigte Datenbereinigung mit sich bringt, wird auf diese Schaltflächen im Folgenden näher eingegangen (Tabelle 120).

Tabelle 120: Beschreibung der Schaltflächenfunktionen zur Datenlöschung

Tabelle 120. Describerating der Schalthachemanktionen zur Datenloschung						
Bezeichnung der Schaltfläche	Funktionsbeschreibung					
"Neues Projekt"	Alle Eingaben, die ein Benutzer innerhalb des Programms gemacht hat, werden gelöscht. Der Benutzer sollte sich vergewissern, keine Daten zu löschen, die u.U. noch benötigt werden. Daher empfiehlt sich das Anlegen einer Sicherungskopie vor Nutzung dieser Schaltfläche.					
"Aktuelles Projekt"	Zugang zum Hauptmenü, ohne bereits eingegebene Daten eines Benutzers zu löschen.					
"Eingabedaten Fahrzeugverwerter löschen"	Nur bereits eingegebene Daten auf Seiten des Fahrzeugverwerters werden gelöscht. Folgende Angaben des Fahrzeugverwerters werden gelöscht: • Höhe der Werkstattkosten [€/h] • der Aufschlagsfaktor • Höhe der Transportkosten [€/t] • erzielbare Vergütungen der demontierten Komponenten bei Abgabe an einen Elektroaltgeräteverwerter [€/t] • Auswahl der zu demontierenden Komponenten • angegebenes Gewicht der Bauteile [kg]					
"Eingabedaten Elektronikverwerter löschen"	Nur bereits eingegebene Daten auf Seiten des Elektroaltgeräteverwerters werden gelöscht. Folgende Angaben des Elektroverwerters werden gelöscht: • Höhe der Transportkosten [€/t] • Höhe der Prozesskosten [€/t] • Höhe der Gesamtrecyclingquote [%] • erzielbare Vergütungen bei Verkauf der erhaltenen Werkstoffe und Fraktionen [€/t]					
"Materialinhalte der einzel- nen Komponenten löschen"	Alle Angaben zu Materialinhalten der einzelnen Komponenten, die durch einen Benutzer eingegeben wurden, werden gelöscht. Der Benutzer sollte sich vor Nutzung der Schaltfläche vergewissern, dass die Daten entweder nicht mehr benötigt werden oder eine Sicherheitskopie angelegt wurde.					

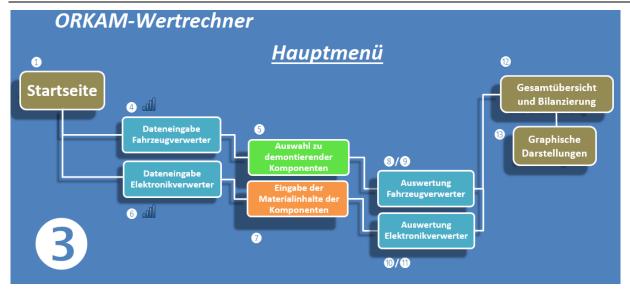
Bei Betätigung einer der Löschtasten ist in den nächsten Sekunden ein Durchlauf des Programms durch verschiedene Bereiche des Excel-Projektes auf dem Bildschirm zu sehen.

Nach jedem erfolgreichen Ablauf eines der hinterlegten Makros zur Löschung von Daten wird der Benutzer zu einem Bestätigungsbildschirm geführt. Dieser bestätigt zum einen den Vollzug der gewünschten Programmaktion und erinnert zum anderen den Benutzer daran, dass eine Neu-Eingabe von Datensätzen notwendig ist.

Abbildung 42 zeigt den Bestätigungsbildschirm nach einer Datenlöschung.

Abbildung 42: Bestätigung der Datenlöschung (Programmseite 2)

Es besteht auch die Möglichkeit, alle bestehenden Daten in den Eingabefeldern der Benutzungsmasken als Arbeitsgrundlage für neue Projekte zu benutzen.


Hierzu wählt der Benutzer auf der Startseite die Option "Aktuelles Projekt weiter bearbeiten", um zur nächsten Seite, dem "Hauptmenü", zu gelangen. Auf diese Art und Weise können die bestehenden Eintragungen auch als "Datenbank" fungieren. Diese kann durch regelmäßige Benutzung des Wertrechners und durch regelmäßige Aktualisierung von sich veränderten Werten möglichst genau an die realen Umgebungsbedingungen und spezifischen Ansprüche des Benutzers angepasst werden. Somit wird eine schnelle Berechnung von Einflüssen tagesveränderlicher Marktdaten möglich und verschiedenste Szenarien zur Ermittlung des wirtschaftlichsten Prozessweges zur Demontage der Elemente können schnell und unkompliziert simuliert werden.

15.2.2.2 Das Hauptmenü (Programmseite 3)

Das Tabellenblatt 3 des Wertrechners ist die zentrale Seite zur Benutzung des Programms und ist dementsprechend mit "Hauptmenü" betitelt.

Dieses Tabellenblatt zeigt eine Übersicht über die verschiedenen Ebenen des Programms und ermöglicht einen direkten Zugriff auf fast jeden Bereich der Softwareumgebung. Abbildung 43 gibt den Aufbau dieser Seite wieder.

Abbildung 43: Das Hauptmenü (Programmseite 3)

Die Funktion der Programmseiten 4 bis 7 besteht in der Eingabe und Definition von Werten und Daten zum Demontage- bzw. Recyclingprozess. Die Programmseiten 8 bis 11 geben Auswertungen zu den Ergebnissen der Berechnungen, spezifiziert auf den Altfahrzeug- bzw. Elektronikverwerter, wieder. Die Seiten 12 bis 20 wurden für die übersichtliche Darstellung der Ergebnisse und zur Bestimmung der Wirtschaftlichkeit des Gesamtprozesses und seiner einzelnen Prozess-Phasen eingerichtet.

An den Schaltflächen zur Dateneingabe des Altfahrzeug- und Elektronikverwerters ist jeweils eine Anzeige von vier Symbolbalken zu sehen. Diese zeigt vier blassblaue Balken, wenn keine Rahmendaten auf den jeweiligen Seiten eingegeben wurden. Sind auf den Dateneingabeseiten alle notwendigen Daten eingegeben, erscheinen diese Anzeigen als vier dunkelblaue Datenbalken.

15.2.2.3 Dateneingabe: Programmseite 4

Zu Beginn ist es dem Benutzer freigestellt, bei welchen Eintragungen von Datensätzen er beginnen möchte. Die Beschreibung des Programms beginnt an dieser Stelle mit der Programmseite 4, der Dateneingabeseite für die Rahmendaten des Altfahrzeugverwerters (Abbildung 44).

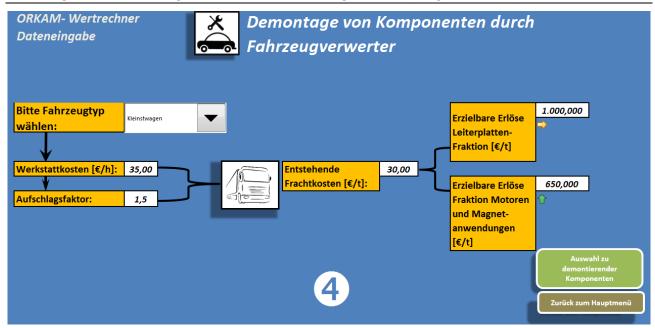


Abbildung 44: Dateneingaben durch den Altfahrzeugverwerter (Programmseite 4)

Über ein Steuerelement (Drop-down-Menü) ist es möglich, ein Fahrzeug der im Wertrechner betrachteten und mit Datensätzen hinterlegten Fahrzeugsegmente auszuwählen. Diese Auswahl bezieht sich direkt auf die in Kapitel 7.3, Tabelle 68, aufgeführte Auswahl der im Rahmen dieses Projektes betrachteten Fahrzeugsegmente.

Weitere Daten, die auf dieser Seite vom Fahrzeugverwerter eingetragen werden können, sind:

- Wahl des Fahrzeugsegments
- Angabe der Werkstattkosten
- Angabe des Aufschlagsfaktors
- Angaben zu entstehenden Frachtkosten
- erzielbare Vergütungen bei Verkauf der erhaltenen Komponenten an einen Elektronikverwerter

Unter den Eingaben der Erlöse bei Verkauf der Fraktionen sind jeweils farbige Pfeile zu erkennen. Werden die Demontagekosten der ausgewählten Komponenten durch ihren Verkauf als Gesamtfraktion bei aktuell eingegebenem Preis gedeckt, so ist hier jeweils ein grüner, nach oben gerichteter Pfeil zu sehen. Werden die Demontagekosten der ausgewählten Komponenten durch den Verkauf bei aktuell eingegebenem Preis nicht gedeckt, so ist hier ein roter, nach unten gerichteter Pfeil zu sehen. Zusätzlich zu dem roten Pfeil ist unter diesem der Satz: "Demontagekosten übersteigen bei aktuellem Preis die Erlöse!" zu lesen. Durch diese Funktion ist es möglich, einerseits sofort zu erkennen, ob die Demontage unter Annahme des eingesetzten Preises kostendeckend realisiert werden kann. Andererseits kann hierdurch der notwendige anzusetzende Preis zur Realisierung eines kostendeckenden Prozesses identifiziert werden.

Mit dem Rechner ist es derzeit nur möglich, ein Fahrzeug näher zu betrachten. Für die vergleichende Betrachtung zwischen den Fahrzeugsegmenten müssen die Ergebnisse getrennt voneinander erarbeitet werden und die Ergebnisse "manuell" vom Benutzer verglichen werden.

Für die Berechnung von erzielbaren Vergütungen beim Verkauf der demontierten Elektronikkomponenten ist es zunächst notwendig, erhobene Daten aus der Separation zu hinterlegen. Bisher stellen

meist nur zwei grundlegende Gerätetypen eine Wirtschaftlichkeit der Demontage vor dem Schredder-Prozess in Aussicht:

- größere Motoren- oder Magnetanwendungen, die relativ leicht zu demontieren sind und
- Steuergeräte für die unterschiedlichsten Funktionen, die als hauptsächliches Bauteil eine hochwertige Leiterplatte beinhalten und relativ leicht zu demontieren sind.

15.2.2.4 Dateneingabe: Programmseite 5

Nach Eingabe der Rahmendaten des Fahrzeugverwerters besteht nun die Möglichkeit, von dieser Seite direkt zur Auswahl der zu demontierenden Komponenten aus dem Fahrzeug zu gelangen (Programmseite 5, siehe auch Abbildung 45).

Abbildung 45: Auswahl der zu demontierenden Komponenten (Programmseite 5)

Auswahl zu demo	ntierei	nder Komponenten:	Gesamtanzahl Komponenten	Anzahl ausgewählter Komponenten	Gesamtgewicht Fraktion [kg]		über ausgewählte Kompon gabe der Materialinhalte
Geländewagen Medium		74	9	25,050	Zuri	ück zum Hauptmenü	
Teilsystem	Nr.	Komponente	Anzahl vorhandener Komponenten im Fahrzeug	Eingabe: Anzahl zu demontierender Komponenten	Eingabe: Einzelgewichte der Komponenten [ke]	Gesamtgewicht der erhaltenen Fraktion [kg]	Vorschlag zur Eingabe:
	1	Heizungsgebläse	1	1	1,3000	1,3000	1,30 [kg]
	2	Lenkung Servomotor	1	1	5,2500	5,2500	5,25 [kg]
	3	Anlasser	1	1	3,5000	3,5000	3,50 [kg]
	4	Lüftermotor	2	2	2,3000	4,6000	2,30 [kg]
	5	Lautsprecher	0			0,0000	
	6	Türverschluss/-öffner	4	4	2,6000	10,4000	2,60 [kg]
Matavan	7	Lichtmaschine	0			0,0000	
Motoren	8	Heckklappenschließmechanismus	1			0,0000	
	9	Elektrische Sitzverstellung	6			0,0000	
	10	Kraftstoffpumpe	1			0,0000	
	11	Pumpe Scheibenwäscher	1			0,0000	
	12	Scheibenwischermotor vorn	2			0,0000	
	13	Scheibenheber	2			0,0000	
		Spiegeliustierung	2			0,0000	

Auf dieser Seite werden Komponenten, zu denen Datensätze des ausgewählten Fahrzeugsegments hinterlegt sind, mit einer deutlichen grünen Farbe der Zeile indiziert. Bei Auswahl der jeweiligen Komponente zur Demontage verändert sich die Farbe der kompletten Zeile zu diesem Grünton und die Eintragung von Gewichtsangaben wird freigegeben. Im Fahrzeug vorhandene Komponenten, die jedoch nicht vom Benutzer zur Demontage ausgewählt wurden, werden durch eine schwache grüne Färbung der jeweiligen Zeile erkennbar gemacht. Komponenten, zu denen kein Datensatz für das ausgewählte Fahrzeugsegment hinterlegt ist, können dadurch identifiziert werden, dass die entsprechenden Zeilen grau hinterlegt sind und die Schrift durchgestrichen erscheint.

Die Eintragungen für den Fahrzeugverwerter sind nun vollständig.

15.2.2.5 Dateneingabe: Programmseite 6

Im nächsten Schritt werden die Daten für den Elektronikverwerter eingegeben. Dies beginnt auf Programmseite 6 (Abbildung 46).

ORKAM-Wertrechner
Datenaufnahme

City Control of Contro

Abbildung 46: Dateneingaben durch den Elektronikverwerter (Programmseite 6)

Daten, die auf dieser Seite vom Elektronikverwerter eingetragen werden können, sind:

- > Angaben zu entstehenden Frachtkosten
- > Angabe der entstehenden Prozesskosten
- > Angabe der Gesamtrecyclingquote
- rzielbare Vergütungen bei Verkauf der erhaltenen Werkstoff- und Output-Fraktionen

Zum derzeitigen Stand des Wertrechners können 36 unterschiedliche Werkstoffe und zu erwartende Materialfraktionen als Output-Fraktion berücksichtigt werden. Dem Benutzer ist es möglich, diese frei mit einem Namen und entsprechenden Preisen zu belegen. Folgende Tabelle gibt die standardmäßig im Wertrechner hinterlegte Liste der zu erwartenden Werkstoffe und Materialien im Output-Strom des Elektronikverwerters wieder.

Tabelle 121: Im Wertrechner standardmäßig hinterlegte Liste der Werkstoff- / und Output-Fraktionen des Elektroaltgeräteverwerters

	Werkstoff- / Output-Fraktionen als Produkt der Aufbereitung von Fahrzeugelektronik										
1	Aluminium-Geschirr	19	Kupfer								
2	Aluminium Guss	20	Lanthan								
3	Antimon	21	Leiterplatte Kategorie 1								
4	Beryllium	22	Leiterplatte Kategorie 2								
5	Cer	23	Leiterplatte Kategorie 3								
6	Dysprosium	24	Neodym								
7	Erbium	25	Palladium								
8	Europium	26	Platin								
9	Gadolinium	27	Praseodym								
10	Gallium	28	Rhodium								

	Werkstoff- / Output-Fraktionen als Produkt der Aufbereitung von Fahrzeugelektronik									
11	Germanium	29	Samarium							
12	Gold	30	Stahl / Eisen							
13	Indium	31	Silber							
14	Iridium	32	Tantal							
15	Kabel	33	Yttrium							
16	Kobalt	34	Zinn							
17	Kunststoffe (verwertbar)	35	Zink							
18	Kunststoffe (mindere Qualität)	36	Zink-Guss							

Es wird bei der Benutzung des Wertrechners höchstwahrscheinlich notwendig sein, andere Output-Fraktionen anzugeben und berechnen zu können. In der Option der freien Eingabe des Namens und Preises der 36 vorhandenen Output-Fraktionen besteht im Wertrechner daher diese Möglichkeit der einfachen Einbindung von weiteren Werkstoffen und Materialien. Hierbei ist zu beachten, dass dadurch auch die Möglichkeit besteht, negative Preise bei der Entsorgung auftretender Problemstoffe einzugeben. Ein solcher Fall kann zum Beispiel bei der Fraktion "Kunststoffe (mindere Qualität)" durch das Auftreten einer sehr inhomogenen oder mit Schadstoffen belasteten Charge gegeben sein.

15.2.2.6 Dateneingabe: Programmseite 7

Nachdem die zu demontierenden Elemente in der gewünschten Anzahl bereits auf der Programmseite 5 angegeben wurden, sind die jeweiligen Materialinhalte der entsprechenden Komponenten zur Vervollständigung der Dateneingabe zu definieren. Diese Eingaben erfolgen auf der Seite 7 des Programms (Abbildung 47).

Abbildung 47: Definition der Materialinhalte (Programmseite 7)

Komponenten: De	finition d	er Materialinhalte	Gesamtanzahl Komponenten	Anzahl demontierter Komponenten	Gesamtgewicht Fraktion [kg]	usgewählter Komponenten		
Fahrzeugtyp:	G	eländewagen Medium	74	9	25,0500	Zurück zum Hauptmenü		
7		Noch nicht definierte Materialinhalte [kg]			uswahl Komponenten			
Teilsystem	Nr.	Komponente	Anzahl vorhandener Komponente n im Fahrzeug	Anzahl demontierter Komponenten	14,3724	Eingabe der Material- inhalte	Vorschlag Einzelgewichte Elemente [kg]:	
	1	Heizungsgebläse	1	1	1,3000	1	1,30	
	2	Lenkung Servomotor	1	1	3,4172	2	5,25	
	3	Anlasser	1	1	0,0041	3	3,50	
	4	Lüftermotor	2	2	4,6000	4	2,30	
	5	Lautsprecher	0	0	0,0000	5		
	6	Türverschluss/-öffner	4	4	10,4000	6	2,60	
Motoren	7	Lichtmaschine	0	θ	● -5,3489			
Motoren	8	Heckklappenschließmechanismus	1	0	0,0000	8	0,40	
	9	elektrische Sitzverstellung	6	0	0,0000	9	1,06	
	10	Kraftstoffpumpe	1	0	0,0000	10	1,00	
	11	Pumpe Scheibenwäscher	1	0	0,0000	11	0,11	
	12	Scheibenwischermotor vorn	2	0	0,0000	12	4,50	
	13	Scheibenheber	2	0	0,0000	13	0,60	
	14	Spiegeljustierung	2	0	0,0000	14	0,07	

Hier wird neben den bereits für die Programmseite Nr. 5 beschriebenen, farblichen Unterlegungen der Zeilen zur Identifikation vorhandener und zu demontierender Komponenten im Fahrzeug ebenfalls eine "Ampelanzeige" in jeder Zeile angezeigt. Durch diese Funktion des Wertrechners soll die Übersichtlichkeit über eingetragene Daten und noch nicht definierte Elementinhalte verbessert werden.

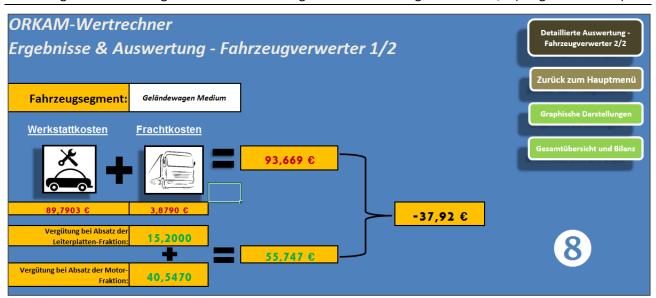
Diese Anzeige indiziert die Datenlage hinsichtlich der Definition der Materialinhalte der einzelnen Komponenten. Bei einer Angabe von unter 25% der Materialinhalte der jeweiligen Komponente wird durch diese Anzeige ein rotes Signal ausgegeben (Datenlage zur Komponente ist schlecht/nicht ausreichend). Bei vorhandenen Eintragungen von Werten die von 25% bis zu 75% der Materialinhalte des Elements abdecken, zeigt die Ampel ein gelbes Signal (Datenlage zu den Materialinhalten ist mittelmäßig). Ab einem Wert von über 75% der definierten Materialinhalte zeigt die Anzeige schließlich ein grünes Signal und die Definition der Materialien kann weitestgehend als vollständig angesehen werden.

Eintragungen oder Änderungen der Auswahl und Gewichtsangaben der jeweiligen Komponenten durch den Benutzer können auf dieser Programmseite nicht mehr vorgenommen werden. Zur Eintragung der Materialinhalte der zu demontierenden Komponenten, kann hier lediglich über eine Schaltfläche in der Komponenten-Zeile direkt zu dem Materialdatenblatt der Komponente gesprungen werden. Als Beispiel für den Aufbau eines solchen Materialdatenblatts ist in Abbildung 48die Eingabemaske für die Komponente Nr. 1 ("Heizungsgebläse") zu sehen.

Komponente 1: Heizungsgebläse Angegebenes Einzelgewicht Element [kg]: Zurück Anzahl demontierter Elemente Resultierendes Gesamtgewicht [kg] 1,3000 Bisher nicht definierte Materialinhalte [kg]: ORKAM-Elemente und Output-Fraktionen Inhalt [kg] Bitte Materialinhalte von einzelner Komponente angeben! Aluminium-Geschirr 0,0000000000 Aluminium-Guss 2 0,0000000000 0,0000000000 0,0000000000 0,0000000000 Beryllium 0,000000000 0,0000000000 Dysprosium 0,0000000000 0,0000000000 Europium 0,0000000000 Gadolinium Gallium 10 0,0000000000 11 0,0000000000 12 Gold 0,0000000000 13 Indium 0,0000000000

Abbildung 48: Materialdatenblatt der Komponente Nr. 1 "Heizungsgebläse" (oberer Ausschnitt)

Auf diesem Materialdatenblatt sind die vom Elektronikverwerter angegebenen 36 Output-Fraktionen zu finden. Durch den Benutzer kann hier das Gesamtgewicht einer Komponente auf diese gegebenen Fraktionen aufgeteilt werden, um die Materialinhalte des Bauteils klar zu definieren. Eine Ampelanzeige im oberen Teil des Blattes zeigt, analog zu der Anzeige auf Programmseite 7, die Vollständigkeit der Dateneingabe an.


Über eine Schaltfläche kann der Benutzer zurück zur Programmseite 7 gelangen, um weitere Materialinhalte zu definieren oder andere Stellen des Wertrechners zu erreichen.

15.2.2.7 Ergebnisse und Auswertung (Programmseite 8-11)

Nachdem alle Rahmendaten und weitere für die Berechnung notwendige Informationen eingegeben wurden, können auf den Auswertungsseiten die Ergebnisse der Berechnungen für den Fahrzeug- und Elektronikverwerter überblickt werden. Für die beiden am Vorgang beteiligten Parteien bestehen

dazu jeweils zwei Programmseiten. Abbildung 49 gibt die Auswertungsseite 1 von 2 des Fahrzeugverwerters (Programmseite 8) wieder.

Abbildung 49: Ergebnis- und Auswertungsseite des Fahrzeugverwerters 1/2 (Programmseite 8)

Auf dieser Seite werden, neben den entstehenden Werkstattkosten durch die Demontage und den entstehenden Frachtkosten auch die zu erwartenden Vergütungen bei Verkauf der Komponenten als Fraktion angegeben. Hieraus wird dann, ebenfalls auf dieser Seite, ein Gesamt-Ergebnis des Vorgangs der Demontage und des Verkaufs der Komponenten berechnet.

Darüber hinaus besteht die Möglichkeit auf der Programmseite 9 des Werterechners eine detaillierte Aufschlüsselung der Ergebnisse einzusehen (Abbildung 50).

Abbildung 50: Detaillierte Auswertung Fahrzeugverwerter 2/2 (Programmseite 9)

O Detaillierte Aus	RKAM-Wert swertung - Fo			9	Zurück
Fahrzeugsegment:	Geländewagen Medium		hende Werkstattkosten + hlagsfaktor:	41,679 €	
Anzahl demontierter Komponenten:	9	Nr.	Komponenten	Anzahl demontierter Komponenten:	Einzelkosten der Demontage:
Gesamtgewicht der erhaltenen Fraktionen [kg]:	25,050000	1	Heizungsgebläse	1	1,546 €
Gesamtgewicht Leiterplatten-Fraktion [t]:	0,000000	2	Lenkung Servomotor	1	13,563 €
Gesamtgewicht Motor-Fraktion [t]:	25,050000	3	Anlasser	1	2,188 €
Enstehende Frachtkosten:	0,751500	4	Lüftermotor	2	18,317 €
		5	Lautsprecher (soweit Nd haltig)	0	0,000 €
		6	Türverschluss/-öffner	4	6,067 €
Erlöse Leiterplatten-Fraktion:	0,000000 €	7	Lichtmaschine	0	0,000 €
Erlöse Motor-Fraktion:	16,282500 €	8	Heckklappenschließmechanismus	0	0,000 €
Σ	16,282500 €	9	elektrische Sitzverstellung	0	0,000 €
		10	Kraftstoffpumpe	0	0,000 €

In Analogie zur Auswertungsseite des Fahrzeugverwerters bestehen ebenfalls zwei solcher Seiten für den Elektronikverwerter in Form der Programmseiten Nr. 10 (Abbildung 51) und 11 (Abbildung 52).

Abbildung 51: Ergebnis- und Auswertungsseite des Elektronikverwerters 1/2 (Programmseite 10)

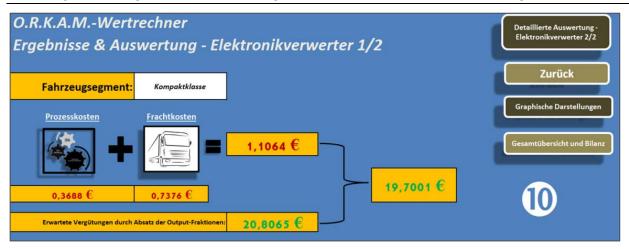


Abbildung 52: Detaillierte Auswertung der Ergebnisse des Elektronikverwerters 2/2 (Programmseite 11)

15.2.2.8 Gesamtübersicht & Bilanzierung (Programmseite 12)

Eine Übersicht über den Gesamtprozess und Bilanzierungen zu diesem werden im Wertrechner auf der Seite 12 vorgestellt (Abbildung 53).

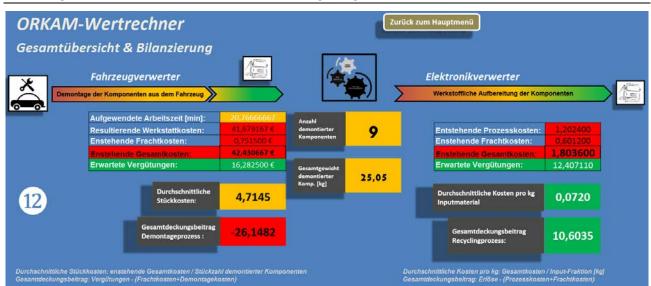


Abbildung 53: Gesamtübersicht und Bilanzierung (Programmseite 12)

Auf diesem Tabellenblatt werden nochmals die Einzelergebnisse der beiden beteiligten Parteien in einer übersichtlichen Form nebeneinander dargestellt. Darüber hinaus werden hier Werte berechnet, die Informationen zur Wirtschaftlichkeit des Prozesses bereitstellen.

Auf Seiten des Fahrzeugverwerters werden hierzu die durchschnittlichen Stückkosten sowie der Gesamtdeckungsbeitrag des Demontageprozesses berechnet. Auf Seiten des Elektronikverwerters werden hinsichtlich der Bilanzierung des Prozesses die durchschnittlichen Kosten pro Kilogramm des verarbeiteten Materials sowie der Gesamtdeckungsbeitrag des Recyclingprozesses angeführt. Diese Werte wurden unter Einsatz der Formeln, die in Tabelle 122 aufgeführt sind, berechnet.

Tabelle 122: Auf Programmseite 12 angewandte Berechnungsformeln

Berechneter Kennwert	Angewandte Formel
Durchschnittliche Stückkosten (auf Seiten des Fahrzeugverwerters)	Entstehende Gesamtkosten Stückzahl demontierter Komponenten
Gesamtdeckungsbeitrag Demontageprozess (auf Seiten des Fahrzeugverwerters)	Gesamte erzielbare Erlöse — (Werkstattkosten + Frachtkosten)
Durchschnittliche Kosten pro kg verarbeitete Fraktion (auf Seiten des Elektronikverwerters)	Entstehende Gesamtkosten Menge der Inputfraktion
Gesamtdeckungsbeitrag Recyclingprozess (auf Seiten des Elektronikverwerters)	Gesamte erzielbare Gewinne — (Prozesskosten + Frachtkosten)

In der Mitte der Darstellungen auf der Programmseite 12 werden zudem die Gesamtanzahl der demontierten Elemente sowie das daraus resultierende Gesamtgewicht der Charge angeführt.

15.2.2.9 Auswahl der graphischen Darstellungen (Programmseite 13)

Auf Tabellenblatt 13 des Wertrechners findet sich eine Auswahl von insgesamt sieben unterschiedlichen graphischen Darstellungen (Programmseiten 14 bis 20) hinsichtlich der Ergebnisse der Berechnungen und Eingaben. Abbildung 54 gibt den Aufbau dieses Auswahlmenüs wieder.

Abbildung 54: Auswahl der graphischen Darstellungen des Wertrechners (Programmseite 13)

Im Folgenden werden diese sieben graphischen Darstellungen in der Tabelle 123 beschrieben.

Tabelle 123: Kurzbeschreibung der Programmseiten 14 bis 20

Kurzbeschreibung der Darstellungen auf den Programmseiten 14 bis 20 des ORKAM-Wertrechner

Programmseite 14 (s. Abbildung 55):

Übersicht über die Zuordnung der Komponenten zu Teilsystemen der Fahrzeugelektronik sowie Lokalisierung der Komponenten im Fahrzeug.

Programmseite 15 (s. Abbildung 56):

Übersicht über die Wirtschaftlichkeit der Demontage der einzelnen Komponenten.

Aus dieser Ansicht können neben Werten zu den demontierten Komponenten auch Daten zu den während der Demontage auftretenden störenden Komponenten abgelesen werden.

Zu jeder einzelnen demontierten Komponente ist auf dieser Seite eine Einzelbilanzierung des Demontageprozesses abzulesen.

Programmseite 16 (s. Abbildung 57):

Übersicht über die massenmäßige Aufteilung der erhaltenen Element-Charge.

Programmseite 17 (s. Abbildung 58):

Übersicht über die Anteile der Fraktionen und einzelnen Komponenten an der Erlös-Situation des Fahrzeugverwerters.

Programmseite 18 (s. Abbildung 59):

Darstellung der erzielbaren Absatzpreise der einzelnen Komponenten im Vergleich zu den entstehenden Demontagekosten (auf Seiten des Fahrzeugverwerters).

Kurzbeschreibung der Darstellungen auf den Programmseiten 14 bis 20 des ORKAM-Wertrechner

Programmseite 19:

Darstellung der Demontagezeit im Vergleich zu den erzielbaren Absatzpreisen der einzelnen Komponenten (auf Seiten des Fahrzeugverwerters).

Programmseite 20:

Darstellung der erzielbaren Absatzpreise der einzelnen Komponenten im Vergleich zu den Materialerlösen durch Verkauf der enthaltenen Werkstoffe (auf Seiten des Elektronikverwerters).

Abbildung 55: Übersicht über die demontierten Elemente (Programmseite 14)

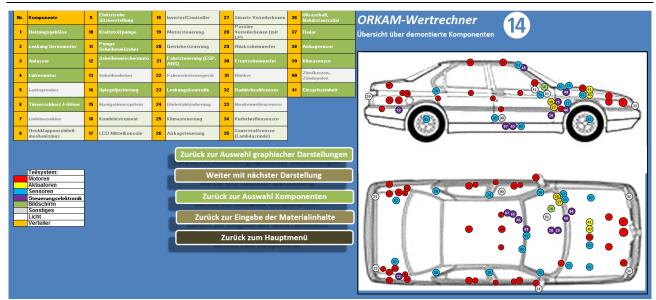
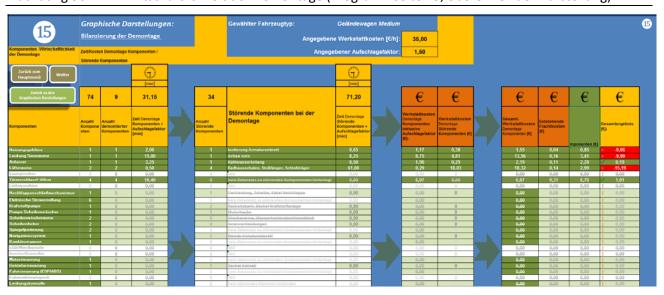



Abbildung 56: Wirtschaftlichkeit der Demontage (Programmseite 15, oberer Teil der Darstellung)

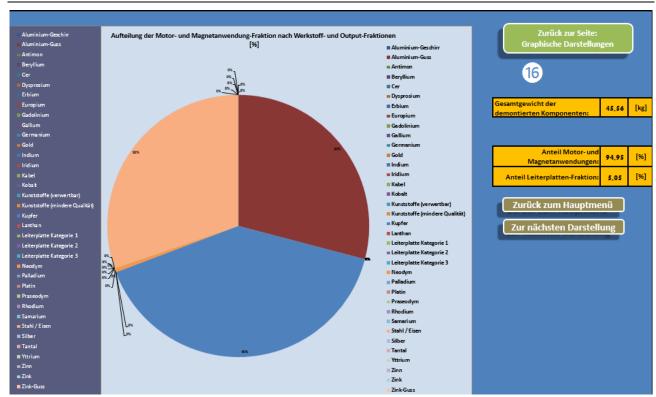


Abbildung 57: Aufteilung der Fraktionen nach Masse (Programmseite 16, oberer Teil der Darstellung)

Abbildung 58: Aufteilung der Fraktionen nach Kosten-/Erlös-Situation (Programmseite 17, mittlerer Teil der Darstellung)

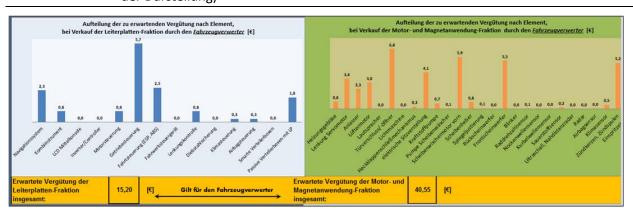
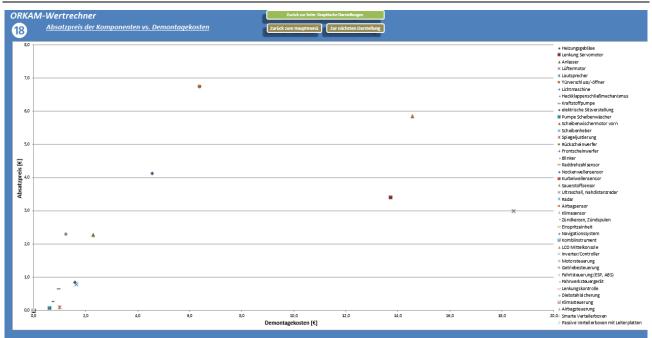



Abbildung 59: Programmseite 18 (Absatzpreise der einzelnen ORKAM-Elemente vs. entstehende Demontagekosten)

Hinweis zu den Abbildungen der graphischen Darstellungen:

Die Darstellungen auf den Programmseiten 18 bis 20 sind in ihrem Aufbau exakt gleich und beziehen sich nur auf jeweils andere Daten. Zur Veranschaulichung der Darstellungen ist daher nur die Programmseite 18 als repräsentatives Beispiel aufgeführt.

Der Wertstoffgehalt wird durch den Aufbau einer Komponente mit einzelnen oder zusammengesetzten Bauteilen, die verarbeiteten Materialien und enthaltenen Stoffen, die Massen und die Stoffkonzentrationen bestimmt.

15.3 Anhang 3: Zerlegung der Altfahrzeuge

☐ Mitnahme

 \square brechen

□ schlagen

 \square brechen

□ schlagen

□ schrauben □ hebeln

Komponente Nr.

 \square primäre Komponente

 \square schrauben \square hebeln

Bezeichnung

☐ sperrendes Teil □ Mitnahme

□ reißen

□ reißen

 \square schneiden

 \square schneiden

15.3.1 Zerlegeprotokoll										
1. Zerlegeprotokoll	Se	ite								
1.1 Fahrzeugmodell										
1.2 Komponente Nr Be	ezeichnung									
2. Demontagesequenz										
Vorgang	Werkzeug	Zeit	Bemerkung							
Komponente Nr Bezeichnung	□ DLS □ Ses □ Torx □ Nuss									
□ primäre Komponente □ sperrendes Teil	Schraubdreh.									
□ Mitnahme	□ TVH □ MontFe									
□ schrauben □ hebeln	□ Ham. □ Meißel									
□ brechen □ reißen □ schlagen □ schneiden	□ Messer									
Komponente Nr	□ DLS □ Ses									
Bezeichnung	□ Torx □ Nuss									
☐ primäre Komponente	□ Schraubdreh.									

□ TVH □Mont.-Fe

□ Ham. □ Meißel

□ Messer

□ DLS □ Ses

☐ Torx ☐ Nuss

□ Schraub.-dreh.

□ TVH □Mont.-Fe

□ Ham. □ Meißel

Messer

15.3.2 Zerlegedaten

Tabelle 124: Zerlegedaten Untere Mittelklasse

Tubelle			gedaten Ontere Witterklass				
Pos.	Lage	Nr.	Teilsystem	Komponente	Art i,n	Zeit [min]	Masse [kg]
1	Innen	1		Isolierung	S	0,65	
2	Innen	1	Motor	Heizungsgebläse	р	2,0	1,55
3	Innen	28		Knieschutz	s	2,8	
4	Innen	28	passive Verteilerbox	Bordnetz	р	0,225	0,6
5	Innen	27	passive Verteilerbox	Diagnoseinterface	р	0,025	
6	Innen	16		Blende	S	0,375	
7	Innen	16	Bildschirm	Kombiinstrument	р	0,425	0,8
8	Innen	25	Steuerungselektronik	Klimasteuerung	р	0,45	0,3
9	Innen	15		Blende	s	0,125	
10	Innen	15	Bildschirm	Navigationssystem	р	0,575	2,3
11	Innen	26		Verkleidung	s	0,7	
12	Innen	26	Steuerungselektronik	Airbagsteuerung	р	1,35	0,30
13	Innen	82	Steuerungselektronik	Infotainment	е	2,725	1,65
14	Innen	39		Verkleidung	s	0,425	
15	Innen	39	Sensor	Klimasensor	р	0,025	0,008
16	Innen	25		Sitz	s	2,25	
17	Innen	25		Sitz	s	1,875	
18	Innen	38		Sitzpolster	s	0,925	
19	Innen	38		Sitzpolster	s	0,925	
20	Innen	38	Sensor	Airbagsensor	р	0,425	0,018
21	Innen	38	Sensor	Airbagsensor	р	0,425	0,018
22	Innen	9	Motor	Sitzverstellung	р	0,75	0,27
23	Innen	9	Motor	Sitzverstellung	р	0,75	0,27
24	Innen	9	Motor	Sitzverstellung	р	0,75	0,38
25	Front	14	Motor	Spiegeljustierung	р	0,45	0,07
26	Front	14	Motor	Spiegeljustierung	р	0,45	0,07
27	Innen	5	Motor	Lautsprecherklein	р	0,75	0,04
28	Innen	5	Motor	Lautsprecherklein	р	0,625	0,04
29	Innen	5	Motor	Lautsprecherklein	р	0,75	0,04
30	Innen	5	Motor	Lautsprecherklein	р	0,625	0,04
31	Innen	13		Verkleidung	s	0,5	
32	Innen	13		Verkleidung	s	0,5	
33	Innen	6	Motor	Türverschlussöffner	р	1,3	0,8

Pos.	Lage	Nr.	Teilsystem	Komponente	Art i,n	Zeit [min]	Masse [kg]
34	Innen	6	Motor	Türverschlussöffner	р	1,3	0,8
35	Innen	13	Motor	Scheibenheber	р	0,525	0,59
36	Innen	13	Motor	Scheibenheber	р	0,475	0,59
37	Innen	13		Verkleidung	S	0,5	
38	Innen	13		Verkleidung	S	0,5	
39	Innen	6	Motor	Türverschlussöffner	р	1,3	0,8
40	Innen	6	Motor	Türverschlussöffner	р	1,3	0,8
41	Innen	13	Motor	Scheibenheber	р	0,3	0,59
42	Innen	13	Motor	Scheibenheber	р	0,4	0,59
43	Hinten	8		Verkleidung, Scheibe, Kabel	S	0,925	
44	Hinten	8	Motor	Heckklappenschließmechanismus	р	0,3	0,4
45	Hinten	38		Verkleidung	S	1,125	
46	Hinten	38		Verkleidung	s	1,125	
47	Hinten	38	Sensor	Airbagsensor	р	0,25	0,018
48	Hinten	38	Sensor	Airbagsensor	р	0,25	0,018
49	Front	4		Radhausschalen	S	2,05	
50	Front	4		Radhausschalen	s	2,05	
51	Hinten	32	Sensor	Raddrehzahlsensor	р	0,4	0,018
52	Hinten	32	Sensor	Raddrehzahlsensor	р	0,4	0,018
53	Hinten	32	Sensor	Raddrehzahlsensor	р	0,4	0,018
54	Hinten	32	Sensor	Raddrehzahlsensor	р	0,4	0,018
55	Front	4		Stoßfänger vorn	S	2,625	
56	Front	4		Schloßträger	S	8,675	
57	Front	38	Sensor	Airbag	р	0,375	0,2
58	Front	38	Sensor	Airbag	р	0,375	0,2
59	Front	4	Motor	Lüfter	р	0,25	2,15
60	Front	4	Motor	Lüfter	р	0,25	2,15
61	Front	35	Sensor	Sauerstoffsensor	р	0,125	0,07
62	Front	7	Motor	Lichtmaschine	р	2,9	7,2
63	Front	40		Luftfilter	S	0,7	
64	Front	40		Abdeckung	S	5,125	
65	Front	41	Einspritzeinheit/ Zünd- gerät	Zündspulen	р	0,4	0,275
66	Front	41	Einspritzeinheit/ Zünd- gerät	Zündspulen	р	0,4	0,275
67	Front	41	Einspritzeinheit/ Zünd- gerät	Zündspulen	р	0,4	0,275

Pos.	Lage	Nr.	Teilsystem	Komponente	Art _{i,n}	Zeit [min]	Masse [kg]
68	Front	41	Einspritzeinheit/ Zünd- gerät	Zündspulen	р	0,4	0,275
69	Front	40	Aktuator	Zündkerzen	р	0,25	0,041
70	Front	40	Aktuator	Zündkerzen	р	0,25	0,041
71	Front	40	Aktuator	Zündkerzen	р	0,25	0,041
72	Front	40	Aktuator	Zündkerzen	р	0,25	0,041
73	Front	34	Sensor	Kurbelwellensensor	р	0,95	0,035
74	Front	33	Sensor	Nockenwellensensor	р	0,375	0,03
75	Front	19	Steuerungselektronik	Motorsteuerung	р	0,4	0,55
76	Front	3		Kühlwasserleitung	S	0,5	
77	Front	11		Motorhaube	S	0,7	
78	Front	11	Motor	Pumpe Scheibenwäscher	р	0,325	0,11
79	Front	3	Motor	Anlasser	р	3,25	3,1
80	Front	12		Wischerarme	S	0,75	
81	Front	12		Wischerarme	S	0,75	
82	Front	12		Wasserkastenabschlussblech	S	2	
83	Front	12	Motor	Scheibenwischermotor	р	0,875	2,7
84	Front	21	Steuerungselektronik	Fahrtsteuerung	р	2,125	2,85
85	Front	2		Vorderachse	S	9,925	
86	Front	2	Motor	Lenkung, Servomotor	р	1,45	2,2
87	Innen	10		Rücksitzbank	S	0,45	
88	Innen	10		Deckel	s	0,35	
89	Innen	10	Motor	Kraftstoffpumpe	р	0,4	1,301

Tabelle 125: Zerlegedaten Kleinwagen

Pos.	Lage	Nr.	Teilsystem	Komponente	Art i,n	Zeit [min]	Masse [kg]
1	Front	14	Motor	Spiegeljustierung	р	0,5	0,07
2	Front	14	Motor	Spiegeljustierung	р	0,5	0,07
3	Innen	13		Verkleidung	S	1,7	
4	Innen	13		Verkleidung	S	1,7	
5	Innen	13	Motor	Scheibenheber	р	0,6	0,6
6	Innen	13	Motor	Scheibenheber	р	0,6	0,5
7	Innen	38	Sensor	Airbagsensor	р	1,5	0,018
8	Innen	38	Sensor	Airbagsensor	р	1,5	0,018
9	Innen	110	Kabel	Kabelbaum	е	0,8	0,342

Pos.	Lage	Nr.	Teilsystem	Komponente	Art _{i,n}	Zeit	Masse
Pus.	Lage	- INI .	rensystem	Komponente	AIL i,n	[min	[kg]
10	Innen	110	Kabel	Kabelbaum	е	0,8	0,342
11	Innen	25		Sitz	s	1,7	
12	Innen	25		Sitz	S	1,7	
13	Innen	25	Steuerungselektronik	Klimasteuerung	р	0,7	0,253
14	Innen	1		Verkleidung	S	3,6	0
15	Innen	1	Motor	Heizungsgebläse	р	2,0	1,3
16	Innen	27	Steuerungselektronik	Interfacebox	р	0,6	0,25
17	Innen	77	Steuerungselektronik	Leuchtweitenregelung	е	0,4	0,085
18	Innen	16	Bildschirm	Kombiinstrument	р	1,3	0,6
19	Innen	28	Verteiler	passive Verteilerbox	р	2,3	0,45
20	Innen	26	Steuerungselektronik	Airbagsteuergerät	р	1,2	0,25
21	Innen	93	Sensor	elektronisches Gaspedal	е	0,0	0,4
22	Innen	38		Sitzpolster	S	0,9	
23	Innen	38		Sitzpolster	s	0,9	
24	Innen	38	Sensor	Airbagsensor	р	0,4	0,02
25	Innen	38	Sensor	Airbagsensor	р	0,4	0,018
26	Hinten	8		Verkleidung, Scheibe, Kabel	S	0,9	
27	Hinten	8	Motor	Heckklappenschließmechanis- mus	р	0,3	0,4
28	Hinten	12	Motor	Scheibenwischer	р	0,5	1
29	Hinten	110	Kabel	Kabelbaum Heckklappe	e	1,5	
30	Innen	10		Rücksitzbank	S	0,1	
31	Innen	10		Deckel Kraftstoffpumpe	S	0,4	
32	Innen	10	Motor	Kraftstoffpumpe	р	0,7	0,9
33	Innen			Verkleidung	s	0,5	
34	Innen			Verkleidung	S	0,5	
35	Innen	110	Kabel	Kabelbaum	е	1,0	0,342
36	Innen	110	Kabel	Kabelbaum	е	1,0	0,342
37	Front	32		Radhausschalen	S	2,4	
38	Front	32		Radhausschalen	S	2,4	
39	Front	32		Stoßfänger	s	1,1	
40	Front	30	Beleuchtung	Frontscheinwerfer	р	0,5	3,15
41	Front	30	Beleuchtung	Frontscheinwerfer	р	0,5	3,15
42	Front	11		Motorhaube	s	0,7	
43	Front	11	Motor	Pumpe Scheibenwäscher	р	0,3	0,113
44	Front	52	Motor	Pumpe Scheinwerferwäscher	е	0,2	0,168

Pos.	Lage	Nr.	Teilsystem	Komponente	Art _{i,n}	Zeit [min]	Masse [kg]
45	Front	4		Schloßträger	S	4,0	
46	Front	4		Lüfterzarge	S	0,2	
47	Front	4	Motor	Lüftermotor	р	0,8	2,3
48	Front	35		Hitzeschutzblech	S	0,7	
49	Front	35	Sensor	Sauerstoffsensor	р	0,3	0,07
50	Front	35	Sensor	Sauerstoffsensor	р	0,3	0,07
51	Front	7		Motorbefestigung	S	13,5	
52	Front	7		Spannrolle	S	3,6	
53	Front	7	Motor	Lichtmaschine	р	1,3	5,35
54	Front	33	Sensor	Nockenwellensensor	р	0,4	0,03
55	Front	40		Motorabdeckung	S	0,6	
56	Front	40	Aktuatoren	Zündspulen	р	0,2	0,25
57	Front	40	Aktuatoren	Zündspulen	р	0,2	0,25
58	Front	40	Aktuatoren	Zündspulen	р	0,2	0,25
59	Front	40	Aktuatoren	Zündspulen	р	0,2	0,25
60	Front	40	Aktuatoren	Zündkerzen	р	0,2	0,037
61	Front	40	Aktuatoren	Zündkerzen	р	0,2	0,375
62	Front	40	Aktuatoren	Zündkerzen	р	0,2	0,375
63	Front	40	Aktuatoren	Zündkerzen	р	0,2	0,375
64	Innen	23	Steuerungselektronik	Lenkungssteuergerät	р	0,6	0,8
65	Innen	2	Motor	Lenkung, Servomotor	р	0,6	5,25
66	Front	19	Steuerungselektronik	Motorsteuerung	р	0,8	0,8
67	Front	3	Motor	Anlasser	р	2,0	3,5
68	Front	12		Wischerarm	S	0,3	
69	Front	12		Wischerarm	S	0,3	
70	Front	12		Wasserkastenabdeckung	S	1,2	
71	Front	12		Luftfilterkasten	S	0,3	
72	Front	12		Wasserkastenabdeckblech	S	1,4	
73	Front	12	Motor	Scheibenwischermotor	р	0,6	2,25
74	Front	41	Aktuatoren	Einspritzeinheit	р	4,0	0,264
75	Front	34	Sensor	Kurbelwellensensor	р	1,0	0,035
76	Front	21	Steuerungselektronik	Fahrtsteuerung	р	2,2	2,5
77	Hinten	32	Sensor	Raddrehzahlsensor	р	0,2	0,018
78	Hinten	32	Sensor	Raddrehzahlsensor	р	0,2	0,018
79	Hinten	32	Sensor	Raddrehzahlsensor	р	0,2	0,018

Pos.	Lage	Nr.	Teilsystem	Komponente	Art _{i,n}	Zeit [min]	Masse [kg]
80	Hinten	32	Sensor	Raddrehzahlsensor	р	0,2	0,018
81	Front	97	Sensor	Parksensoren	е	0,2	0,019
82	Front	97	Sensor	Parksensoren	е	0,2	0,019
83	Front	97	Sensor	Parksensoren	е	0,2	0,019
84	Front	97	Sensor	Parksensoren	е	0,2	0,019
85	Front	97	Sensor	Parksensoren	e	0,2	0,019
86	Front	97	Sensor	Parksensoren	е	0,2	0,019
87	Front	76	Steuerungselektronik	Lüftersteuergerät	е	0,8	0,158
88	Front	110	Kabel	Kabelbaum Motor	е	3,2	2,6
89	Innen	13		Tür	S	1,0	
90	Innen	66	Steuerungselektronik	DCDC Wandler	е	0,1	0,2
91	Hinten	12		Verkleidung	S	1,4	
92	Innen			Verkleidung, Airbag	S	15,0	
93	Innen	110	Kabel	Kabelbaum	е	1,8	0,342
94	Front			Motorbefestigung	S	13,5	
95	Front	4	Motor	Lüftermotor	р	1,1	1,75
96	Front	38	Sensor	Airbagsensor	р	0,1	0,018
97	Front			Federbeine	S	2,0	
98	Front			Federbeine	S	2,0	
99	Front	20	Steuerungselektronik	Getriebesteuerung	р	0,9	0,55
100	Front	11	Motor	Pumpe Scheibenwäscher	р	0,4	0,113
101	Front	110	Kabel	Kabelbaum Getriebe	е	1,1	0,5
102	Front	53	Motor	Stellmotor Getriebe	е	1,75	0,583
103	Front	53	Motor	Stellmotor Getriebe	е		0,583
104	Front	53	Motor	Stellmotor Getriebe	е		0,583
105	Front	110	Kabel	Kabelbaum Motor	e	2,7	2,6

Tabelle 126: Zerlegedaten obere Mittelklasse

Pos.	Lage	Nr.	Teilsystem	Komponente	Art _{i,n}	Zeit [min]	Masse [kg]
1	Front	14	Motor	Spiegeljustierung	р	0,43	0,07
2	Front	14	Motor	Spiegeljustierung	р	0,43	0,07
3	Innen	5	Motor	Lautsprecher	р	0,25	0,04
4	Innen	5	Motor	Lautsprecher	p	0,25	0,04
5	Innen	5	Motor	Lautsprecher	р	0,25	0,04
6	Innen	5	Motor	Lautsprecher	р	0,25	0,04

Pos.	Lage	Nr.	Teilsystem	Komponente	Art _{i,n}	Zeit [min]	Masse [kg]
7	Front	64	Steuerungselektronik	Front-/Rückfahrkamera mit Steue- rung	р	0,43	0,21
8	Front	90	Sensor	Sensor Regen- und Feuchtigkeit	е	0,25	0,45
9	Innen	6		Verkleidung	S	2,75	
10	Innen	13	Motor	Scheibenheber	р	0,98	0,59
11	Innen	6	Motor	Türverschluss/ -öffner	р	1,50	0,60
12	Innen	6		Verkleidung	S	3,50	
13	Innen	13	Motor	Scheibenheber	р	1,09	0,59
14	Innen	6	Motor	Türverschluss/ -öffner	р	1,50	0,60
15	Innen	6		Verkleidung	S	2,75	
16	Innen	13	Motor	Scheibenheber	р	1,09	0,59
17	Innen	6	Motor	Türverschluss/ -öffner	р	1,50	0,60
18	Innen	6		Verkleidung	S	3,50	
19	Innen	13	Motor	Scheibenheber	р	0,98	0,59
20	Innen	6	Motor	Türverschluss/ -öffner	р	1,50	0,60
21	Innen	25	Steuerungselektronik	Klimasteuerung	р	0,75	0,26
22	Innen	16	Bildschirm	Kombiinstrument	р	4,65	0,85
23	Innen	109	Sonstiges	Zündanlasstaster	е	0,25	0,07
24	Innen	28	Sonstiges	Schalter Beleuchtung	е	0,05	0,03
25	Innen	61	Bildschirm	Anzeige Beifahrerfunktion Airbag	е	0,25	0,01
26	Innen	62	Bildschirm	Uhr	е	0,38	0,05
27	Innen	88	Licht	Fußraumbeleuchtung	е	0,13	0,01
28	Innen	88	Licht	Fußraumbeleuchtung	е	0,13	0,01
29	Innen	9	Motor	elektrische Sitzverstellung	р	13,9	0,27
30	Innen	9	Motor	elektrische Sitzverstellung	р		0,27
31	Innen	9	Motor	elektrische Sitzverstellung	р		0,38
32	Innen	9	Motor	elektrische Sitzverstellung	р		0,38
33	Innen	9	Motor	elektrische Sitzverstellung	р		0,465
34	Innen	54	Motor	Sitzbelüftung	е		0,07
35	Innen	73	Steuerungselektronik	Sitzheizung	е		0,18
36	Innen	106	Sonstiges	Schalter Sitzverstellung	е		0,04
37	Innen		Sonstiges	Schalter Sitzbelüftung	е		0,03
38	Front	28	passive Verteilerbox	Bordnetz	р	8,75	0,60
39	Innen	26	Steuerungselektronik	Airbagsteuerung	р	4,60	0,30
40	Innen	39	Mittelkonsole	Klimasensor	р	0,25	0,01
41	Innen	109	Steuerungselektronik	Zündanlasstaster	е	0,25	0,25

D.	1	NI.	Tailoustan	. Komponento	A	7-:-	0.4
Pos.	Lage	Nr.	Teilsystem	Komponente	Art _{i,n}	Zeit [min]	Masse [kg]
42	Front	29	Licht	Rückscheinwerfer	р	0,66	0,70
43	Front	29	Licht	Rückscheinwerfer	р	0,66	1,20
44	Front	29	Licht	Rückscheinwerfer	р	0,66	0,70
45	Front	29	Licht	Rückscheinwerfer	р	0,66	1,20
46	Front	107	Licht	Kennzeichenleuchte	е	0,25	0,02
47	Front	107	Licht	Kennzeichenleuchte	е	0,25	0,02
48	Front	97	Sensor	Einparkhilfe	е	0,66	0,02
49	Front	97	Sensor	Einparkhilfe	е	0,66	0,02
50	Front	97	Sensor	Einparkhilfe	е	0,66	0,02
51	Front	97	Sensor	Einparkhilfe	е	0,66	0,02
52	Front	101	Sensor	elektrische Gepäckraumklappe	e	0,66	
53	Hin- ten	36	Sensor	Spurassistent	р	3,13	0,30
54	Hin- ten	36	Sensor	Spurassistent	р	3,13	0,30
65	Hin- ten	56	Motor	Anhängerzugvorrichtung	е	0,75	0,45
56	Hin- ten	60	Steuerungselektronik	Anhängeranschlussgerät	е	1,02	0,21
57	Hin- ten	72	Steuerungselektronik	Parkhilfe	е	0,26	0,07
58	Hin- ten	80	Steuerungselektronik	Heckklappenöffnung	е	0,30	0,11
59	Hin- ten	81	Steuerungselektronik	Steuergerät Kamera Verkehrszei- chenerkennung	е	0,30	0,42
60	Front	30	Licht	Frontscheinwerfer	р	1,79	3,95
61	Front	30	Licht	Frontscheinwerfer	р	1,79	3,95
62	Front	37	Sensor	Radar	р	0,43	0,49
63	Front	2	Motor	Lenkung, Servomotor	р	7,85	2,55
64	Front	23	Steuerungselektronik	Lenkungskontrolle	р	0,00	0,75
65	Front	47	Motor	Elektrische Parkbremse	е	1,85	0,55
66	Hin- ten	10	Motor	Kraftstoffpumpe	р	1,00	1,30
67	Front	55	Motor	Zusatzwasserpumpe / Kühlmittel- regelventil	е	0,25	0,37
68	Front	99	Sensor	Kühlwassertemperaturgeber	e	0,25	0,01
69	Front	95	Sensor	Drucksensor Saugrohrdruckfühler	е	0,38	0,02
70	Front	100	Sensor	Unterdrucksensor	е	0,25	0,05

Pos.	Lage	Nr.	Teilsystem	Komponente	Art _{i,n}	Zeit [min]	Masse [kg]
71	Front	35	Sensor	Sauerstoffsensor	р	0,50	0,11
72	Innen	44	Motor	Gebläseregler, Stellmotor	е	0,25	0,96
73	Front	64	Steuerungselektronik	Front-/Rückfahrkamera	р	0,43	0,21
74	Innen	79	Steuerungselektronik	Tanksteuergerät	е	0,25	0,12

Tabelle 127: Zerlegedaten Untere Mittelklasse II

Pos.	Lage	Nr.	Teilsystem	Komponente	Art _{i,n}	Zeit [min]	Masse [kg]
1	Innen	16		Rahmen Kombiinstrument	S	3,00	
2	Innen	16	Steuerung	Kombiinstrument	р	0,45	0,9
3	Innen	5		Türverkleidung	S	1,35	
4	Innen	5	Motor	Lautsprecher	р	0,26	0,21
5	Innen	13	Motor	Scheibenheber	р	5,00	1,06
6	Innen	38		Airbagsensor Verkleidung B-Säule	S	0,26	
7	Innen	38	Sensor	Airbagsensor	р	0,26	
8	Innen	38		Airbagsensor Verkleidung B-Säule	S	0,56	
9	Innen	38	Sensor	Airbagsensor	р	0,15	
10	Hin- ten	29		Seitenverkleidung Kofferraum	S	0,57	
11	Hin- ten	29	Licht	Rückscheinwerfer	р	0,75	1,55
12	Hin- ten	29		Seitenverkleidung Kofferraum	S	0,45	
13	Hin- ten	29	Licht	Rückscheinwerfer	р	0,75	0,31
14	Hin- ten	29	Licht	Dritte Bremsleuchte	р	0,18	0,08
15	Innen	1		Handschuhfach	S	0,63	
16	Innen	1	Steuerung	Start-Stopp-Steuerung	е	0,53	0,4
17	Innen	1	Motor	Heizungsgebläse	р	0,90	1,35
18	Innen	26		Verkleidung Airbagsteuerung	S	0,68	
19	Innen	26	Steuerung	Airbagsteuerung	р	3,75	0,4
20	Innen	15		Verkleidung	S	0,69	
21	Innen		Steuerung	Navigationssystem	р	2,06	3,4
22	Innen	25	Steuerung	Klimasteuerung	р	0,38	0,42
23	Innen	27	Steuerung	Verteilerbox	р	5,37	1,4
24	Innen	28	Steuerung	Verteilerbox passiv	р	2,00	0,15
25	Front	30	Licht	Scheinwerfer	р	3,60	3,5
26	Front	41	Aktuator	Zündspule	р	0,42	0,25
27	Front	40	Aktuator	Zündkerze	р	0,33	
28	Front	38	Sensor	Airbagsensor	р	0,26	
29	Front	38	Sensor	Airbagsensor	р	0,26	
30	Front	12		Wasserkastenabdeckung	S	1,35	
31	Front	12	Motor	Scheibenwischermotor	р	0,26	

Pos.	Lage	Nr.	Teilsystem	Komponente	Art i,n	Zeit [min]	Masse [kg]
32	Front	7	Motor	Lichtmaschine	р	5,63	6,2
33	Front	35	Sensor	Sauerstoffsensor	р	0,26	
34	Front	35	Sensor	Sauerstoffsensor	р	0,50	
35	Front	19		Luftfilterkasten	S	0,50	
36	Front	19	Steuerung	Start-Stopp-Steuerung	е	0,33	0,50
37	Front	19	Steuerung	Motorsteuerung	р	0,26	0,70
38	Front	21	Steuerung	Fahrtsteuerung	р	6,26	2,40
39	Front	3	Motor	Anlasser	р	7,13	3,65

Tabelle 128: Zerlegedaten Kleinstwagen

Tabelle			egedaten kiemstwagen				
Pos.	Lage	Nr.	Teilsystem	Komponente	Art _{i,n}	Zeit [min]	Masse [kg]
1	Innen	15	Mittelkonsole	Radio	р	1,6	1,75
2	Innen	25	Mittelkonsole	Klimasteuerung	р	0,0	0,25
3	Front	14	Motor	Spiegeljustierung	р	2,3	0,103
4	Front	14	Motor	Spiegeljustierung	р	2,0	0,103
5	Innen	13		Verkleidung	s	1,0	
6	Innen	13		Verkleidung	s	1,0	
7	Innen	13	Motor	Scheibenheber	р	0,6	0,5
8	Innen	13	Motor	Scheibenheber	р	0,6	0,5
9	Innen	110	Kabel	Kabelbaum	e	0,6	0,342
10	Innen	110	Kabel	Kabelbaum	e	0,6	0,071
11	Innen	13		Tür	s	1,0	
12	Innen	66		Sitz	s	1,4	
13	Innen	66	Steuerungselektronik	DCDC Wandler	е	0,1	0,2
14	Hin- ten	8		Verkleidung	s	0,9	
15	Hin- ten	8	Motor	Heckklappenschließmechanismus	р	0,5	0,45
16	Innen	27		Verkleidung	S	1,5	
17	Innen	27	Verteiler	Relaiseinheit	e	0,3	0,4
18	Innen	23	Steuerungselektronik	Lenkungssteuergerät	р	2,8	0,8
19	Innen	2	Motor	Lenkung, Servomotor	р	0,5	1,8
20	Innen	1		Verkleidung	S	2,3	
21	Innen	1	Motor	Heizungsgebläse	р	0,8	1,2
22	Innen	110	Kabel	Kabelbaum	e	2,1	1,35
23	Innen	26		Verkleidung, Airbag	S	15,0	

Pos.	Lage	Nr.	Teilsystem	Komponente	Art i,n	Zeit [min]	Masse [kg]
24	Innen	26	Steuerungselektronik	Airbagsteuerung	р	4,3	0,25
25	Innen	38		Verkleidung	s	0,2	
26	Innen	38	Sensor	Airbagsensor	р	0,3	0,018
27	Front	12		Verkleidung Waschkastenabde- ckung	S	1,3	
28	Front	12	Motor	Scheibenwischermotor	р	0,9	2,2
29	Front	32		Radhausschalen	s	2,4	
30	Front	32		Radhausschalen	s	2,4	
31	Front	32		Stoßfänger, Schloßträger	S	8,7	
32	Front	32	Sensor	Raddrehzahlsensor	р	0,6	0,018
33	Front	32	Sensor	Raddrehzahlsensor	р	0,6	0,018
34	Hin- ten	32	Sensor	Raddrehzahlsensor	р	0,4	0,018
35	Hin- ten	32	Sensor	Raddrehzahlsensor	р	0,4	0,018
36	Front	4		Motorbefestigung	s	13,5	
37	Front	4	Motor	Lüftermotor	р	1,1	1,75
38	Front	38	Sensor	Airbagsensor	р	0,1	0,018
39	Front	41		Federbeine	S	2,2	
40	Front	41		Federbeine	s	2,2	
41	Front	41	Aktuatoren	Einspritzeinheit	р	2,9	0,264
42	Front	33	Sensor	Nockenwellensensor	р	0,4	0,018
43	Front	40	Aktuatoren	Zündspulen	р	0,4	0,25
44	Front	40	Aktuatoren	Zündspulen	р	0,4	0,25
45	Front	40	Aktuatoren	Zündspulen	р	0,4	0,25
46	Front	40	Aktuatoren	Zündkerzen	р	0,5	0,037
47	Front	40	Aktuatoren	Zündkerzen	р	0,5	0,037
48	Front	40	Aktuatoren	Zündkerzen	р	0,5	0,037
49	Front	19	Steuerungselektronik	Motorsteuerung	р	1,0	0,208
50	Front	20	Steuerungselektronik	Getriebesteuerung	р	0,9	0,33
51	Front	11	Motor	Pumpe Scheibenwäscher	р	0,4	0,113
52	Innen	10		Rücksitzbank	s	0,6	
53	Innen	10	Motor	Kraftstoffpumpe	р	1,1	1,05
54	Innen	10		Leitungen, Schläuche	s	0,2	
55	Front	110	Kabel	Kabelbaum Getriebe	е	1,1	0,5
56	Front	110	Kabel	Kabelbaum Motor	e	2,8	2,6
57	Front	53	Motor	Stellmotor Getriebe	е	0,6	0,583

Pos.	Lage	Nr.	Teilsystem	Komponente	Art i,n	Zeit [min]	Masse [kg]
58	Front	53	Motor	Stellmotor Getriebe	е	0,6	0,583
59	Front	53	Motor	Stellmotor Getriebe	e	0,6	0,583
60	Front	110	Kabel	Kabelbaum Motor	е	2,7	1,3
61	Front	21	Steuerungselektronik	Fahrtsteuerung	р	1,4	2
62	Front	35	Sensor	Sauerstoffsensor	р	0,3	0,07
63	Front	35	Sensor	Sauerstoffsensor	р	0,3	0,07
64	Front	34	Sensor	Kurbelwellensensor	р	0,4	0,035
65	Front	3	Motor	Anlasser	р	0,4	3,5
66	Front	7	Motor	Lichtmaschine	р	1,5	5,35

Tabelle 129: Zerlegedaten Geländewagen Medium

Pos.	Lage	Nr.	Teilsystem	Komponente	Art i,n	Zeit [min]	Masse [kg]
1	Front	14	Motor	Spiegeljustierung	р	0,45	0,07
2	Front	14	Motor	Spiegeljustierung	р	0,45	0,07
3	Innen	25	Steuerungselektronik	Klimasteuerung	р	0,58	0,25
4	Innen	15		Blende	S	0,25	
5	Innen	15	Bildschirm	Navigationssystem	р	1,75	2,30
6	Innen	16	Bildschirm	Kombiinstrument	р	1,25	0,80
7	Innen	66	Steuerungselektronik	DCDC Wandler	е	0,25	0,23
8	Innen	75	Steuerungselektronik	Telefon	е	1,00	0,07
9	Innen	81	Sensor	Spiegel	е	0,25	0,29
10	Innen	1		Isolierung	S	0,65	
11	Innen	1	Motor	Heizungsgebläse	р	2,00	1,30
12	Innen	39	Sensor	Klimasensor	р	0,03	0,01
13	Innen	13		Verkleidung	s	0,50	
14	Innen	13		Verkleidung	S	0,50	
15	Innen	6	Motor	Türverschluss /-öffner	р	1,30	1,30
16	Innen	6	Motor	Türverschluss /-öffner	р	1,30	1,30
17	Innen	13		Verkleidung	S	0,50	
18	Innen	13		Verkleidung	s	0,50	
19	Innen	6	Motor	Scheibenheber	р	0,38	0,60
20	Innen	6	Motor	Scheibenheber	р	0,38	0,60
21	Innen	6	Motor	Türverschluss /-öffner	р	1,3	1,30
22	Innen	6	Motor	Türverschluss /-öffner	р	1,3	1,30
23	Innen	38		Sitzpolster	S	0,93	

Pos.	Lage	Nr.	Teilsystem	Komponente	Art i,n	Zeit	Masse
24	Innen	38		Sitzpolster	s	[min] 0,93	[kg]
25	Innen	38	Sensor	Airbagsensor	p	0,43	0,02
26	Innen	38	Sensor	Airbagsensor	р	0,43	0,02
27	Hin-	8	301301	Verkleidung, Scheibe, Kabel	S	0,93	0,02
_,	ten			,		0,55	
28	Hin- ten	8	Motor	Heckklappenschließmechanismus	р	0,3	0,40
29	Innen	9	Motor	Sitzverstellung	р	0,75	0,53
30	Innen	9	Motor	Sitzverstellung	р	0,75	0,64
31	Innen	9	Motor	Sitzverstellung	р	0,75	0,56
32	Innen	73	Steuerungselektronik	Sitzheizung	e	0,13	0,06
33	Innen	9	Steuerungselektronik	Sitzverstellung	е	0,43	0,16
34	Innen	110	Kabel	Kabelbaum	e	1,38	
35	Innen	9	Motor	Sitzverstellung	р	0,5	0,53
36	Innen	9	Motor	Sitzverstellung	р	0,5	0,64
37	Innen	9	Motor	Sitzverstellung	р	0,5	0,56
38	Innen	9	Steuerungselektronik	Heizung	е	0,13	0,06
39	Innen	106	Sonstiges	Schalter Sitzverstellung	e	0,43	0,05
40	Innen	110	Kabel	Kabelbaum	е	1,38	0,02
41	Front	30		Stoßfänger	S	0,5	
42	Front	30	Licht	Scheinwerfer	р	0,33	4,20
43	Front	30	Licht	Scheinwerfer	р	0,33	4,20
44	Front	97	Sensor	Parksensoren	e	0,18	0,11
45	Front	97	Sensor	Parksensoren	e	0,18	0,02
46	Front	97	Sensor	Parksensoren	е	0,18	0,02
47	Front	97	Sensor	Parksensoren	e	0,18	0,02
48	Front	97	Sensor	Parksensoren	е	0,18	0,02
49	Front	97	Sensor	Parksensoren	e	0,18	0,02
50	Front			Schloßträger	s	4,5	
51	Front	11		Motorhaube	s	0,7	
52	Front	39	Sensor	Klimasensor	р	0,13	0,01
53	Front	20		Deckel	s	2,25	
54	Front	20	Steuerungselektronik	Getriebesteuerung	р	2,25	5,70
55	Front	102	Aktuator	Magnetventil	е	0,75	0,09
56	Front	103	Aktuator	Druckwandler	е	0,75	0,27
57	Front	95	Sensor	Drucksensor Saugrohrdruckfühler	е	0,38	0,02
58	Front	39	Sensor	Temperatursensor	е	0,38	0,01

Pos.	Lage	Nr.	Teilsystem	Komponente	Art i,n	Zeit [min]	Masse [kg]
59	Front	39	Sensor	Klimasensor	е	0,2	0,01
60	Front	41	Aktuator	Einspritzeinheit	р	2	1,53
61	Innen	26		Verkleidung	S	0,7	
62	Innen	26	Steuerungselektronik	Airbagsteuerung	р	1,35	0,25
63	Innen	39		Verkleidung	S	0,43	
64	Innen	39	Sensor	Klimasensor	р	0,03	0,01
65	Innen	28		Knieschutz	S	2,8	
66	Innen	28		Lichtschalter	e	0,05	0,03
67	Innen	28	passive Verteilerbox	Bordnetz	р	0,23	0,45
68	Innen	28	passive Verteilerbox	Relais	е	0,28	1,30
69	Front	4		Radhausschalen	S	2,08	
70	Front	4		Radhausschalen	S	2,08	
71	Front	4		Stoßfänger vorn	S	2,63	
72	Front	4		Schloßträger	S	8,68	
73	Front	4	Motor	Lüfter	р	0,25	2,30
74	Front	4	Motor	Lüfter	р	0,25	2,30
75	Front	11	Motor	Pumpe Scheibenwäscher	р	0,33	0,11
76	Front	35	Sensor	Sauerstoffsensor	р	0,38	0,07
77	Front	35	Sensor	Sauerstoffsensor	р	0,38	0,07
78	Front	35	Sensor	Sauerstoffsensor	р	0,38	0,07
79	Front	35	Sensor	Sauerstoffsensor	р	0,38	0,07
80	Front	7	Motor	Lichtmaschine	р	2,9	5,35
81	Front	3		Kühlwasserleitung	S	0,5	
82	Front	3	Motor	Anlasser	р	3,25	3,50
83	Innen	28	passive Verteilerbox	Bordnetz	р	0,88	0,45
84	Front	12		Wischerarme	S	0,75	
85	Front	12		Wischerarme	S	0,75	
86	Front	12		Wasserkastenabschlussblech	S	2	
87	Front	12	Motor	Scheibenwischermotor	р	0,88	2,25
88	Front	19	Steuerungselektronik	Motorsteuerung	р	0,6	0,80
89	Front	40		Abdeckung	S	5,13	
90	Front	40	Aktuator	Zündspulen	р	0,23	0,25
91	Front	40	Aktuator	Zündspulen	р	0,23	0,25
92	Front	40	Aktuator	Zündspulen	р	0,23	0,25
93	Front	40	Aktuator	Zündspulen	р	0,23	0,25
94	Front	40	Aktuator	Zündkerzen	р	0,25	0,04

Pos.	Lage	Nr.	Teilsystem	Komponente	Art _{i,n}	Zeit [min]	Masse [kg]
95	Front	40	Aktuator	Zündkerzen	р	0,25	0,04
96	Front	40	Aktuator	Zündkerzen	р	0,25	0,04
97	Front	40	Aktuator	Zündkerzen	p	0,25	0,04
98	Front	41		Luftfilter	S	3,15	
99	Front	46	Aktuator	Drosselklappe	е	0	
100	Front	46	Aktuator	Drosselklappe	е	2,15	
101	Front	34	Sensor	Kurbelwellensensor	p	0,95	0,04
102	Front	33	Sensor	Nockenwellensensor	p	0,38	0,03
103	Innen	10		Rücksitzbank	S	0,1	
104	Innen	10		Deckel	S	0,35	
105	Innen	10	Motor	Kraftstoffpumpe	р	0,7	1,00
106	Front	21	Steuerungselektronik	Fahrtsteuerung	р	2,13	2,50
107	Front	2		Achse	S	8,25	
108	Front	23	Steuerungselektronik	Lenkungskontrolle	р	2,8	0,80
109	Front	2	Motor	Lenkung, Servomotor	p	15	5,25
110	Hin- ten	32	Sensor	Raddrehzahlsensor	р	0,2	0,02
111	Hin- ten	32	Sensor	Raddrehzahlsensor	р	0,2	0,02
112	Hin- ten	32	Sensor	Raddrehzahlsensor	р	0,2	0,02
113	Hin- ten	32	Sensor	Raddrehzahlsensor	р	0,2	0,02

Tabelle 130: Zerlegedaten Minivan

Pos.	Lage	Nr.	Teilsystem	Komponente	Art i,n	Zeit [min]	Masse [kg]
1	Front	14	Motor	Spiegeljustierung	р	0,45	0,07
2	Front	14	Motor	Spiegeljustierung	р	0,45	0,07
3	Innen	15		Blende	s	0,13	
4	Innen	15	Bildschirm	Navigationssystem	р	1,88	2,2
5	Innen	25	Steuerungselektronik	Klimasteuerung	р	0,75	0,35
6	Innen	16	Bildschirm	Kombiinstrument	р	1,25	0,7
7	Innen	1		Isolierung	S	0,65	
8	Innen	1	Motor	Heizungsgebläse	р	2	1,55
9	Innen	26		Verkleidung	s	0,7	
10	Innen	26	Steuerungselektronik	Airbagsteuerung	р	1,35	0,3
11	Innen	39		Verkleidung	S	0,43	

Pos.	Lage	Nr.	Teilsystem	Komponente	Art	Zeit [min]	Masse [kg]
12	Innen	39	Sensor	Klimasensor	i,n p	0,03	0,01
13	Innen	28		Knieschutz	S	2,8	,
14	Innen			Lichtschalter	е	0,05	0,13
15	Innen	28	passive Verteilerbox	Bordnetz	р	0,23	0,25
16	Innen	28	passive Verteilerbox	Relais	е	0,28	1,26
17	Innen	27	smarte Verteilerbox	Gateway Diagnoseinterface	е	0,03	0,09
18	Innen	13		Verkleidung	S	0,5	
19	Innen	13		Verkleidung	S	0,5	
20	Innen	13		Verkleidung	s	0,5	
21	Innen	13		Verkleidung	S	0,5	
22	Innen	6	Motor	Türverschluss /-öffner	р	1,3	0,8
23	Innen	6	Motor	Türverschluss /-öffner	р	1,3	0,8
24	Innen	6	Motor	Türverschluss /-öffner	р	1,3	0,8
25	Innen	6	Motor	Türverschluss /-öffner	р	1,3	0,8
26	Innen	13	Motor	Scheibenheber	р	0,38	0
27	Innen	13	Motor	Scheibenheber	р	0,45	0,6
28	Innen	13	Motor	Scheibenheber	р	0,58	0,6
29	Innen	13	Motor	Scheibenheber	р	0,48	0,6
30	Innen	38		Sitzpolster	S	0,93	
31	Innen	38		Sitzpolster	S	0,93	
32	Innen	38	Sensor	Airbagsensor	р	0,43	0,02
33	Innen	38	Sensor	Airbagsensor	р	0,43	0,02
34	Hin- ten	8		Verkleidung, Scheibe, Kabel	S	0,93	
35	Hin- ten	8	Motor	Heckklappenschließmechanismus	р	0,3	0,4
36	Hin- ten	12	Motor	Scheibenwischer	р	0,3	
37	Front	4		Radhausschalen	S	2,08	
38	Front	4		Radhausschalen	S	2,08	
39	Front	4		Stoßfänger vorn	S	2,63	
40	Front	4		Schloßträger	S	8,68	
41	Front	4	Motor	Lüfter	р	2,58	2,15
42	Front	4	Motor	Lüfter	р	0,25	2,15
43	Front	35	Sensor	Sauerstoffsensor	р	0,13	0,08
44	Front	7	Motor	Lichtmaschine	р	2,9	7,2
45	Front	3		Kühlwasserleitung	S	0,5	

Pos.	Lage	Nr.	Teilsystem	Komponente	Art	Zeit [min]	Masse [kg]
46	Front	11		Motorhaube	i,n S	0,7	[vg]
47	Front	11	Motor	Pumpe Scheibenwäscher	р	0,33	0,11
48	Front	3	Motor	Anlasser	p	3,25	3,1
49	Innen	27	passive Verteilerbox	Verteilerbox	p	0,88	0,45
50	Front	12		Wischerarme	S	0,75	
51	Front	12		Wischerarme	S	0,75	
52	Front	12		Wasserkastenabschlussblech	s	2	
53	Front	12	Motor	Scheibenwischermotor	р	0,88	2,7
54	Front	19	Steuerungselektronik	Motorsteuerung	р	0,6	0,85
55	Front	40		Abdeckung	S	5,13	
56	Front	40	Aktuator	Zündspulen	р	0,25	0,24
57	Front	40	Aktuator	Zündspulen	р	0,25	0,24
58	Front	40	Aktuator	Zündspulen	р	0,25	0,24
59	Front	40	Aktuator	Zündspulen	р	0,25	0,24
60	Front	40	Aktuator	Zündkerzen	р	0,5	0,04
61	Front	40	Aktuator	Zündkerzen	p	0,5	0,04
62	Front	40	Aktuator	Zündkerzen	р	0,5	0,04
63	Front	40	Aktuator	Zündkerzen	р	0,5	0,04
64	Front	41		Luftfilter	S	3,15	
65	Front	46	Motor	Drosselklappe	е	0,13	0,7
66	Front	46	Motor	Drosselklappe	е	2,15	1,3
67	Front	41	Aktuator	Einspritzeinheit	р	9,3	0,4
68	Front	41	Aktuator	Einspritzeinheit	р	3,08	0,4
69	Front	21	Steuerungselektronik	Fahrtsteuerung	р	2,13	2,85
70	Front	2		Achse	S	8,25	
71	Front	23	Steuerungselektronik	Lenkungskontrolle	р	2,8	0,75
72	Front	2	Motor	Lenkung, Servomotor	р	15	2,55
73	Front	32		Stoßfänger	S	1,05	
74	Hin- ten	32	Sensor	Raddrehzahlsensor	р	0,53	0,02
75	Hin- ten	32	Sensor	Raddrehzahlsensor	р	0,53	0,02
76	Hin- ten	32	Sensor	Raddrehzahlsensor	р	0,53	0,02
77	Hin- ten	32	Sensor	Raddrehzahlsensor	p	0,53	0,02
78	Front	34	Sensor	Kurbelwellensensor	р	0,95	0,04

Pos.	Lage	Nr.	Teilsystem	Komponente	Art i,n	Zeit [min]	Masse [kg]
79	Front	33	Sensor	Nockenwellensensor	р	0,38	0,03
80	Front	35		Hitzeschutzblech	S	0,68	
81	Front	35	Sensor	Sauerstoffsensor	р	0,2	0,07
82	Front	35	Sensor	Sauerstoffsensor	р	0,2	0,07
83	Innen	10		Rücksitzbank	S	0,1	
84	Innen	10		Deckel	S	0,35	
85	Innen	10	Motor	Kraftstoffpumpe	р	0,7	1

Tabelle 131: Zerlegedaten Geländewagen groß (Hybrid)

	131.		egedaten delandewagen gi	· · · · · · · · · · · · · · · · · · ·			
Pos.	Lage	Nr.	Teilsystem	Komponente	Art _{i,n}	Zeit [min]	Masse [kg]
1	Innen	6		Verkleidung	S	1,62	
2	Innen	6	Motor	Bauteile	р	2,63	0,16
3	Innen	6		Verkleidung	S	1,62	
4	Innen	6	Motor	Bauteile	р	2,63	0,16
5	Innen	6		Verkleidung	S	1,62	
6	Innen	6	Motor	Bauteile	р	2,63	0,16
7	Innen	6		Verkleidung	S	1,62	
8	Innen	6	Motor	Bauteile	р	2,63	0,16
9	Innen	6		Aggregateträger	S	3,75	
10	Innen	6		Aggregateträger	S	3,75	
11	Innen	6		Aggregateträger	S	3,75	
12	Innen	6		Aggregateträger	S	3,75	
13	Innen	6	Motor	Türverschluss/ -öffner	р	1,75	0,80
14	Innen	6	Motor	Türverschluss/ -öffner	р	1,75	0,80
15	Innen	6	Motor	Türverschluss/ -öffner	р	1,75	0,80
16	Innen	6	Motor	Türverschluss/ -öffner	р	1,75	0,80
17	Innen	5	Motor	Lautsprecher klein	р	0,75	0,04
18	Innen	5	Motor	Lautsprecher klein	р	0,63	0,04
19	Innen	5	Motor	Lautsprecher klein	р	0,63	0,04
20	Innen	5	Motor	Lautsprecher klein	р	0,63	0,04
21	Innen	13	Motor	Scheibenheber	р	2,98	0,60
22	Innen	13	Motor	Scheibenheber	р	0,40	0,60
23	Innen	13	Motor	Scheibenheber	р	0,38	0,60
24	Innen	13	Motor	Scheibenheber	р	0,38	0,60
25	Front	14	Motor	Spiegeljustierung	р	0,45	0,10

Pos.	Lage	Nr.	Teilsystem	Komponente	Art _{i,n}	Zeit [min]	Masse [kg]
26	Front	14	Motor	Spiegeljustierung	р	0,45	0,10
27	Innen	9		Sitz	s	1,65	0,00
28	Innen	9	Motor	Sitzverstellung	р	9,48	2,30
29	Innen	108	Sonstiges	Türschalter	e	0,98	
30	Innen	15	Bildschirm	Navigationssystem mit Bildschirm	р	0,63	2,30
31	Innen	82	Steuerungselektronik	Infotainment	е	2,73	1,90
32	Hin- ten	15		Verkleidung	S	3,73	0,00
33	Hin- ten	83	Steuerungselektronik	CD-Wechsler	е	4,55	1,70
34	Hin- ten	84	Steuerungselektronik	TV-Tuner	е	5,00	1,15
35	Hin- ten	85	Steuerungselektronik	Radio Steuergerät	е	5,90	1,00
36	Innen	64	Steuerungselektronik	Front-/Rückfahrkamera mit Steue- rung	е	6,25	0,45
37	Front	47	Motor	Elektrische Parkbremse	е	6,50	0,20
38	Hin- ten	22	Steuerungselektronik	Fahrwerkniveausteuergerät	р	7,88	0,40
39	Hin- ten	29	Licht	Rückscheinwerfer	р	0,85	1,20
40	Hin- ten	29	Licht	Rückscheinwerfer	р	0,85	1,20
41	Hin- ten	29	Licht	Rückscheinwerfer	р	0,85	0,75
42	Hin- ten	29	Licht	Rückscheinwerfer	р	0,85	1,20
43	Innen	16	Bildschirm	Kombiinstrument	р	1,30	1,60
44	Innen	28		Knieschutz	s	4,00	0,00
45	Innen	28	passive Verteilerbox	Bordnetz	s	0,25	0,50
46	Innen	93	Steuerungselektronik	elektronisches Gaspedal	e	0,73	0,04
47	Front	94	Sensor	Wegstrecke	е	0,20	0,04
48	Innen	39	Sensor	Klimasensor	р	1,38	0,01
49	Innen	72	Steuerungselektronik	Parkhilfe	е	0,25	0,09
50	Innen	67	Steuerungselektronik	Komfortsteuergerät	е	3,25	0,45
51	Innen	2	Motor	Lenkung, Servomotor	р	4,90	0,40
52	Innen	26	Sonstiges	Schalter	е	1,23	
53	Innen	25	Steuerungselektronik	Klimasteuerung	р	1,58	0,45
54	Innen	26	Steuerungselektronik	Airbagsteuerung	р	0,98	0,45
				250			

Pos.	Lage	Nr.	Teilsystem	Komponente	Art i,n	Zeit [min]	Masse [kg]
55	Front	89	Sensor	ESP-Mehrfachsensor	р	0,68	0,08
56	Innen	20	Steuerungselektronik	Getriebesteuerung	р	0,40	0,35
57	Innen	1		Handschuhfach	S	0,00	
58	Innen	1	Motor	Heizungsgebläse	р	4,08	1,85
59	Innen	73	Steuerungselektronik	Sitzheizung	е	0,48	0,14
60	Innen	38		Verkleidung	s	0,00	
61	Innen	38	Sensor	Airbagsensor	р	2,25	0,02
62	Innen	38		Verkleidung	s	0,00	
63	Innen	38	Sensor	Airbagsensor	р	2,25	0,02
64	Hin- ten	8	Motor	Heckklappenschließmechanismus	р	0,30	0,40
65	Front	21	Steuerungselektronik	Fahrtsteuerung	р	1,28	2,90
66	Front	19	Steuerungselektronik	Motorsteuerung	р	0,63	1,30
67	Front	12		Verkleidung Waschkastenabde- ckung	S	1,25	
68	Front	12	Motor	Scheibenwischermotor	р	2,25	2,35
69	Front	37		Stoßfänger	s	4,58	
70	Front	37	Steuerungselektronik	Abstandssteuerung + Radar	р	0,20	0,38
71	Front	37	Steuerungselektronik	Abstandssteuerung + Radar	р	0,20	0,38
72	Innen	38		Verkleidung	s	0,75	
73	Innen	38		Verkleidung	s	0,75	
74	Innen	38	Sensor	Airbag	e	0,50	0,02
75	Innen	38	Sensor	Airbag	е	0,55	0,02
76	Front			Verkleidung Unterboden	S	2,88	
77	Front	49	Motor	Kompressor Luftfahrwerk	е	1,50	4,45
78	Hin- ten			Verkleidung	S	3,25	
79	Hin- ten		Batterie	Akku (H)	h	2,00	
80	Front	37		Stoßfänger	s	4,58	0,00
81	Front	30	Licht	Scheinwerfer	р	1,13	4,15
82	Front	30	Licht	Scheinwerfer	р	1,13	4,15
83	Front	2	Motor	Lenkung, Servomotor	р	1,00	0,50
84	Front			Schloßträger	s	9,53	
85	Front			Motor Benzin	s	13,50	
86	Front	34	Sensor	Kurbelwellensensor	р	0,95	0,04
87	Front	33	Sensor	Nockenwellensensor	р	0,38	0,03

Pos.	Lage	Nr.	Teilsystem	Komponente	Art i,n	Zeit [min]	Masse [kg]
88	Front	32	Sensor	Raddrehzahlsensor	р	1,15	0,02
89	Front	32	Sensor	Raddrehzahlsensor	р	0,98	0,02
90	Front	32	Sensor	Raddrehzahlsensor	р	1,15	0,02
91	Front	32	Sensor	Raddrehzahlsensor	р	0,98	0,02
92	Front	4	Motor	Lüfter	р	0,50	2,5
93	Front	4	Motor	Lüfter	р	0,50	2,5
94	Front	35	Sensor	Sauerstoffsensor	р	0,25	0,08
95	Front	35	Sensor	Sauerstoffsensor	р	0,25	0,08
96	Front	35	Sensor	Sauerstoffsensor	р	0,25	0,08
97	Front	35	Sensor	Sauerstoffsensor	р	0,25	0,08
98	Front	50	Motor	Vakuumpumpe	е	3,38	2,10
99	Front	41	Aktuator	Zündspulen	р	0,35	0,25
100	Front	41	Aktuator	Zündspulen	р	0,35	0,25
101	Front	41	Aktuator	Zündspulen	р	0,35	0,25
102	Front	41	Aktuator	Zündspulen	р	0,35	0,25
103	Front	41	Aktuator	Zündspulen	р	0,35	0,25
104	Front	41	Aktuator	Zündspulen	р	0,35	0,25
105	Front	51	Motor	Klimakompressor	е	2,13	7,00
106	Front	40	Aktuator	Zündkerzen	р	0,15	0,05
107	Front	40	Aktuator	Zündkerzen	р	0,15	0,05
108	Front	40	Aktuator	Zündkerzen	р	0,15	0,05
109	Front	40	Aktuator	Zündkerzen	р	0,15	0,05
110	Front	40	Aktuator	Zündkerzen	р	0,15	0,05
111	Front	40	Aktuator	Zündkerzen	р	0,15	0,05
112	Front	48	Motor	Antriebsmotor Hybrid	h	5,88	35,00
113	Front	60	Motor	Sekundärluftpumpe	h	0,75	1,10
114	Front	18	Steuerungselektronik	Inverter	h	1,50	13,55
115	Front	11	Motor	Pumpe Scheibenwäscher	р	0,33	0,11
116	Innen	10		Rücksitzbank	S	0,10	
117	Innen	10		Deckel	S	0,35	
118	Innen	58	Motor	Kraftstoffpumpe Hybrid	р	0,70	1,00
119	Front	105	Aktuator	elektronische Kupplung	h	2,20	2,25

Tabelle 132: Zerlegedaten Hochdachkombi

Tabelle	Tubelle 152. Zehlegeduten Hoeildatenkombi									
Pos.	Lage	Nr.	Teilsystem	Komponente	Art i,n	Zeit [min]	Masse [kg]			
1	Front	14	Motor	Spiegeljustierung	р	0,5	0,070			
2	Front	14	Motor	Spiegeljustierung		0,5	0,070			
3	Innen	86	Bildschirm	Radio	р	1,5	1,700			
4	Innen	25	Steuerungselektronik	Klimasteuerung	р	0,8	0,450			
5	Innen	16	Bildschirm	Kombiinstrument	р	1,3	0,850			
6	Innen	1	Motor	Heizungsgebläse	р	0,4	1,450			
7	Innen	28		Verkleidung	S	0,0				
8	Innen	28	Verteiler	passive Verteilerbox	р	2,9	0,850			
9	Innen	69	Steuerungselektronik	Temix	р	0,3	0,100			
10	Innen	28	Steuerungselektronik	Lichtschalter	р	0,1				
11	Innen	27	Steuerungselektronik	Interfacebox	р	0,6				
12	Innen	26	Steuerungselektronik	Airbagsteuerung	р	1,2	0,250			
13	Innen	38		Sitzpolster	S	0,9				
14	Innen	38		Sitzpolster		0,9				
15	Innen	38	Sensor	Airbagsensor	р	0,4	0,020			
16	Innen	38	Sensor	Airbagsensor		0,4	0,020			
17	Hin- ten	32	Sensor	Raddrehzahlsensor	р	0,5	0,018			
18	Hin- ten	32	Sensor	Raddrehzahlsensor	р	0,5	0,018			
19	Hin- ten	32	Sensor	Raddrehzahlsensor	р	0,5	0,018			
20	Hin- ten	32	Sensor	Raddrehzahlsensor	р	0,5	0,018			
21	Front	32		Stoßfänger	S	14,3				
22	Front	32		Radhausschalen	S	2,4				
23	Front	32		Radhausschalen	S	2,4				
24	Front	11		Motorhaube	S	0,7				
25	Front	32		Stoßfänger	S	1,3				
26	Front	4		Schloßträger	S	4,0				
27	Front	4		Lüfterzarge	S	0,7				
28	Front	4	Motor	Lüftermotor	р	1,3	1,850			
29	Front	78	Steuerungselektronik	Standheizung	е	0,3	4,450			
30	Front	7		Spannrolle	S	3,6				
31	Front	7	Motor	Lichtmaschine	р	2,4	7,150			
32	Front	3	Motor	Anlasser	р	3,0	4,250			

Pos.	Lage	Nr.	Teilsystem	Komponente	Art i,n	Zeit [min]	Masse [kg]
33	Front	34	Sensor	Kurbelwellensensor	р	1,0	0,035
34	Front	40	Aktuatoren	Glühkerzen	р	0,3	0,025
35	Front	40	Aktuatoren	Glühkerzen	р	0,3	0,025
36	Front	40	Aktuatoren	Glühkerzen	р	0,3	0,025
37	Front	40	Aktuatoren	Glühkerzen	р	0,3	0,025
38	Front	35	Sensor	Sauerstoffsensor	Р	0,3	0,07
39	Front	35	Sensor	Sauerstoffsensor	Р	0,3	0,07
40	Front	41		Ventildeckel	S	5,0	
41	Front	41	Aktuatoren	Einspritzeinheit	р	7,5	3,000
42	Front	19	Steuerungselektronik	Motorsteuerung	р	0,8	0,800
43	Front	11	Motor	Pumpe Scheibenwäscher	р	0,3	0,11
44	Front	52	Motor	Pumpe Scheinwerferwäscher	e	0,2	0,170
45	Front	21	Steuerungselektronik	Fahrtsteuerung	р	2,2	
46	Front	12		Wischerarme	s	0,6	
47	Front	12		Wasserkastenabdeckung	s	1,2	
48	Front	12		Luftfilterkasten	s	0,3	
49	Front	12		Wasserkastenabdeckblech	s	1,4	
50	Front	12	Motor	Scheibenwischermotor	р	0,6	2,250
51	Hin- ten	8		Verkleidung, Scheibe, Kabel	S	0,9	
52	Hin- ten	8	Motor	Heckklappenschließmechanismus	р	0,4	0,400
53	Hin- ten	12	Motor	Scheibenwischer	р	0,5	
54	Innen	10		Rücksitzbank	S	0,1	
55	Innen	10		Deckel Kraftstoffpumpe	s	0,4	
56	Innen	10	Motor	Kraftstoffpumpe	р	0,7	1,000

Tabelle 133: Zerlegedaten Großraumlimousine

Pos.	Lage	Nr.	Teilsystem	Komponente	Art _{i,n}	F 1,5	Kilo
1	Front	14		Glas	S	0,13	
2	Front	14	Motor	Spiegeljustierung	р	0,25	0,070
3	Front	14		Glas	S	0,13	
4	Front	14	Motor	Spiegel	р	0,25	0,070
5	Innen	13		Verkleidung	S	1,08	
6	Innen	13		Verkleidung	S	1,08	
7	Innen	13	Motor	Scheibenheber	р	0,75	0,600

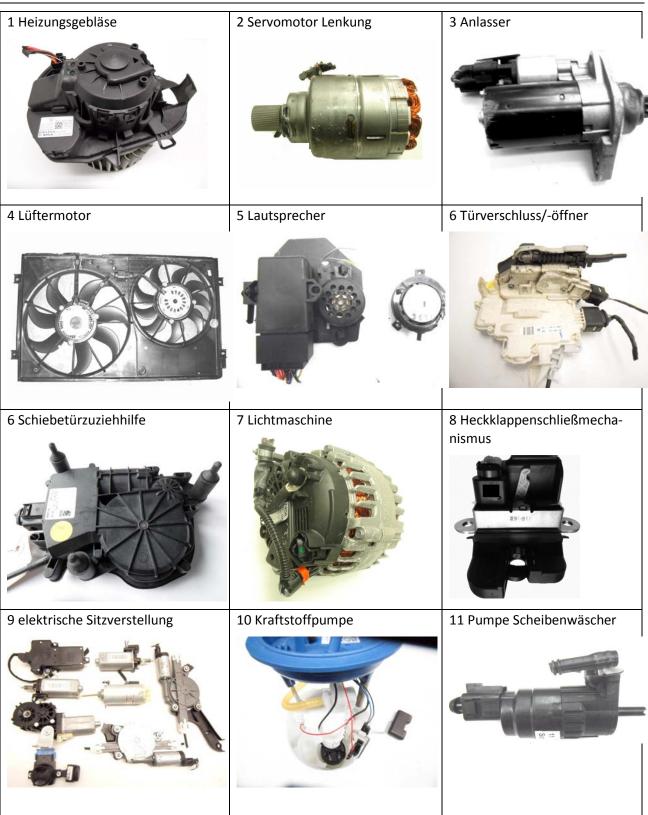
Pos.	Lage	Nr.	Teilsystem	Komponente	Art _{i,n}	F 1,5	Kilo
8	Innen	13	Motor	Scheibenheber	р	0,75	0,600
9	Innen	5	Motor	Lautsprecher klein	р	0,13	0,044
10	Innen	5	Motor	Lautsprecher klein	р	0,13	0,044
11	Innen	71	Steuerungselektronik	Tür vr	е	0,3	0,095
12	Innen	71	Steuerungselektronik	Tür vl	е	0,3	0,095
13	Innen	71	Steuerungselektronik	Tür hr	е	0,3	0,095
14	Innen	71	Steuerungselektronik	Tür hl	е	0,3	0,095
15	Innen	6		Türverschluss/ -öffner Verkleidung	S	1,5	0,800
16	Innen	6		Türverschluss/ -öffner Verkleidung	S	1,5	0,800
17	Innen	6		Türverschluss/ -öffner Verkleidung	S	1,5	0,800
18	Innen	6		Türverschluss/ -öffner Verkleidung	S	1,5	0,800
19	Innen	25		Blende	s	0,13	
20	Innen	25	Steuerungselektronik	Klimasteuerung	р	0,58	0,450
21	Innen	42	Motor	Schiebedachmotor	е	0,7	0,500
22	Innen	42	Motor	Schiebedachmotor	е	0,7	0,500
23	Innen	1	Motor	Heizgebläse	р	0,5	1,700
24	Innen	26		Verkleidung	S	0,7	
25	Innen	26	Steuerungselektronik	Airbagsteuerung	р	3,63	0,250
26	Innen	39		Verkleidung	S	0,43	
27	Innen	39	Sensor	Klimasensor	р	0,33	0,014
28	Innen	27	Steuerungselektronik	Interface	р	0,28	0,250
29	Innen	90	Sensor	Sensor Regen- und Feuchtigkeit	е	0,3	0,500
30	Innen	110	Kabel	Kabelbaum	е	2,25	
31	Innen	16	Bildschirm	Kombiinstrument	р	0,83	0,700
32	Innen	28	passive Verteilerbox	Bordnetz	р	1,68	0,250
33	Innen	69	Steuerungselektronik	TEMIX	е	0,23	0,079
34	Innen	70	Steuerungselektronik	Verstärker Radio	е	0,78	1,000
35	Innen	9		Sitz	S	2,15	
36	Innen	9	Motor	Sitzverstellung	р	0,48	0,532
37	Innen	9	Motor	Sitzverstellung	р	0,48	0,319
38	Innen	9	Motor	Sitzverstellung	р	0,48	0,562
39	Innen	6		Verkleidung	S	0,5	
72	Front	32	Sensor	Raddrehzahlsensor	р	0,55	0,018
73	Front	4		Radhausschalen	S	16,68	
74	Front	4		Radhausschalen	S		
75	Front	4		Stoßfänger vorn	S		
76	Front	4		Schloßträger	S		

		l	- .4545	W			14.1
Pos.	Lage	Nr.	Teilsystem	Komponente	Art _{i,n}	F 1,5	Kilo
77	Front	38	Sensor	Airbagsensor	р	0,58	0,018
78	Front	4	Motor	Lüftermotor	р	0,38	2,525
79	Front	4	Motor	Lüftermotor	р	0,38	2,525
80	Front	92	Sensor	Luftmassenmesser	е	1,15	0,190
81	Front	28	passive Verteilerbox	Bordnetz	р	1,03	0,296
82	Front	12		Verkleidung	S	3,25	
83	Front	12	Motor	Scheibenwischermotor	р	0,5	2,950
84	Front	19	Steuerungselektronik	Motorsteuerung	р	0,5	1,150
85	Front	66	Steuerungselektronik	DCDC Wandler	е	0,75	0,200
86	Front	46	Motor	Drosselklappe	е	1,13	0,700
87	Front	41	Aktuator	Einspritzdüsen 4 Stück	р	12	2,400
88	Front	40	Aktuator	Glühkerze	р	0,75	0,035
89	Front	40	Aktuator	Glühkerze	р	0,75	0,035
90	Front	40	Aktuator	Glühkerze	р	0,75	0,035
91	Front	40	Aktuator	Glühkerze	р	0,75	0,035
92	Front	3	Motor	Anlasser	р	3,5	3,950
93	Front	7		Schlauch, Riemen, Kabel	S	3,25	
94	Front	7	Motor	Lichtmaschine	р	2	7,600
95	Front	7	Steuerungselektronik	Alarmanlagenhupe	е	0,75	0,323
96	Front	7	Aktuator	Ventil Kraftstoffdosierung	е	0,63	0,211
97	Front	11	Motor	Pumpe Scheibenwäscher	р	0,33	0,110
98	Front	35		Motor, Achsen	s	19,5	
99	Front	96	Sensor	Achssensoren	е	0,5	0,227
100	Front	96	Sensor	Achssensoren	е	0,5	0,227
101	Front	35		Rußpartikelfilter	S	2,38	
102	Front	35	Sensor	Sauerstoffsensor	р	0,38	0,077
103	Front	35	Sensor	Abgastemperaturfühler	р	0,38	0,028
104	Front	35	Sensor	Abgastemperaturfühler	р	0,38	0,028
105	Front	35	Sensor	Abgastemperaturfühler	р	0,38	0,028
106	Front	110	Kabel	Kabelbaum	e	2,8	
107	Front	55	Motor	Zusatzwasserpumpe / Kühlmittel- regelventil	е	0,9	0,553
108	Front	21	Steuerungselektronik	Fahrtsteuerung	р	2,13	2,600
109	Innen	10		Rücksitzbank	S	0,1	
110	Innen	10		Deckel	s	0,35	
111	Innen	10	Motor	Kraftstoffpumpe	р	0,7	1,000
112	Front	110	Kabel	Kabelbaum	e	2,38	7,200

Tabelle 134: Zerlegedaten Geländewagen groß

Pos.	Lage	Nr.	Teilsystem	Komponente	Art i,n	Zeit [min]	Masse [kg]
1	Innen	6		Verkleidung	S	1,62	
2	Innen	6	Motor	Bauteile	р	2,63	0,16
3	Innen	6		Verkleidung	s	1,62	
4	Innen	6	Motor	Bauteile	р	2,63	0,16
5	Innen	6		Verkleidung	s	1,62	
6	Innen	6	Motor	Bauteile	р	2,63	0,16
7	Innen	6		Verkleidung	S	1,62	
8	Innen	6	Motor	Bauteile	р	2,63	0,16
9	Innen	6		Aggregateträger	S	3,75	
10	Innen	6		Aggregateträger	s	3,75	
11	Innen	6		Aggregateträger	s	3,75	
12	Innen	6		Aggregateträger	s	3,75	
13	Innen	6	Motor	Türverschluss/ -öffner	р	1,75	0,8
14	Innen	6	Motor	Türverschluss/ -öffner	р	1,75	0,8
15	Innen	6	Motor	Türverschluss/ -öffner	р	1,75	0,8
16	Innen	6	Motor	Türverschluss/ -öffner	р	1,75	0,8
17	Innen	5	Motor	Lautsprecher klein	р	0,75	0,044
18	Innen	5	Motor	Lautsprecher klein	р	0,63	0,044
19	Innen	5	Motor	Lautsprecher klein	р	0,63	0,044
20	Innen	5	Motor	Lautsprecher klein	р	0,63	0,044
21	Innen	13	Motor	Scheibenheber	р	2,98	0,60
22	Innen	13	Motor	Scheibenheber	р	0,40	0,60
23	Innen	13	Motor	Scheibenheber	р	0,38	0,60
24	Innen	13	Motor	Scheibenheber	р	0,38	0,60
25	Front	14	Motor	Spiegeljustierung	р	0,45	0,10
26	Front	14	Motor	Spiegeljustierung	р	0,45	0,10
27	Innen	9		Sitz	S	1,65	
28	Innen	9	Motor	Sitzverstellung	р	9,48	2,30
29	Innen	108	Sonstiges	Türschalter 6 Stück	е	0,98	0,095
30	Innen	15	Bildschirm	Navigationssystem mit Bildschirm	р	0,63	1,20
32	Innen	82	Steuerungselektronik	Infotainment	е	2,73	1,90
33	Hin- ten	15		Verkleidung	S	3,73	
34	Hin- ten	83	Steuerungselektronik	CD-Wechsler	е	4,55	1,70

Pos.	Lage	Nr.	Teilsystem	Komponente	Art i,n	Zeit [min]	Masse [kg]
35	Hin- ten	84	Steuerungselektronik	TV-Tuner	е	5,00	1,15
36	Hin- ten	85	Steuerungselektronik	Radio Steuergerät	е	5,90	1,00
37	Innen	64	Steuerungselektronik	Front-/Rückfahrkamera mit Steue- rung	е	6,25	0,45
38	Front	47	Motor	Elektrische Parkbremse	e	6,50	0,20
39	Hin- ten	22	Steuerungselektronik	Fahrwerkniveausteuergerät	р	7,88	0,40
40	Hin- ten	29	Licht	Rückscheinwerfer	р	0,85	1,20
41	Hin- ten	29	Licht	Rückscheinwerfer	р	0,85	0,75
42	Hin- ten	29	Licht	Rückscheinwerfer p		0,85	1,20
43	Hin- ten	29	Licht	Rückscheinwerfer p		0,85	0,75
44	Innen	16	Bildschirm	Kombiinstrument		1,30	1,60
45	Innen	28		Knieschutz	S	4,00	
46	Innen	28	passive Verteilerbox	Bordnetz	S	0,25	0,50
47	Innen	93	Steuerungselektronik	elektronisches Gaspedal	е	0,73	0,035
48	Front	94	Sensor	Wegstrecke	е	0,20	0,035
49	Innen	39	Sensor	Klimasensor	р	1,38	0,008
50	Innen	72	Steuerungselektronik	Parkhilfe	е	0,25	0,093
51	Innen	67	Steuerungselektronik	Komfortsteuergerät	е	3,25	0,45
52	Innen	2	Motor	Lenkung, Servomotor	р	2,65	0,40
52	Innen	2	Motor	Lenkung, Servomotor	р	2,65	0,40
53	Innen	26	Sonstiges	Schalter 6 Stück	е	1,23	0,095
54	Innen	25	Steuerungselektronik	Klimasteuerung	р	1,58	0,45
55	Innen	26	Steuerungselektronik	Airbagsteuerung	р	0,98	0,45
56	Front	89	Sensor	ESP-Mehrfachsensor	р	0,68	0,08
57	Innen	20	Steuerungselektronik	Getriebesteuerung	р	0,40	0,35
58	Innen	1		Handschuhfach	S	0,30	
59	Innen	1	Motor	Heizungsgebläse	р	4,08	1,85
60	Innen	73	Steuerungselektronik	Sitzheizung	е	0,48	0,135
61	Innen	38		Verkleidung	s	0,58	
62	Innen	38	Sensor	Airbagsensor	р	2,25	0,015
63	Innen	38		Verkleidung	S	0,58	

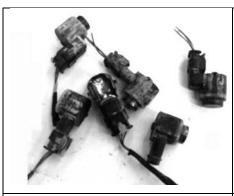

							ı
Pos.	Lage	Nr.	Teilsystem	Komponente	Art _{i,n}	Zeit [min]	Masse [kg]
64	Innen	38	Sensor	Airbagsensor	р	2,25	0,015
65	Hin- ten	8	Motor	Heckklappenschließmechanismus	p 0,30		0,4
66	Front	21	Steuerungselektronik	Fahrtsteuerung	р	1,28	2,90
67	Front	19	Steuerungselektronik	Motorsteuerung	р	0,63	1,30
68	Front	12		Verkleidung Waschkastenabde- ckung	S	1,25	
69	Front	12	Motor	Scheibenwischermotor mit Gestänge	р	2,25	2,35
70	Front	37		Stoßfänger	S	4,58	
71	Front	37	Steuerungselektronik	Abstandssteuerung + Radar	р	0,20	0,375
72	Front	37	Steuerungselektronik	Abstandssteuerung + Radar	р	0,20	0,375
73	Innen	38		Verkleidung	s	0,75	
74	Innen	38		Verkleidung	S	0,75	
75	Innen	38	Sensor	Airbagsensor	р	0,50	0,015
76	Innen	38	Sensor	Airbagsensor	р	0,55	0,015
77	Front	51		Verkleidung Unterboden	s	2,88	
78	Front	51	Motor	Kompressor Luftfahrwerk	е	1,50	4,45
79	Hin- ten	30		Verkleidung	S	3,25	
80	Front	30		Stoßfänger	S	4,58	
81	Front	30	Licht	Scheinwerfer	р	1,13	4,15
82	Front	30	Licht	Scheinwerfer	р	1,13	4,15
83	Front	2	Motor	Lenkung, Servomotor	р	1,00	2,2
84	Front			Schloßträger	S	9,53	
85	Front			Motor Benzin	s	13,50	
86	Front	34	Sensor	Kurbelwellensensor	р	0,95	0,035
87	Front	33	Sensor	Nockenwellensensor	р	0,38	0,03
88	Front	32	Sensor	Raddrehzahlsensor	р	1,15	0,018
89	Front	32	Sensor	Raddrehzahlsensor	р	0,98	0,018
90	Front	32	Sensor	Raddrehzahlsensor	р	1,15	0,018
91	Front	32	Sensor	Raddrehzahlsensor	р	0,98	0,018
92	Front	4	Motor	Lüfter	р	0,50	2,5
93	Front	4	Motor	Lüfter	р	0,50	2,5
94	Front	35	Sensor	Sauerstoffsensor	р	0,25	0,075
95	Front	35	Sensor	Sauerstoffsensor	р	0,25	0,075
96	Front	35	Sensor	Sauerstoffsensor	р	0,25	0,075

Pos.	Lage	Nr.	Teilsystem	Komponente	Art i,n	Zeit [min]	Masse [kg]
97	Front	35	Sensor	Sauerstoffsensor	р	0,25	0,075
98	Front	52	Motor	Vakuumpumpe	е	3,38	2,10
99	Front	41	Aktuator	Zündspulen	р	0,35	0,25
100	Front	41	Aktuator	Zündspulen	р	0,35	0,25
101	Front	41	Aktuator	Zündspulen	р	0,35	0,25
102	Front	41	Aktuator	Zündspulen	p	0,35	0,25
103	Front	41	Aktuator	Zündspulen	р	0,35	0,25
104	Front	41	Aktuator	Zündspulen	p	0,35	0,25
105	Front	53	Motor	Klimakompressor	е	2,13	7,00
106	Front	40	Aktuator	Zündkerzen	р	0,15	0,05
107	Front	40	Aktuator	Zündkerzen	p	0,15	0,05
108	Front	40	Aktuator	Zündkerzen	p	0,15	0,05
109	Front	40	Aktuator	Zündkerzen	р	0,15	0,05
110	Front	40	Aktuator	Zündkerzen	p	0,15	0,05
111	Front	40	Aktuator	Zündkerzen	р	0,15	0,05
112	Front	11	Motor	Pumpe Scheibenwäscher	p	0,33	0,11
113	Innen	10		Rücksitzbank	S	0,10	
114	Innen	10		Deckel	S	0,35	
115	Innen	117	Motor	Kraftstoffpumpe	р	0,70	1,00

15.4.1 Abbildungen separierter Komponenten

Die Abbildungen mit einer vorangestellten Ziffer sind Komponenten der "30er-Liste" (Tabelle 65). Den zusätzlich separierte Komponenten (Tabelle 72) wurde keine Ziffern vorangestellt.

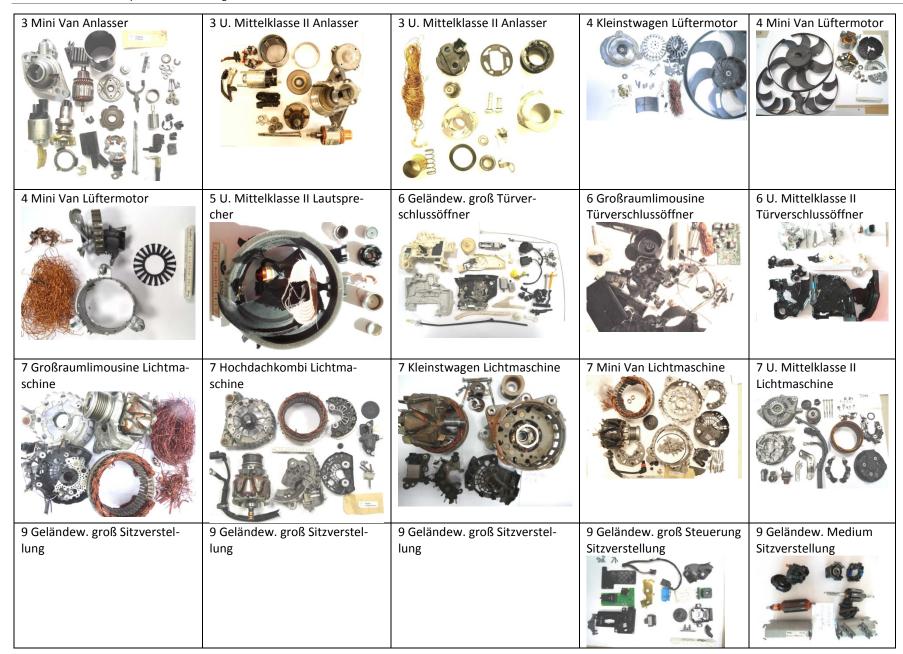
Abbildung 60: Separierte Komponenten



103 Druckwandler

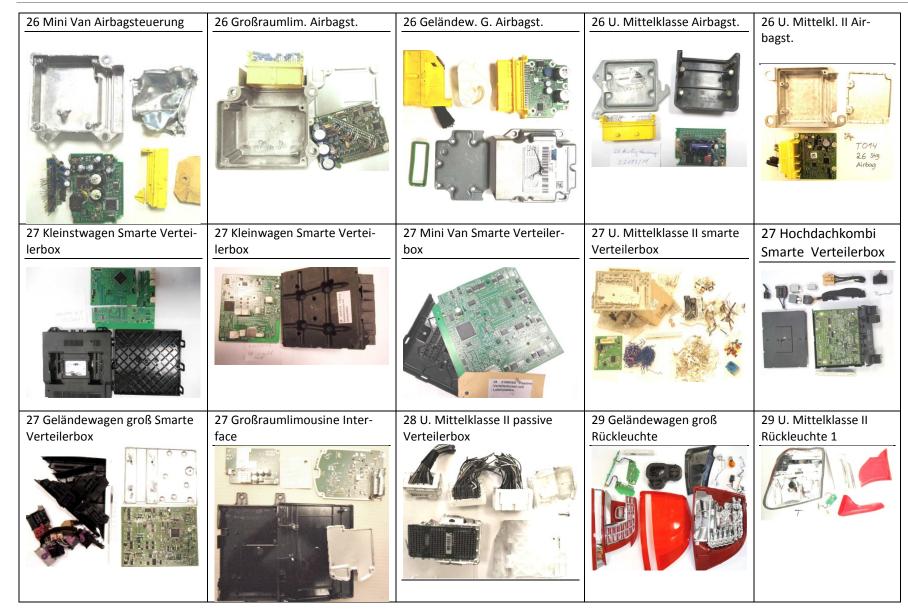
104 Zündschloss




107 Armaturenbrett Schalter

15.4.2 Abbildungen zerlegter Komponenten

Abbildung 61: Zerlegte Komponenten



16 Kleinstwagen Kombiinstru-	16 Geländew. Medium Kombi-	16 Kleinwagen Kombiinstru-	16 O. Mittelklasse Kombi-	16 U. Mittelklasse II
ment	instr.	ment	instrument	Kombiinstrument
18 Geländewagen groß Inver-	19 Kleinstwagen Motorst.	19 Kleinwagen Motorsteuerung	19 Mini Van Motorsteue-	19 O. Mittelkl. Motor-
ter			rung	steuerung
19 U. Mittelklasse II Motorsteu-	20 Kleinstwagen Getriebesteue-	20 Geländewagen Medium Ge-	20 Geländewagen groß Ge-	21 Kleinstwagen Fahrt-
erung	rung	triebesteuerung	triebesteuerung	steuerung
TO 94 GB Streets galls hate				
21 Kleinwagen Fahrtsteuerung	21 Mini Van Fahrtsteuerung	21 Großraumlim. Fahrtsteue-	21 Großrauml. Fahrtsteue-	21 U. Mittelkl. II Fahrt-
		rung	rung	steuerung

29 U. Mittelklasse II Rück-	29 U. Mittelklasse II Rück-	29 U. Mittelklasse II Rück-	29 O. Mittelklasse Rück-	30 O. Mittelklasse Kom-
leuchte 1	leuchte 1 LED-Leiterplatte	leuchte 1 LED-Leiterplatte	leuchte	bileuchte
30 Geländewagen groß Kombi-	30 Geländewagen groß Kombi-	30 Geländewagen Medium	30 Geländewagen Medium	30 U. Mittelklasse II
leuchte LED	leuchte LED	Kombileuchte	Kombileuchte	Kombileuchte
30 O. Mittelklasse Kombileuchte	36 O. Mittelklasse Abstands- sensor	36 O. Mittelklasse Ultraschall Nahdistanzradar	46 Mini Van Drosselklappe groß	53 Kleinstwagen Stell- motor Getriebe
Teuchte	SELISOI SELISOI	TVATIGISTATIZA GALLA CALLA CAL	Establish Control of the Control of	Asset Services

64 Geländewagen groß Rück-	67 Geländewagen groß Kom-	70 Geländewagen Groß Ver-	81 O. Mittelklasse Verkehrs-	82 U. Mittelklasse Info-
fahrkamera	fortsteuerung	stärker Radio LP	zeichenerkennung	tainment
			ARMSONS WARRANGER	
82 Geländewagen groß Info-	111 U. Mittelklasse II Start-	111 U. Mittelklasse II Start-		
tainment	Stopp-Steuerung	Stopp-Steuerung		
		T0014		
	TO: Start Step,	Steurung start soop Molorraum		