

Waste Management and Climate: Accounting of GHG Emissions and Savings

Thomas H Christensen *UBA*, *Berlin June 2012*

DTU Environment

Department of Environmental Engineering

- Which contributions and which savings?
- GHG accounting in waste management: 4 types
- Determining factors in GHG counting
 - 1. Boundaries: Upstream-Operation-Downstream: Transparence needed
 - 2. Boundaries: Reference level
 - 3. Characterization factors: Be specific methane and bound-C are critical
 - 4. Waste management data:
 - 4.1 Waste composition
 - 4.2 CO2 fossil from incineration
 - 4.3 CH4 and N2O from composting and biofilters
 - 4.4 Recycling of plastic (not shown)
 - 4.5 CH4 capture and utilization in landfils (not shown)
 - 4.6 C-biogenic storage in landfills (not shown)
 - 5. Downstream-data:
 - 5.1 Energy substitution
 - 5.2 Material substitution
 - 5.3 Material utilization

- Which contributions and which savings?
- GHG accounting in waste management: 4 types
- Determining factors in GHG counting
 - 1. Boundaries: Upstream-Operation-Downstream: Transparence needed
 - 2. Boundaries: Reference level
 - 3. Characterization factors: Be specific methane and bound-C are critical
 - 4. Waste management data:
 - 4.1 Waste composition
 - 4.2 CO2 fossil from incineration
 - 4.3 CH4 and N2O from composting and biofilters
 - 4.4 Recycling of plastic (not shown)
 - 4.5 CH4 capture and utilization in landfils (not shown)
 - 4.6 C-biogenic storage in landfills (not shown)
 - 5. Downstream-data:
 - 5.1 Energy substitution
 - 5.2 Material substitution
 - 5.3 Material utilization

Which contributions?

Direct GHG contributions: CO_2 -fossil, methane (CH_4) and dinitrogenoxide (N_2O) + a few other (SF6,...)

- Combustion of fuels in vehicles and machinery
- Emissions of methane (CH₄) from landfills, anaerobic digestion and composting
- Emissions of CO₂-fossil from incineration of plastic, textiles etc. containing C-fossil
- \bullet Emissions of dinitrogenoxide (N₂O) from biological processes, e.g. composting

Which savings?

Indirect saving in GHG contributions: CO₂-fossil, methane CH₄, dinitrogenoxide N₂O from what we avoid to produce plus bound C-biogenic:

- Energy recovery (electricity, heat, fuels) from MBTplants/RDF/SRF, incineration, anaerobic digestion and landfill gas utilization
- Recycling of materials is often energy saving when compared to production from virgin materials
- Recycling of nutrients is often energy saving when compared to production of commercial fertilizers
- Binding of C-biogenic in soils and landfills

- Which contributions and which savings?
- GHG accounting in waste management: 4 types
- Determining factors in GHG counting
 - 1. Boundaries: Upstream-Operation-Downstream: Transparence needed
 - 2. Boundaries: Reference level
 - 3. Characterization factors: Be specific methane and bound-C are critical
 - 4. Waste management data:
 - 4.1 Waste composition
 - 4.2 CO2 fossil from incineration
 - 4.3 CH4 and N2O from composting and biofilters
 - 4.4 Recycling of plastic (not shown)
 - 4.5 CH4 capture and utilization in landfils (not shown)
 - 4.6 C-biogenic storage in landfills (not shown)
 - 5. Downstream-data:
 - 5.1 Energy substitution
 - 5.2 Material substitution
 - 5.3 Material utilization

GHG accounting in waste management

- Which contributions and which savings?
- GHG accounting in waste management: 4 types
- Determining factors in GHG counting
 - 1. Boundaries: Upstream-Operation-Downstream: Transparence needed
 - 2. Boundaries: Reference level
 - 3. Characterization factors: Be specific methane and bound-C are critical
 - 4. Waste management data:
 - 4.1 Waste composition
 - 4.2 CO2 fossil from incineration
 - 4.3 CH4 and N2O from composting and biofilters
 - 4.4 Recycling of plastic (not shown)
 - 4.5 CH4 capture and utilization in landfils (not shown)
 - 4.6 C-biogenic storage in landfills (not shown)
 - 5. Downstream-data:
 - 5.1 Energy substitution
 - 5.2 Material substitution
 - 5.3 Material utilization

1. Boundaries and basic data: UOD table

- The GHG-account of a waste management technology depends per tonne of waste on:
 - indirect up-stream: the use of electricity, materials and the provision of fuels
 - direct emissions from the facility: fuel combustion, process emissions etc.
 - indirect down-stream: the substitutional value of the out-puts
- In Waste Management & Research (2009, Vol. 27, p.696-836) each technology is described:

Indirect: Upstream	Direct: Operation/ Waste	Indirect: Downstream		
GWF (kg CO ₂ -eq./tonne ww):	GWF (kg CO ₂ -eq./ton vv):	GWF (kg CO ₂ -eq./ tonne ww):		
GWF (kg CO ₂ -eq./ tonne ww): •Xxx •Xxx •Xxx	GWF (kg CO ₂ -eq./ton vv): •Xxx •Xxx •Xxx	GWF (kg CO ₂ -eq./ tonne ww): • Xxx •Xxxx •Xxxx		
Accounted (unit/ tonne ww): •Xxxxx • Xxxx • Xxxx	Accounted (unit tonne ww/): · Xxx · Xxxx · Xxxx	Accounted (unit/ tonne ww): •Xxx •Xxx •Xxx		
Not accounted: Xxxx -Xxxx	Not accounted: - Xxxxx	Not accounted: - Xxxxxxx		

Example: MRF for iron metal recovery

Net = U + O + D (negative value)

- Which contributions and which savings?
- GHG accounting in waste management: 4 types
- Determining factors in GHG counting
 - 1. Boundaries: Upstream-Operation-Downstream: Transparence needed
 - 2. Boundaries: Reference level
 - 3. Characterization factors: Be specific methane and bound-C are critical
 - 4. Waste management data:
 - 4.1 Waste composition
 - 4.2 CO2 fossil from incineration
 - 4.3 CH4 and N2O from composting and biofilters
 - 4.4 Recycling of plastic (not shown)
 - 4.5 CH4 capture and utilization in landfils (not shown)
 - 4.6 C-biogenic storage in landfills (not shown)
 - 5. Downstream-data:
 - 5.1 Energy substitution
 - 5.2 Material substitution
 - 5.3 Material utilization

2. Boundaries: reference levels

- Common reference: No waste management: preferred
- Some countries –e.g. Australia it is common to use the landfill as the reference: complicates comparison

- Which contributions and which savings?
- GHG accounting in waste management: 4 types
- Determining factors in GHG counting
 - 1. Boundaries: Upstream-Operation-Downstream: Transparence needed
 - 2. Boundaries: Reference level
 - 3. Characterization factors: Be specific methane and bound-C are critical
 - 4. Waste management data:
 - 4.1 Waste composition
 - 4.2 CO2 fossil from incineration
 - 4.3 CH4 and N2O from composting and biofilters
 - 4.4 Recycling of plastic (not shown)
 - 4.5 CH4 capture and utilization in landfils (not shown)
 - 4.6 C-biogenic storage in landfills (not shown)
 - 5. Downstream-data:
 - 5.1 Energy substitution
 - 5.2 Material substitution
 - 5.3 Material utilization

3. Characterization Factors

- IPCC: 6 substances, 3 substances dominate
- GHG counting:
 - o C-fossil emitted as CO_2 : $GWP = 1 \text{ Kg } CO_2$ -eqivalents/ kg CO_2
 - o C-fossil bound: GWP = 0
 - o C-biogenic emitted as CO_2 : GWP = 0
 - o C-biogenic bound: 3.67 Kg CO₂-eqivalents/ kg C bound
 - o avoided C-fossil emitted as CO_2 : $GWP = -1 \text{ Kg } CO_2$ -eqivalents/kg CO_2
 - o avoided C-biogenic emitted as CO_2 : GWP = 0
 - o release of bound C-biogenic: 3.67 Kg CO₂-eqivalents/ kg C released
- CH4 (see next) and N20 (298 times CO2)
- Occasionally SF6, CFCs
- Critical: CO₂-biogenic, CH₄ and C-bound

CH4 Characterization factor: 100 year

1kgCH₄=25 kgCO₂-eq up to 40kgCO₂-eq. or even higher if a shorter time horizon is applied

Department of Environmental Engineering

- Which contributions and which savings?
- GHG accounting in waste management: 4 types
- Determining factors in GHG counting
 - 1. Boundaries: Upstream-Operation-Downstream: Transparence needed
 - 2. Boundaries: Reference level
 - 3. Characterization factors: Be specific methane and bound-C are critical
 - 4. Waste management data:
 - 4.1 Waste composition
 - 4.2 CO2 fossil from incineration
 - 4.3 CH4 and N2O from composting and biofilters
 - 4.4 Recycling of plastic (not shown)
 - 4.5 CH4 capture and utilization in landfils (not shown)
 - 4.6 C-biogenic storage in landfills (not shown)
 - 5. Downstream-data:
 - 5.1 Energy substitution
 - 5.2 Material substitution
 - 5.3 Material utilization

- Which contributions and which savings?
- GHG accounting in waste management: 4 types
- Determining factors in GHG counting
 - 1. Boundaries: Upstream-Operation-Downstream: Transparence needed
 - 2. Boundaries: Reference level
 - 3. Characterization factors: Be specific methane and bound-C are critical
 - 4. Waste management data:
 - 4.1 Waste composition

4.2 CO2 fossil from incineration

- 4.3 CH4 and N2O from composting and biofilters
- 4.4 Recycling of plastic (not shown)
- 4.5 CH4 capture and utilization in landfils (not shown)
- 4.6 C-biogenic storage in landfills (not shown)
- 5. Downstream-data:
 - 5.1 Energy substitution
 - 5.2 Material substitution
 - 5.3 Material utilization

Waste incineration: National CO₂ inventories: CO₂ emission factors

	kg CO ₂ /GJ
Germany	91.5
The Netherlands	73.6
France	54.7
Austria	48.9
Switzerland	45
Great Britain	41
Finland	31.8
Sweden	25
Norway	24
Denmark	17.6> 32.5

Data are based on National IPCC reports, Survey done by NERI (Denmark) around 2009

Waste incineration: C14 method: 5 plants over 3 weeks

Waste incineration: C14 method: 1 plant and 4 waste types

Waste incineration: Emission factors and carbon contents

		A *	В	С	D	E
LHV	GJ/tonne	10.6	11.0	9.7	11.1	11.0
Fossil carbon ratio	% C total	30.8	38.4	35.2	44.7	44.5
Total Carbon	kg C/tonne	274	310	255	327	341
Fossil Carbon	kg C/tonne	84	119	90	146	152
Emission factor (fossil CO ₂)	kg CO ₂ /GJ	29	40	34	48	51
Emission factor (fossil CO ₂)	kg CO ₂ /tonne	309	438	327	537	556

^{*)} Based on monthly samples, one sample excluded due to lack of operational data from plant.

- Which contributions and which savings?
- GHG accounting in waste management: 4 types
- Determining factors in GHG counting
 - 1. Boundaries: Upstream-Operation-Downstream: Transparence needed
 - 2. Boundaries: Reference level
 - 3. Characterization factors: Be specific methane and bound-C are critical
 - 4. Waste management data:
 - 4.1 Waste composition
 - 4.2 CO2 fossil from incineration
 - 4.3 CH4 and N2O from composting and biofilters
 - 4.4 Recycling of plastic (not shown)
 - 4.5 CH4 capture and utilization in landfils (not shown)
 - 4.6 C-biogenic storage in landfills (not shown)
 - 5. Downstream-data:
 - 5.1 Energy substitution
 - 5.2 Material substitution
 - 5.3 Material utilization

Composting: GHG from home composting (90% food waste)

Emissions of CO_2 , CH_4 , N_2O and CO expressed in kg g^{-1} ww (as given in Andersen et al., 2010a) and as percent of total C and N emissions respectively, for home composting of organic kitchen waste (OHW) during 1 year.

Unit	Gaseous emissions								
	EF ^a (kg Mg ⁻¹ ww)			Percent of total C (or N) emissions (%)					
	CO ₂	CH ₄	N ₂ O	СО	CO ₂	CH ₄	N ₂ O	СО	
1	252	4.2	0.45	0.10	81	3.7	5.5	0.05	
2	240	3.7	0.39	0.09	92	3.9	4.6	0.06	
3	209	0.8	0.36	0.08	78	0.8	4.3	0.05	
4	236	1.0	0.55	0.13	95	1.1	6.3	0.08	
5	177	0.4	0.30	0.08	51	0.3	2.8	0.04	
6	189	0.6	0.32	0.07	83	0.7	5.1	0.05	

a FF emission factor

- Which contributions and which savings?
- GHG accounting in waste management: 4 types
- Determining factors in GHG counting
 - 1. Boundaries: Upstream-Operation-Downstream: Transparence needed
 - 2. Boundaries: Reference level
 - 3. Characterization factors: Be specific methane and bound-C are critical
 - 4. Waste management data:
 - 4.1 Waste composition
 - 4.2 CO2 fossil from incineration
 - 4.3 CH4 and N2O from composting and biofilters
 - 4.4 Recycling of plastic (not shown)
 - 4.5 CH4 capture and utilization in landfils (not shown)
 - 4.6 C-biogenic storage in landfills (not shown)
 - 5. Downstream-data:
 - 5.1 Energy substitution
 - 5.2 Material substitution
 - 5.3 Material utilization

- Which contributions and which savings?
- GHG accounting in waste management: 4 types
- Determining factors in GHG counting
 - 1. Boundaries: Upstream-Operation-Downstream: Transparence needed
 - 2. Boundaries: Reference level
 - 3. Characterization factors: Be specific methane and bound-C are critical
 - 4. Waste management data:
 - 4.1 Waste composition
 - 4.2 CO2 fossil from incineration
 - 4.3 CH4 and N2O from composting and biofilters
 - 4.4 Recycling of plastic (not shown)
 - 4.5 CH4 capture and utilization in landfils (not shown)
 - 4.6 C-biogenic storage in landfills (not shown)
 - 5. Downstream-data:
 - 5.1 Energy substitution
 - 5.2 Material substitution
 - 5.3 Material utilization

- Which contributions and which savings?
- GHG accounting in waste management: 4 types
- Determining factors in GHG counting
 - 1. Boundaries: Upstream-Operation-Downstream: Transparence needed
 - 2. Boundaries: Reference level
 - 3. Characterization factors: Be specific methane and bound-C are critical
 - 4. Waste management data:
 - 4.1 Waste composition
 - 4.2 CO2 fossil from incineration
 - 4.3 CH4 and N2O from composting and biofilters
 - 4.4 Recycling of plastic (not shown)
 - 4.5 CH4 capture and utilization in landfils (not shown)
 - 4.6 C-biogenic storage in landfills (not shown)
 - 5. Downstream-data:
 - 5.1 Energy substitution
 - 5.2 Material substitution
 - 5.3 Material utilization

- Which contributions and which savings?
- GHG accounting in waste management: 4 types
- Determining factors in GHG counting
 - 1. Boundaries: Upstream-Operation-Downstream: Transparence needed
 - 2. Boundaries: Reference level
 - 3. Characterization factors: Be specific methane and bound-C are critical
 - 4. Waste management data:
 - 4.1 Waste composition
 - 4.2 CO2 fossil from incineration
 - 4.3 CH4 and N2O from composting and biofilters
 - 4.4 Recycling of plastic (not shown)
 - 4.5 CH4 capture and utilization in landfils (not shown)
 - 4.6 C-biogenic storage in landfills (not shown)
 - 5. Downstream-data:
 - **5.1 Energy substitution**
 - 5.2 Material substitution
 - 5.3 Material utilization

Energy substitution:Average or marginal? Which marginal?

Danish electricity (2007) - 141 000 TJ

Danish district heating (2007) - 121 500 TJ

T Fruergaard, T H Christensen & T Astrup (2010): Energy recovery from waste incineration Assessing the importance of district heating networks. *Waste Management*, **30**, 1264-1272

Danish energy 2050: 100 % renewable

CEESA research project, Wenzel et al

- Which contributions and which savings?
- GHG accounting in waste management: 4 types
- Determining factors in GHG counting
 - 1. Boundaries: Upstream-Operation-Downstream: Transparence needed
 - 2. Boundaries: Reference level
 - 3. Characterization factors: Be specific methane and bound-C are critical
 - 4. Waste management data:
 - 4.1 Waste composition
 - 4.2 CO2 fossil from incineration
 - 4.3 CH4 and N2O from composting and biofilters
 - 4.4 Recycling of plastic (not shown)
 - 4.5 CH4 capture and utilization in landfils (not shown)
 - 4.6 C-biogenic storage in landfills (not shown)
 - 5. Downstream-data:
 - 5.1 Energy substitution
 - 5.2 Material substitution
 - 5.3 Material utilization

Paper recycling: Reprocessing – A ● virgin-processing

Paper recycling: Reprocessing – A ● virgin-processing = ?

Boundaries: Cascading - paper

Department of Environmental Engineering

- Which contributions and which savings?
- GHG accounting in waste management: 4 types
- Determining factors in GHG counting
 - 1. Boundaries: Upstream-Operation-Downstream: Transparence needed
 - 2. Boundaries: Reference level
 - 3. Characterization factors: Be specific methane and bound-C are critical
 - 4. Waste management data:
 - 4.1 Waste composition
 - 4.2 CO2 fossil from incineration
 - 4.3 CH4 and N2O from composting and biofilters
 - 4.4 Recycling of plastic (not shown)
 - 4.5 CH4 capture and utilization in landfils (not shown)
 - 4.6 C-biogenic storage in landfills (not shown)
 - 5. Downstream-data:
 - 5.1 Energy substitution
 - 5.2 Material substitution
 - 5.3 Material utilization

Exchange with material production: Example private use of compost

