TEXTE

50/2014

Carcinogenicity and Mutagenicity of Nanoparticles – Assessment of Current Knowledge as Basis for Regulation

TEXTE 50/2014

Environmental Research of the Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety

Project No. (FKZ) 3709 61 220 Report No. (UBA-FB) 001725/E

Carcinogenicity and Mutagenicity of Nanoparticles – Assessment of Current Knowledge as Basis for Regulation

by

Katrin Schröder Christina Pohlenz-Michel Nelly Simetska Jens-Uwe Voss Sylvia Escher Inge Mangelsdorf

Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover

On behalf of the Federal Environment Agency (Germany)

Imprint

Publisher: Umweltbundesamt Wörlitzer Platz 1 06844 Dessau-Roßlau Tel: +49 340-2103-0 Fax: +49 340-2103-2285 info@umweltbundesamt.de Internet: www.umweltbundesamt.de

f /umweltbundesamt.de
 /umweltbundesamt

Study performed by:

Fraunhofer Institute for Toxicology and Experimental Medicine Nikolai-Fuchs-Str. 1, 30625 Hannover

Study completed in:

September 2013

Edited by:

Section II 1.2 Toxikologie, Gesundheitsbezogene Umweltbeobachtung Petra Apel

Publication as pdf:

http://www.umweltbundesamt.de/publikationen/carcinogenicity-mutagenicity-of-nanoparticles

ISSN 1862-4804 Dessau-

Roßlau, July 2014

The Project underlying this report was supported with funding from the Federal Ministry for the Environment, Nature Conservation, Building and Nuclear safety under project number FKZ 3709 61 220. The responsibility for the content of this publication lies with the author(s).

Abstract

Carcinogenicity studies with several types of respirable particles and fibres indicate a carcinogenic potential from inhalation and there is concern that the carcinogenic potency of nanomaterials is higher than for the corresponding micromaterials. In this research project, long term studies with nanomaterials were used to identify relevant indicators of toxicity of nanomaterials including possible precursors of carcinogenicity. Due to the heterogeneous characteristics of the materials and the different study types, a structured and systematic data analysis was performed by means of a relational database (PaFtox). More than 100 inhalation studies and instillation studies with rodents with Carbon Black, silicon dioxide, metals or metal oxides, and carbonnanotubes were analysed. Effects like neutrophil number, total protein and LDH content in the bronchioalveolar lavage fluid (BALF) are frequently measured and are sensitive indicators of toxicity of all particles investigated. In addition, infiltration of inflammatory cells in the lung and increased lung weights are often observed. The LOELs of nano-objects are generally lower than the LOELs of the corresponding larger objects and they differ by several orders of magnitude between analysed substances: Silver was identified as the most toxic nanomaterial within our selection of nanomaterials. Sustained inflammation can be seen as one possible early event in the sequence of cancer development and nanomaterials can be grouped on basis of their potential to generate inflammation. A preliminary LOEL (based on inflammatory parameters) of 0.1 mg/m³ (exposure 24 h/d, 7 d/wk) is proposed to distinguish the so called "inert" nanomaterials (e.g. Carbon Black) from nanomaterials with specific toxicity. Our data further support to have nanotubes in a separate group.

Kurzbeschreibung

Kanzerogenitätsstudien mit verschiedenen alveolengängigen Partikeln und Fasern deuten auf ein kanzerogenes Potential bei inhalativer Exposition hin und es wird befürchtet, dass dieses Potential bei Nanomaterialen höher ist als beim entsprechenden Mikromaterial. In diesem Forschungsprojekt wurden Langzeitstudien mit Nanomaterialien analysiert, um relevante Indikatoren der Toxizität einschließlich möglicher Vorstufen der Kanzerogenität von Nanomaterialien zu identifizieren. Eine strukturiertere und systematische Analyse der heterogenen Materialeigenschaften und der unterschiedlichen Studientypen wurde mit Hilfe einer relationalen Datenbank durchgeführt. Mehr als 100 Inhalations- und Instillationsstudien mit Carbon Black, Siliziumdioxid, Metallen oder Metalloxiden an Nagern wurden analysiert. Häufig werden Effekte wie Neutrophilen-Anzahl, Gesamtprotein- und LDH-Gehalt in der bronchio-alveolären Lavageflüssigkeit (BALF) gemessen, sie sind sensitive Indikatoren für die Toxizität der untersuchten Partikel. Zudem werden oft Infiltration von Entzündungszellen in der Lunge und erhöhtes Lungengewicht beobachtet. Die LOELs der Nano-Objekte sind tendenziell niedriger als die LOELs der entsprechenden größeren Objekte und sie unterscheiden sich durch mehrere Größenordnungen: In unserer Auswahl an Nanomaterialien hatte Silber das höchste toxische Potential. Chronische Entzündung kann als möglicher früher Vorläufer der Krebsentstehung betrachtet werden, und Nanomaterialien können anhand ihres Potentials Entzündungen zu verursachen gruppiert werden. Ein vorläufiger LOEL (basierend auf Entzündungsparametern) von 0.1 mg/m³ (Exposition 24 h/d, 7 d/w) wird vorgeschlagen, um die sogenannten "inerten" Nanomaterialien (z.B. Carbon Black) von Nanomaterialien mit spezifischer Toxizität zu unterscheiden. Unsere Daten unterstreichen den Ansatz, dass Nanotubes in eine separate Gruppe gehören.

Table of Contents

Lis	t of Figur	es	
Lis	t of Table	28	
Ab	breviatior	15	
1	Introduction		
	1.1 Ha	zard and risk of nano-objects	1
	1.2 Na	nomaterials –Definitions	2
2	Method	ls	3
	2.1 Li	terature search	3
	2.1.1	Approach	3
	2.1.2	Results	4
	2.2 Da	ta analysis by means of a relational database	5
	2.2.1	Database Structure	5
	2.2.2	Particle and fibre characterisation	7
	2.2.3	Selection criteria for studies and materials	7
	2.2.4	Study design	8
	2.2.5	Toxicological data	9
	2.2.6	Quality assurance	9
	2.2.7	Database queries	12
3	Data ar	nalysis	13
	3.1 Pa	rticle and fibre characterisation	13
	3.1.1	Specification of primary particles and fibres by producer / supplier (as produced) or by authors (as received)	13
	3.1.2	Specification of secondary particles and fibres by authors (as administered)	15
	3.2 St	udies included	16
	3.2.1	Routes and study durations	16
	3.2.2	Species	19
	3.2.3	Dose levels, NOELs and LOELs	19
	3.3 Pa	rticles included	20
	3.4 Pa	rameter / Effect analysis	21
	3.4.1	Target / organs and effects	21
	3.4.2	Reversibility of effects	25
	3.4.3	Parameters affecting toxicity of particles and fibres	28

	3.4.3.1	1 Composition	29
	3.4.3.2	2 Tubes versus particles	34
	3.4.3.3	3 Diameter and specific Surface	35
	3.4.4	Genotoxicity of nano-objects in vivo	37
	3.4.5	Carcinogenicity	
	3.5 Co	orrelations	41
	3.5.1	Cell counts	41
	3.5.2	Alveolar macrophages	46
	3.5.3	Total Protein and lactate dehydrogenase	46
	3.5.4	Infiltration	50
	3.5.5	Lung weight	51
4	Discus	sion	54
	4.1 Re	esults	54
	4.1.1	Carcinogenicity	54
	4.1.2	Availability of studies for different particles and fibres	54
	4.1.3	Particle and fibre characterisation	55
	4.1.4	Application routes	56
	4.1.5	Dose measure	58
	4.1.6	Target organs and important effects	59
	4.1.7	New parameters	59
	4.1.8	LOELs	60
	4.1.9	Exposure duration versus time point	60
	4.1.10	Overload	61
	4.1.11	Reversibility of effects	61
	4.1.12	Genotoxicity	61
	4.2 Co	oncepts for Grouping of nanomaterials	61
	4.2.1	Groups proposed in the literature	61
	4.2.2	Grouping of nanomaterials for optimized testing strategies	64
5	Conclu	ision and outlook	67
6	Referen	nces	69
7	Appen	dix	72
	7.1 Pu	ublications in PaFtox database (October 2012)	72
	7.2 Da	ata analysis by databases	75
	7.2.1	NanoSafety Cluster	75

7.2.2	DaNa	75
7.2.3	Database on Research into the Safety of Manufactured Nanomaterials	75
7.2.4	Special features of the PaFtox database	77
7.3 St	udy reports from PaFtox database (October 2012)	77

List of figures

Fig 1:	Taxonomy of Nanomaterial; adapted from ISO/TR 12802:2010 & ISO/TS 80004-4:2011	3
Fig 2:	Data entry mask of the PaFtox database	6
Fig 3:	MMAD in inhalation studies (left) and hydrodynamic diameter in instillation studies (right)	16
Fig 4:	Overview effected targets / organs	22
Fig 5:	Number of effects per category time point in whole body inhalation studies on carcinogenicity (query counted effects at minimum dose and earliest time point)	40
Fig 6:	Effect – "LOELs" per particle in whole body inhalation studies on carcinogenicity (query counted effects at min dose and first time point)	41
Fig 7:	Correlation of relative number of neutrophils with particle mass or particle surface area	45
Fig 8:	Correlation of total protein with particle surface area	47
Fig 9:	Correlation of LDH with particle surface area	49
Fig 10:	Predicted fractional deposition of inhaled particles (Oberdörster et al., 2005)	56
Fig 11:	Illustration of grouping of nanoparticles based on material properties and/or biological effects (from Oomen et al. (2013)).	67

List of Tables

Tab.	1: Concept of literature search	4
Tab.	2: Examples for effects in BALF and lung	11
Tab.	3: Primary characterisation in studies with nano-objects	13
Tab.	4: Available information for reference material "Min-U-Sil 5"	14
Tab.	5: Secondary characterisation in studies with nano-objects	15
Tab.	6: Study design of inhalation studies	17
Tab.	7: Study design of instillation studies	18
Tab.	8: Types of studies in rats and mice	19
Tab.	9: Number of different dose levels	20
Tab.	10:Particles included	20
Tab.	11:Number of studies for different substances and particle diameter categories and application routes	21
Tab.	12:Observed effects	23
Tab.	13:Parameter / Effects beyond the respiratory tract	24
Tab.	14:Parameter / Effect of study evaluation (+) or (-) postexposure in whole body inhalation studies	26
Tab.	15:Parameter / Effects (number) appearing only in the postexposure period at LOEL per time point in studies with whole body exposure	28
Tab.	16:LOELs per route, substance and time point	29
Tab.	17:Parameter / Effects occurring only with heavy metals and oxides	30
Tab.	18:Parameter / Effects occurring only with silicon dioxides	33
Tab.	19:Parameter / Effects occurring only with carbon nanotubes	34
Tab.	20:Influence of particle diameter on LOELs	36
Tab.	21:Influence of specific surface on LOELs	37
Tab.	22:Genotoxic effects (measured and percentage positive effects)	38
Tab.	23:"LOELS" for positive genotoxic effects	39
Tab.	24:Investigation of cells in different targets (statistically significant increased/measured or investigated)	42
Tab.	25:Frequency of increased / measured cell counts in BALF per time point category	43
Tab.	26: Time related distribution of measurements of total protein and lactate dehydrogenase	46
Tab.	27:Number of studies positive infiltrations	50
Tab.	28:"LOELs" for infiltration and macrophage infiltration	51
Tab.	29:Minimum and Maximum percentages of burden of the lung weight	52
Tab.	30:Minimum and maximum of percentage change of lung weight	53

Tab.	31:"LOELs" for lung weight	.54
Tab.	32:Comparison of application routes	.58

List of Abbreviations

BALF	Bronchioalveolar lavage fluid
LDH	Lactate dehydrogenase
LOEL	Lowest observed effect level
MMAD	Mass median aerodynamic diameter
NOEL	No observed effect level
VSSA	Volume-specific surface area
PaFtox	Particle and Fibre toxicity

1 Introduction

1.1 Hazard and risk of nano-objects

The general population is exposed to nanoparticles mainly in larger cities in form of fine dust. Workers can be additionally exposed during the production and processing of nano-objects. Furthermore, the number of consumer products based on nanotechnology is raising (e.g. shoe sprays).

Nano-objects differ regarding their physico-chemical properties (e.g. size, specific surface, zeta potential) from larger particles or fibres, but cause similar effects (e.g. inflammation in the lung or other toxic effects including cancer). However, based on the same particle mass, they are more toxic, among other reasons due to their larger particle surface (Oberdörster et al., 2005). Therefore there is concern for higher carcinogenic potency of nano-objects.

The data basis concerning carcinogenicity of nano-objects is very limited with respect to inhalation studies. Also intratracheal studies as surrogate for inhalation studies, are limited. To our knowledge nanoparticles and fine particles were carcinogenic in all existing inhalation and intratracheal studies with exposure durations longer than 2 years (Roller, 2009). Most of them caused tumours at all concentrations tested. However, even at the lowest dose levels often unrealistic high dose levels were used that overwhelm the defence mechanisms in the lung (overload). Similarly, in vitro studies on genotoxicity or ROS-generation are virtually all positive, in many cases at cytotoxic concentrations (Gonzalez et al., 2008; Roller, 2011; Ziemann et al., 2011). In addition, no clear correlation of the probability of a positive in vitro test with carcinogenicity was seen (Roller, 2011).

Recent studies with (nano)materials have shown, that cell proliferation in the lung as a consequence of inflammation may be an important precursor of cancer. Histochemical analyses at Fraunhofer ITEM have shown a high correlation between tumour frequencies and cell proliferation as well as genotoxicity in lung epithelial cells (Rittinghausen et al., 2013) for carbon black, amorphous and crystalline silica. Another study showed a relationship between tumour frequencies and inflammation, fibrosis, epithelial hyperplasia and squamous metaplasia for amorphous and crystalline silica, carbon black and coal dust (Kolling et al., 2011).

These correlating parameters can be determined in studies of much shorter duration. The amount of these studies with nanomaterials is considerably higher than the amount of long term studies and some of these studies are conducted under non overload conditions with several dose levels. Therefore these studies provide the possibility of deriving NOELs and LOELs of the nano-objects and the possibility of assessing dose response and risks of nanomaterials as a basis for regulation.

In this research project repeated dose toxicity studies (including carcinogenicity studies) with different nanoobjects are analysed with the purpose to identify the precursors of carcinogenicity in these studies, to compare the toxicity of different types of nano-objects and to compare the toxicity of nano-objects with objects of larger size. Based on these analyses, already existing proposals for grouping of nanomaterials are evaluated and extended.

For a better overview of the complex data studies were entered into the relational database PaFtox (Particle and Fibre toxicity database). This approach allows comparison of many parameters including statistical analyses.

1.2 Nanomaterials –Definitions

Efforts have been made to develop a consistent terminology for nanomaterials. According to ISO/TR 12802: 2010 two types of nanomaterials are distinguished: nano-objects (external nanoscale dimension) and nanostructured materials (internal nanoscale structure or surface structure). These are subdivided into further subgroups. Nano-objects have at least one dimension below 100 nm and cover nanoparticles (3D nano), nanofibres (2D nano) and nanoplates (1D nano) as well as nanocrystals (quantum dots, those exhibit size-dependent properties due to quantum confinement effects on the electronic states, see Fig 1). Nanofibres are again subdivided into nanorods (solid fibre), nanotubes (hollow fibre) and nanowires (electrically conducting or semiconducting nanofibres.). Nanotubes are currently distinguished between single-wall carbon nanotubes (SWCNT) - consisting of a single cylindrical graphene layer, double-wall nanotubes (DWCNT) - composed of nested, concentric or near-concentric graphene sheets with interlayer distances similar to those of graphite (ISO/TS 80004-3:2010).

Nanostructured materials have an internal or surface structure with a significant fraction of features, grains, voids or precipitates in the nanoscale (like nanostructured powders, nanocomposites, nanodispersions, nanoporous material). However, nanodispersions without any measureable interaction between nano-objects and medium (the medium is just background) are actually considered as cluster/accumulation of nano-objects. Articles that contain nano-objects or nanostructured materials are not necessarily nanostructured materials themselves (ISO/TS 80004-4:2011).

Most of the commercially produced nanoproducts are aggregates and / or agglomerates of nano-objects, which may be released under energy uptake (BAuA, 2007; BAuA/BfR/UBA, 2007; Creutzenberg et al., 2012). Also, under typical experimental conditions, the majority of the nano-objects in the exposure milieu are aggregated or agglomerated.

The European Commission (EC, 2010) proposes to define a material as a nanomaterial when it has a specific surface area by volume greater than 60 m^2/cm^3 , excluding materials consisting of particles with a size lower than 1 nm. The volume-specific surface area (VSSA) of a material is generally calculated from its bulk density and its mass specific surface area. The latter is usually determined by gas absorption methodology called the BET-method (Brunauer et al., 1938) that allows surface area or porosity measurements for nanoparticles as small as 1 nm. From a 3D reconstruction of a nanomaterial, its surface area and its volume can, in principle, be estimated directly, such that its VSSA can be calculated, even on a per particle basis (Van Doren et al., 2011).

2 Methods

2.1 Literature search

2.1.1 Approach

The literature search was a tiered approach. First a most comprehensive literature search was performed. The different terms used for nano-objects, possible relevant effects and the application routes (Tab. 1) were used to perform a combined research in the databases Pubmed, Toxline and Web of Science.

Tab. 1:Concept of literature search

Search for effects							
Lung effects	Organ synonyms	Effects					
	Lung	toxicity	genotox*				
	airway	disorder	mutagen				
	pulmonary	disease	tumour				
	respirat*	function	fibrosis or fibrinogen				
		inflammation	cancer				
		carcinogenic or carcinoma	oxidative				
		mesotheliom*					
		damage					
Search for nano-objects	5		I				
nanoparticles	nanoparticle* / nano particle*						
	nanotube* / nanofibre* / nanowire*						
	nanoscale* particulates	nanoscale* particulates					
	nanomaterial*						
fine particles	fine dust*						
	fine particle*						
ultrafine particles	ultrafine dust*						
	ultrafine particle*						
Search for application r	oute						
	inhal*						
(via air)	respirat*						
	airway						
intratracheal	intratracheal						
intraperitoneal							

Search terms as "repeated or chronic or subchronic" were tested but led to very few hits as these words are seldom used in the title, abstract or key words. The search results were collected in EndNote. Here, medical related studies were excluded by searching for key words "drug delivery and "dry powder inhaler". Based on the abstracts, a preliminary list of potential relevant references was established. This list was subsequently enhanced by cross references identified in the publications during the actual data entry in the database.

2.1.2 Results

The literature research led to 1343 hits in Pubmed, 1348 in Toxline and 1003 in Web of Science (January 2011). After pooling in EndNote, deleting the doubles and the medical related publications as well as screening the abstracts, about 453 publications were ordered. A lot of these publications are reviews or mini-reviews which is consistent with current great interest in the scientific and regulatory community. However, the reviews were also screened to find additional references. About one third are studies with study durations from one to seven days which were separated for potential later projects. About 200 are potentially suitable

(see criteria under point 2.2.3) and up to now, 87 publications from 41 different institutions containing 131 studies were entered into the database.

After discussion with UBA, the following material types were selected for entry into the database

"Inert" particles (granular biopersistant dusts)

- Carbon Black
- Titanium dioxide
- Aluminium oxide

Silicon dioxide

Heavy Metals (elemental or oxides)

- Silver
- Manganese
- Nickel
- Iron
- Cerium

Carbon Nanotubes

- Single wall carbon nano tubes
- Multi wall carbon nano tubes

2.2 Data analysis by means of a relational database

2.2.1 Database Structure

The structure of the database is based on the already existing database for chemicals, RepDose (<u>www.fraunhofer-repdose.de</u>, Bitsch et al., 2006) that has been developed at Fraunhofer ITEM. Particles and fibres are characterised by other physico-chemical properties than chemicals. Therefore, the structure was adapted and extended in this part of database (in the following **P**article **and F**ibre **tox**icity, PaFtox database). It was developed in Microsoft Access[®]. This software has been selected because it is commonly available and can be easily handled also by non-experts. The database consists of three parts, the nano-object characterisation, the study design and the effect related part. Generally, there are several possibilities for data entry, picklist (fixed or expandable), free text or numerical figures.

For a comprehensive analysis of particle characteristics and toxic effects the database entries have to be uniform and standardized. For this purpose glossaries were used for all fields, which can be addressed by queries for all relevant information such as particle characterisation, study design and effect data.

Descriptions of identical observations differ between studies. As a general ontology for toxicological studies is currently not available (Tcheremenskaia et al., 2012), the documentation of toxicological study data in a database requires the development of a standardised vocabulary. For this purpose in the PaFTox database observations, described by different terms were collected. If possible, one term was selected and entered into the respective glossaries. Data entry guidance assures that the right synonyms are used subsequently for data entry.

Glossaries were defined as picklists, e.g. for effects and targets. Picklists are further used to document: surface property, sample preparation, distribution, unit of exposure/dose, species, strain, sex, application route, parameter unit, score (severity of damage) and significance.

In contrast to the "defined fields" mentioned above "free text fields" are problematic, as users tend to include typos and do not use standardised text, which hampers database queries. The current PaFTox database therefore, does only include few "free text" fields. A typical example is the field "effect additional", where the user can enter details e.g. if more details on the location of the effect are available, one gender was more sensitive than the other etc.

chemical data	
Chemical Number 2106 CAS Number 9999-99-9	
Name	Delete chemical
molecular weight o/mol	
Study Data eingegeben von am gecheckt von am	Effect Data
Study Number (Neu)	Organ number (Neu)
Hydrodynamic diameter Study Design	organ
mediannmspecies	NOEL study unit
GSD nm sex 🔽	NOEL mg/kg bw/d LOEL mg/kg bw/d
min nm strain 🔽	NOEL mg/kg bw
route vity	
animal/group age of animal	effect (Neu)
determ. method exposure in h/d exposure in d/w	Circle .
sample treatment study duration in d. postexp. dur. in d	Data Can Ting Land Case Cimiteener *
applic, medium	point
dispersant (additional)	
dose/ male female unit	
bulk density mg/ml concentration	
askhilte	
zeta potential nm in	sex 💽 🕅 transient
peak SPR in	LOEL in study unit
conductivity µS/cm in Reference (Neu) A new reference	LOEL mg/kg bW/o mmoi
additional first author	additional
institution	
Specification Guideline Primary check volume vear page	
	Delete effect
Study completed Print study Delete study	Delete organ and
	effect data
Full substance report Main menu	
Datancate H (1 yon 1) b b W W Vain Filter Suchan	
Datensatz in a 1 von 1 / / / / / / A Kent enter Suchen	

Fig 2: Data entry mask of the PaFtox database

2.2.2 Particle and fibre characterisation

In the guidance on physico-chemical characterisation of engineered nanoscale materials for toxicological assessment, it is stated that it is not sufficient to rely on a supplier's commercial characterisation, as that information is tailored to customer applications (ISO/TR 13014:2012). Nanodispersion (aerosol or liquid dispersion) are usually instable as nano-objects (particles and fibres) tend to aggregate or agglomerate. Therefore, it is recommended to test the material "as received" and "as administered"(ISO/TR 13014:2012).

Thus, there are three different types of data on nanomaterial characterisation, which all can be entered into the database.

- Specification of primary object by producer / supplier (as produced)
- Specification of primary object by authors (as received)
- Specification of secondary objects by authors (as administered, exposure media)

In line with ISO/TR 13014:2012, the following information can be entered into the database:

- size / distribution
- aggregation/agglomeration state in the exposure media
- shape
- specific surface area
- composition / purity
- surface chemistry
- solubility / dispersibility
- surface charge

2.2.3 Selection criteria for studies and materials

The particles and fibres which have been entered into the PaFtox database have been selected by availability of suitable and reliable data. In general, five criteria were used for the selection of studies: application route, nanoscale dimension, reliability, species and study duration.

The highest priority for entering into the database was given to inhalation studies (whole body or head/nose only). As the number of inhalation studies is limited for nano-objects also intratracheal and pharyngeal studies were included.

Generally studies with nanoscaled particles were preferred, but additionally larger particles and carbon nanotubes were included for comparison reasons.

As guideline studies are currently seldom available, this criterion couldn't be used for the selection. Nonguideline studies may address special questions. Therefore, the reliability of all publications entered in the database was assessed based on internal quality criteria (similar to RepDose, (Bitsch et al., 2006)) and resulted in reliability classes A (comprehensive study design and scope, high reliability) to C (quality not accessible, preliminary).

The majority of repeated dose toxicity studies for nano-objects were performed in rats or mice. The study selection was initially restricted to these two species, to get comparable data on target organs, mechanisms of toxicity, and LOELs for different nano-objects.

In general, studies with study durations from 28 days up to lifetime exposure were selected. Occasionally, shorter parallel studies of long-term studies (same publication) were entered into the database. For some substances several studies were included in the database. This might be useful to cover different endpoints and to analyse the influence of the study duration on several endpoints. Moreover, contradictory results can be revealed by this selection strategy.

2.2.4 Study design

In the study part, information about the study design and exposure related information can be entered.

- application type
- exposure duration (hours per day, days, days per week)
- instillation (number, frequency)
- post-exposure duration
- species/strain/sex
- number of animals
- particle and fibre characteristic as administered (secondary object)
- reference
- reliability
- scope of study

This database contains four different application types, exposure via air (whole body and nose / head only) and via instillations (intratracheal and pharyngeal). The airborne and instillation studies comprise a fundamental different exposure regime. The standard exposure protocol for inhalation studies via air is 6 hours a day 5 days a week and 28, 91 or 730 days for subacute, subchronic or cancer studies. Instillation studies are mostly performed with one instillation and the corresponding number of days for observation (post-exposure in this database).

To enable a standardised data entry in the PaFtox database, one study is defined by the application type, the exposure conditions and the species/strain. Due to this definition it occurs that one publication often contains more than one study, but it happens also that one study was distributed over several publications. Therefore, the number of publications in the database (appendix 7.1) is different from the number of studies.

Nano-objects in aerosols or in dispersions tend to aggregate or agglomerate. This tendency depends on several physico-chemical properties of the nano-object and of the exposure media. A lot of information is gathered in our report for the BAuA project F2133 (Schaudien et al., 2011). To enable retrospective conclusions, not only the metric information (e.g. MMAD) of the administered objects is a data field of this database but also the descriptive information on the exposure medium and conditions were collected.

As described under chapter 2.2.3, only data for rodents were entered into the database. Studies could have been performed with both sexes and one sex. Two free text fields allow entering more study specific details: the exposure additional and the study additional. The exposure additional describes more specific details of the exposure regimen and the field study additional is related to the study design such as a special focus, unexpected death in single dose groups, description of interim sacrifices (number of animals per time point).

The number of examinations performed in particle studies may differ considerably, because there are currently no guidelines, which define the endpoints to be investigated. The comparison of toxicological potency/effects in different studies is difficult, if it is not distinguished between absence of an effect and absence of examination. Therefore, the scope of investigation is included in the database, where every single investigation e.g. level of specific cytokine is documented.

2.2.5 Toxicological data

In any study a certain number of targets/organs is examined. In each target/organ numerous effects may be investigated using different methods. The database aims to describe all toxicological effects observed in the in vivo study. In PaFtox, effects are not related to the type of examination e.g. necropsy, histopathology or organ weight, but assigned to the target/organ where it occurred. The standardized glossary of targets/organs was adopted from the RepDose database. RepDose contains repeated dose studies of different exposure duration with chemicals for oral and inhalation exposure. However in particle and fibre studies, lung is mainly investigated but here more comprehensively as in similar chemical studies. Therefore, in addition to the already documented targets of the respiratory tract in RepDose, PaFtox includes some more specific targets, which are pleura and bronchio-alveolar lung fluid (BALF). The effect glossary was extended by new effects, which are particle specific or are coming from specific examinations, e.g. cytokine levels that are not common in repeated dose toxicity studies as they are not required in the corresponding guidelines. New entries can easily be added to the glossary. Tab. 2 shows examples for effects covered in the glossary for bronchio-alveolar lavage fluid (BALF) and lung.

It can be distinguished between general effects, which can occur in several organs, e.g. hyperplasia, collagen or burden, and organ specific effects, e.g. bronchiolo-alveolar carcinoma (lung).

For each effect the lowest observed effect level (LOEL) is documented, as well as the sex being affected. The field "effect additional" (2.2.1) further allows documenting some more details, if given in the study report. Further the grading of the effect is documented in the newly developed effect level table.

This table may contain quantitative data (measured parameter), semiquantitative data (scores - mainly histopathology) and qualitative data (yes/no). In any case, the information on dose, sex and time point is given and the parameter level for quantitative data, the score levels minimal, mild, medium, severe, very severe for semiquantitative data and 'changed' or 'no change' for qualitative data. If available, the corresponding significances are entered. Sometimes effect data were only available in figures. In these cases the values were estimated by a standardized read out system.

The detailed reports provided in the appendix 7.3 demonstrate the level of detail for each individual study.

2.2.6 Quality assurance

Every entry was double checked according to the 4 eyes principle by another scientist of the group. To improve the speed of the data entry, an import module was programmed which allows combining of different versions of the database. Further, for better overview it is possible to print a report on each study entered into the database and on each material (see appendix 7.2 for examples).

Several queries have been made to assure consistency of entries e.g.:

- Are all relevant fields filled with information? (E.g. all fields of study design)
- Do doses correspond to effect LOEL values?
- Do calculated values correspond in all fields of the database, e.g. number of decimals equal?

- Are effects documented in a comprehensive way?
- Are effects documented twice? If so, for which reasons?
- Are effects in the glossary redundant?
- Which effects are rare? Which grade of detail is needed?
- Control for synonyms.

Target / Organ	Parameter / Effect
BALF	Total protein
	Lactate dehydrogenase (LDH)
	PMN
	Total cells
	Neutrophils
	Alveolar macrophages
	Lymphocytes
	Leukocytes
	Reactive oxygen species (RNS) ex vivo
	Alkaline phosphatase (AP)
	β-glucuronidase
	Gamma-glutamyl transferase (+GT)
	Burden
	Tumour necrosis factor protein (TNF- α)
	Reactive oxygen species (ROS) ex vivo
Lung	8-OHdG
	Adenosquamous carcinoma
	Alveolar bronchiolization
	Clearance
	Alveolar proteinosis
	Apoptose
	Benign cystic keratinizing squamous-cell tumour
	Bronchiolo-alveolar adenocarcinoma
	Bronchiolo-alveolar adenoma
	Bronchiolo-alveolar carcinoma
	Burden
	Cell depletion
	Cell division cycle mRNA (Cdc2a)
	Cell proliferation
	Changes in organ structure
	Chemokine mRNA (CCL2)

Tab. 2: Examples for effects in BALF and lung

2.2.7 Database gueries

NormDose: Exposure conditions in inhalation studies differ in dose level, exposure duration in hours per day and days per week. Therefore the original dose mostly provided for 6 h per day, 5 days per week in inhalation studies was normalised to 24 h/day and 7 days/week.

CumDose: If instillation studies used more than one instillation, the time point of effect determination was compared with the instillation regime and the corresponding cumulative dose for that time point was calculated.

Categories for time points: The studies differ also regarding their time regime. Thus the determination of effects occurred on a number of different days. Therefore, to simplify data analyses, the time points were categorised.

Statistical analyses were performed with STATISTICA[®] and Microsoft excel[®].

To better illustrate differences in numbers of studies or LOELs identified, the three colour code offered in Excel was used and upper and lower limit (10th percentile, 90th percentile) were assigned to the traffic light code; green means better results or more information and red means worse results or less information.

By analysing the minima of doses where an effect was positive, LOELs can be determined. Depending on the conditions, chosen for the query, different LOELs have to be distinguished: effect-LOEL, organ-LOEL, study-LOEL, substance-LOEL and object-LOEL or categories thereof. If several studies were available with the same route and duration for a specific substance, for some analyses the lowest LOEL, i.e. the substance-LOEL was used.

3 Data analysis

3.1 Particle and fibre characterisation

Due to dimensional differences between nanoparticles and nanotubes the data about these two types of nanoobjects are analysed separately. Overall relatively little information about nano-objects characteristics is provided in the toxicological studies entered in the PaFtox database. General no information is provided for solubility, neither in water nor in the application media.

3.1.1 Specification of primary particles and fibres by producer / supplier (as produced) or by authors (as received)

Overall, the amount of data related to primary characterisation is very low, see summary statistics about the primary characterisation (Tab. 3).

	Specification by producer / supplier	Specification by authors	Specification by producer/supplier or author
Diameter (mean)	93	25	114
Diameter (min)	15	3	16
Diameter (max)	17	4	19
Inner diameter *	0	0	0
Outer diameter (mean)*	4	2	5
Outer diameter (min)*	3	3	6
Outer diameter (max)*	3	3	6
Length (mean)*#	5	2	5
Length (min) *#	4	2	5
Length (max) *#	3	1	4
Medium	2	8	9
Determination method	17	33	46
Distribution type	3	11	11
Cristal structure	63	16	79
Shape	15	16	29
Solubility	0	0	0
Specific surface	55	59	114
Surface property	27	23	44
Particle density	27	22	45

 Tab. 3:
 Primary characterisation in studies with nano-objects

Overall number of studies: 131, *for tubes; # for tubes and rods

Tab. 4 demonstrates that even if information is available, there are differences for the frequently used reference materials. Different batches or producing sites could cause these differences.

		Specification by supplier		Specification by authors Diameter [nm]			
		Diameter [nm]					
		Median	Minimum	Maximum	Median	Minimum	Maximum
Kobayashi, et al. 2009	Toxicology				Cites Warheit et al., 2007a and Kajiwara et al., 2007		
Kobayashi, et al. 2010	Toxicology				Cites Warheit et al., 2006, 2007a,b; Kobayashi et al., 2009		
Shvedova , et al. 2005	Am J Physiol Lung Cell Mol Physiol				2140		
0gami, et al. 2009	Inhalation Toxicology		1600	10000			
Warheit, et al. 2004	Tox Sciences		1000	3000			
Warheit, et al. 2007a	Tox Sciences		300	2000	534	300	700
Warheit, et al. 2007b	Toxicology		200	2000	480		

Tab. 4: Available information for reference material "Min-U-Sil 5"

3.1.2 Specification of secondary particles and fibres by authors (as administered)

Tab. 5 shows the number of studies where information on secondary characterization (as administered) was available. No information was provided in the publications about solubility in the used medium, the isoelectric point, the conductivity and almost nothing about zeta potential or spectra data which allow some inferences to the dimension and appearance of the nano-objects in the media.

Number of studies	Inhalation studies: Number of available data	Percentage of Inhalation studies (n=38)	Instillation studies: Number of available data	Percentage of Instillation studies (n=93)
Diameter (median)	26	68%	24	26%
Diameter (GSD)	23	61%	1	1%
Diameter (min)	3	8%	9	10%
Diameter (max)	3	8%	10	11%
Medium	4	11%	31	33%
Determination method	26	68%	31	33%
Sample treatment	2	5%	66	71%
Application medium	2	5%	90	97%
Dispersant	0	0%	26	28%
Bulk density	4	11%	0	0%
Distribution type	38	100%	92	99%
Zetapotential	2	5%	1	1%
Solubility in medium	0	0%	0	0%
Isoelectric point	0	0%	0	0%
Conductivity	0	0%	0	0%

 Tab. 5:
 Secondary characterisation in studies with nano-objects

Diameter means mass median aerodynamic diameter and hydrodynamic diameter for inhalation and instillation studies, respectively.

A comparative analysis between MMAD or hydrodynamic diameter and primary diameter was performed (Fig 3). A dependency could not be identified. However, MMADs cover several orders of magnitudes. MMAD is a double critical parameter, first its size determines the deposition behaviour and fate (Oberdörster et al., 2005) and second it's difficult to standardize these size measurements, currently three different techniques lead to three different results (Pauluhn, 2010). This issue of primary nano diameter versus micro MMAD or hydrodynamic diameter contains the problem that in many studies the nano-objects are applied as larger aggregates, only slightly different from original larger particles. As disaggregation seldom occurs, only minor differences in effects could be expected between nano and larger particles.

Fig 3: MMAD in inhalation studies (left) and hydrodynamic diameter in instillation studies (right)

3.2 Studies included

3.2.1 Routes and study durations

In the public literature a huge variety of study designs are published. Tab. 6 and Tab. 7 give an overview of the design of inhalation and instillation studies. The inhalation studies differ with respect to the type of inhalation (nose / head only), study duration, duration of postexposure period and duration of exposure per day and per week. Similarly instillation studies differ with respect to frequency of instillations and time after instillation. The study designs encountered most frequently are highlighted in bold. Within the different studies, investigations have been performed at interim time points, especially in instillation studies.

route	Category of study duration	Exposure duration in days	Post-exposure in days	Exposure time in h/d	Exposure duration in d/wk	Number of studies
Nose / head	Subacute	23	90	6	5	2
only		28	91	6	5	1
		28	546	0.66	7	1
	Subchronic	90	1	6	5	1
		91	180	6	5	1
Whole body	Subacute	10	0	6	7	2
		24	0	6	5	1
		28	0	2	3	2
		28	0	6	5	1
		28	28 2		5	1
	Subchronic	84	364	6	5	2
		91	0	6	5	1
		91	224	6	5	1
		91	240	6	5	1
		91	335	6	5	3
		91	364	6	5	8
	Chronic	152	1	5	5	1
		411	288	18	5	2
		547	180	18	5	1
		547	183	18	5	1
	Cancer	730	0	6	5	1
		730	50	16	5	1
		730	180	18	5	1
		730	182	18	5	1

Tab. 6: Study design of inhalation studies

Application route	Category of study duration	Exposure duration in days	Post- exposure in days	Number of instillation	frequency	per	Number of studies
Intratracheal	Cancer	1	874	1			1
		28	872	5	1	wk	5
		63	812	10	1	wk	1
		63	827	10	1	wk	1
		63	837	10	1	wk	4
		64	826	10	1	wk	1
		98	802	15	1	wk	1
		105	695	16	1	wk	2
		133	767	20	1	wk	2
		203	697	30	1	wk	1
		406	469	30	2	wk	1
	Chronic	1	98	1			2
		1	181	1			6
		1	274	1			1
		2	456	2	1	d	3
		63	393	10	1	wk	1
		84	77	4	0.5	d	1
		266	14	20	2	wk	1
	Subacute	1	3	1			1
		1	7	1			1
		1	13	1			1
		7	21	2	1	wk	1
		8	2	2	1	wk	1
		21	0	15	5	wk	1
		21	7	4	1	wk	1
		1	28	1			8
	Subchronic	1	30	1			2
		1	42	1			4
		1	60	1			6
		1	90	1			17
		35	0	6	1	wk	2
		35	1	6	1	wk	2
		42	0	30	5	wk	1
		42	1	7	1	wk	1

Tab. 7:Study design of instillation studies

Application route	Category of study duration	Exposure duration in days	Post- exposure in days	Number of instillation	frequency	per	Number of studies
		61	30	3	1	mo	3
		63	0	45	5	wk	1
Pharyngeal	Subchronic	1	28	1			1
		1	60	1			3

3.2.2 Species

Usually studies were performed with rats or mice (Tab. 8). Due to the high spontaneous lung tumour rate in mice, the rat is the preferred species especially for long term studies with particles. This is also reflected by the species distribution in the database where 80% are rat studies. However, especially for the shorter study duration, where inflammation endpoints are mainly investigated, mice are also used (see Tab. 8).

Tab. 0. Types of studies in fats and ince	Tab.	8:	Types	of	studies	in	rats	and	mice
---	------	----	-------	----	---------	----	------	-----	------

Category of study duration	Application route	Number of mouse studies	Number of rat studies
Subacute	Nose /head only		4
	Whole body	3	4
	Intratracheal	7	12
	Pharyngeal	1	
Subchronic	Nose /head only		2
	Whole body	3	13
	Intratracheal	5	32
	Pharyngeal	3	
Chronic	Whole body	3	6
	Intratracheal	1	32
Total number species	All routes	26	105

Bold: Highest number of studies

3.2.3 Dose levels, NOELs and LOELs

According to the respective OECD guidelines repeated dose toxicity studies are performed with 3 dose levels and a control group. The lowest dose group is intended to show no effects (NOEL), the medium dose group should reveal slight toxicity (LOEL) and the highest dose group should have clear toxic effects, but no increased mortality. For toxicological evaluations effects at the LOEL are most important, as these reflect effects at low dose levels. As demonstrated in Tab. 9, 74 studies investigated only one dose level, 22 studies two dose levels and 35 studies used three or more dose levels.

		Number of studies					
Route	Category time point	1 Dose Level	2 Dose Levels	3 and more dose levels			
Nose /head only	37-99			1			
Nose /head only	100-189			3			
Nose /head only	190-365			1			
Nose /head only	366-912	1					
Whole body	1-10	2					
Whole body	11-36	4		1			
Whole body	37-99			1			
Whole body	100-189	1					
Whole body	190-365	1		1			
Whole body	366-912	12	1	8			
Intratracheal	1-10	1		2			
Intratracheal	11-36	10	4	4			
Intratracheal	37-99	14	12	9			
Intratracheal	100-189	5	1	1			
Intratracheal	190-365	2					
Intratracheal	366-912	19	4	1			
Pharyngeal	11-36			1			
Pharyngeal	37-99	2		1			

Tab. 9: Number of different dose levels

3.3 Particles included

Currently, the PaFtox database contains 17 different materials. For titan dioxide and Carbon Black numerous studies with different particle sizes were available. An overview is provided in Tab. 10.

Tab. 10:Particles included

Substance	Titan dioxide						Carbo	Carbon Black							
Diameter (mean) in nm	4.9	20- 25	154	180	200	250	1000	14	15	37	56	70	95	120	260
Specific Surface in m2/g	316	32- 66	10	9.9	8.8	6.5	2.34	271- 337	230	43	45	37	22	n.g.	n.g.

Not all particles are available for all application routes

The distribution of particles over the different application routes is illustrated in Tab. 11.

		Number of studies						
Substance	Category of diameter (mean)in nm	Intra- tracheal	Nose/ head only	Pharyngeal	Whole body			
Aluminium oxide C	50	2						
Aluminium trioxide	50	1						
Aluminium trioxide	500	1						
Aluminium oxyhydroxide	50		2					
Carbon Black	50	13		1	7			
Carbon Black	100	1			1			
Carbon Black	500	1			1			
Cerium(IV) oxide	50	1						
Iron(II,III) oxide	10	1						
lamp black 101+diesel soot	100	3						
Manganese(IV) oxide	50	3						
Nickel	50	1						
Nickel hydroxide	50				1			
Nickel oxide	50	2						
Nickel oxide	3000	1						
Silicon dioxide	50	16	2		4			
Silicon dioxide	500	6						
Silicon dioxide	1500	8						
Silicon dioxide	3000	1		1				
Silicon dioxide	5000	1						
Silicon dioxide	8000				1			
Silver	50				2			
Titanium dioxide	10	4						
Titanium dioxide	50	11			7			
Titanium dioxide	500	6			5			
Titanium dioxide	1500	1						
Titanium dioxide	3000				1			
Toner	500	1						

Tab. 11: Number of studies for different substances and particle diameter categories and application routes

Total number of studies: 122

3.4 Parameter / Effect analysis

3.4.1 Target / organs and effects

Fig 4 presents an overview of affected targets / organs, distinguished between the different application routes. Generally, lung and BALF are the main targets, followed by lymph nodes.

Fig 4: Overview effected targets / organs

Tab. 12 provides an overview of the effects found in all studies, irrespective of the route of application, dose and time point. It shows that some effects appear very frequently, such as lactate dehydrogenase (LDH), total protein, PMN in BALF or macrophage infiltration, fibrosis and inflammation in the lung.
Tab. 12: Observed effects

Target / Organ	Parameter / Effect	Parameter / Effect observed (no of studies)
BALF	Lactate dehydrogenase (LDH)	50
BALF	Total protein	50
BALF	PMN	50
Lung	Macrophage infiltration	48
Lung	Weight	46
BALF	Total cells	41
BALF	Neutrophils	40
BALF	Alveolar macrophages	36
Lung	Fibrosis	34
Lung	Inflammation	28
Lymph node	Burden	28
BALF	Lymphocytes	24
Lung	Hyperplasia	22
Body weight	Weight decreased	21
Lung	Collagen	20
Lung	Bronchiolo-alveolar adenoma	18
Lung	Tumour (other)	17
Lung	Squamous cell carcinoma	16
Lung	Alveolar type II cells	16
Lung	Granuloma	16
Lung	Alveolar proteinosis	15
Lung	Cell proliferation	15
BALF	Leukocytes	13
Lung	Macrophages foamy	13
Lung	Bronchiolo-alveolar carcinoma	13
Lung	Cystic keratinizing epithelioma	13

Total number of studies: 131

As indicated in Fig 4 most effects are local effects in the respiratory tract. Tab. 13 shows that effects in the lymph nodes, spleen, blood and pleura have been found especially in inhalation studies and indicate migration of the nano-objects.

Target / Organ	Effect	Nose / head only	Whole body	Intratracheal
Adrenal gland	Weight			1
Brain	Burden		2	1
Brain	Functional disorders			1
Clinical symptoms	Behaviour abnormal			1
Blood	B cells			3
Blood	Erythrocytes		8	
Blood	Granulocytes	1		
Blood	Haematocrit		2	
Blood	Haemoglobin		2	
Blood	Leukocytes total	1		
Blood	Lymphocytes total	3		
Blood	Natural killer cells (NK)			3
Blood	Natural killer T cells (NKT)			3
Blood	Neutrophils total	2	6	
Blood	T cells			3
Blood	T cells CD4+/CD8+			3
Heart	Blood pressure		2	
Heart	Heart rate		1	
Kidney	Burden		1	
Liver	Burden		2	
Liver	Hyperplasia		1	
Liver	Necrosis		2	
Liver	Vacuolization		1	
Liver	Weight			2
Lymph node	Burden	25	40	23
Lymph node	Cell proliferation			1
Lymph node	Changes in organ structure	4		
Lymph node	Discoloration	2		
Lymph node	Fibrosis		1	4
Lymph node	Granuloma	1		5
Lymph node	Histiocytosis	3		1
Lymph node	Hypercellularity	1		
Lymph node	Hyperplasia	2	8	6
Lymph node	Hypertrophy			3
Lymph node	Infiltration			8

Tab. 13: Parameter / Effects beyond the respiratory tract

Target / Organ	Effect	Nose / head only	Whole body	Intratracheal
Lymph node	Inflammation			4
Lymph node	Macrophage accumulation	9	3	7
Lymph node	Macrophage damage		3	
Lymph node	Macrophage infiltration			4
Lymph node	Weight	13	1	
Nervous system	Functional disorders			1
Pleura	Changes in organ structure	1		
Pleura	Collagen			6
Pleura	Fibrosis			1
Pleura	Inflammation		1	1
Pleura	Thickening	4		
Spleen	Burden		1	
Spleen	Weight			1
Thymus	Weight		1	
Urine	Protein		1	
Vascular system	Burden		1	

3.4.2 Reversibility of effects

Tab. 14 documents the effects per target organ for studies with whole body exposure which include in addition to the investigations at the end of the exposure period also investigations after a postexposure period. The postexposure durations ranged from 2 to 364 days.

In total 755 effects were observed, 407 effects within the treatment period of the studies and 348 effects in addition in the post exposure period. The number of effects (at lowest observed effect level) were counted per time point and are subdivided into two groups: effect observed within exposure duration (termed (-) postexposure) or the effect was observed in the postexposure time (termed (+) postexposure). In most studies interim sacrifices were performed, so that effects for several time points can be distinguished. Time points were grouped into six time categories, evaluations <= 10 days (termed 10 days), <=36 days (termed 28 days), <100 (termed 90) <= 189 days (termed 182 days), <= 365 days (termed 365 days) and > 365 days (termed 700 days). All effects of the treatment period were also observed in the postexposure period. To obtain comparable results for the different groups, the number of positive effects was normalized to the number of studies of the corresponding subgroup.

		Percentage of positive effects per total study number (n = 22)					Ratio (+)postexposure / (-)postexposure						
		(-) postexposure			(+) postexposure								
Target / Organ	Parameter / Effect	90	182	365	700	90	182	365	700	90	182	365	700
BALF	AM relative	23				23	32	9	23	1			
BALF	AM total	9		5	23	9	9	9	45	1		2	2
BALF	Burden	9				9		5	5	1			
BALF	LDH	23		5	18	23	14	9	32	1		2	1.75
BALF	Neutrophils relative	14				14	18	9	14	1			
BALF	Neutrophils total	9		5		9	18	9	5	1		2	
BALF	PMN relative	27				27	14	5	14	1			
BALF	PMN total	9			9	9		5	18	1			2
BALF	β-glucuronidase	23		5	18	23	9	9	32	1		2	1.75
BALF	Total cells	41				41	9	5	14	1			
BALF	Total protein	23			9	23	9	5	23	1			2.5
Body weight	Weight	5		9	23	5	9	18	45	1		2	2
Clinical symptoms	Mortality				27				41				1.5
Lung	Alveolar proteinosis	14		5	9	14	9	5	27	1		1	3
Lung	mRNA (CCL2)	9				9	5	5		1			
Lung	Deposits			5	9		5	5	14			1	1.5
Lung	Fibrosis	5	14	18	27	5	32	32	68	1	2.33	1.75	2.5
Lung	Hyperplasia alveolar type II cells	23	5	5	14	23	14	5	32	1	3	1	2.3
Lung	Infiltration	23		5	5	23	14	9	18	1		2	4
Lung	Inflammation	9	5	5	14	9	5	5	18	1	1	1	1.3
Lung	Macrophage damage	14			9	14	9		23	1			2.5
Lung	Macrophage infiltration	32	9	9	23	32	50	27	50	1	5.5	3	2.2
Lung	Macrophages interstitial	9	5	9	9	9	27	23	32	1	6	2.5	3.5
Lung	Metaplasia			5	9			5	14			1	1.5
Lung	Weight	27	14	23	32	27	23	23	45	1	1.67	1	1.4
Lymph node	Burden	27	5	5	27	27	18	23	45	1	4	5	1. 7
Nose	Degeneration	5	18	18	18	5	18	18	45	1	1	1	2.5
Nose	Hyperplasia	5	9	9		5	14	9	18	1	1.5	1	
Nose	Inflammation			9	18			9	27			1	1.5
Nose	Squamous cell metaplasia			9	18			9	27			1	1.5

 Tab. 14:
 Parameter / Effect of study evaluation (+) or (-) postexposure in whole body inhalation studies

Traffic light code used for illustration lower limit: 10 percentile set to green and upper limit: 90 percentile set to red; AM - alveolar macrophages Tab. 14 also depicts in the last column the ratio between the number of effects during the treatment and postexposure period of studies. If this value is higher than 100% it means, that effects are occurring more frequently at the LOEL of the study in the subgroup with postexposure.

No effect disappeared, indicating that no effect was fully reversible. This analysis does however, not specify differences in grade and severity of effects and thus their in- or decrease during the postexposure period. In addition one effect in BALF and eight effects in lung are only seen in the postexposure period (Tab. 15).

		Category time	point	
Target / Organ	Parameter / Effect	100-189	366-730	
BALF	Glutathione peroxidase	1	2	
Lung	Adenosquamous carcinoma		1	
Lung	Benign cystic keratinizing squamous-cell tumour		2	
Lung	Bronchiolo-alveolar adenocarcinoma		3	
Lung	Gamma-glutamylcysteine synthetase (γ-glutamGCL)		2	
Lung	Manganese superoxide dismutase (Mn SOD)		2	
Lung	Squamous metaplasia		1	
Lung	Thickening		1	
Lung	Tumour supressor protein p53		1	

Tab. 15:Parameter / Effects (number) appearing only in the postexposure period at LOEL per time point in studies with
whole body exposure.

3.4.3 Parameters affecting toxicity of particles and fibres

In a preliminary analysis the influence of different parameters discussed to influence the toxicity of nanoobjects was investigated. The following parameters were analysed:

- the composition of the (nano) particle
- the mean diameter
- the specific surface

Studies with whole body exposure and intratracheal studies were analysed, because most studies were available for these application types. In most studies interim sacrifices were performed, so that effects for several time points can be distinguished. Time points were again grouped into six time categories, evaluations <= 10 days (termed 10 days), <=36 days (termed 28 days), <100 (termed 90) <= 189 days (termed 182 days), <= 365 days (termed 365 days) and > 365 days (termed 700 days).

While in intratracheal studies investigations are already performed at early time points, the study design of inhalation studies focus on analyses at later time points. However in both routes, not every time point is covered.

3.4.3.1 Composition

Tab. 16 shows LOELs derived from different studies for different substances and for the different application routes. There are considerable differences in toxicity between substances, while the exposure duration has a minor influence on the toxicity.

Application route	Name	Min LOEL per time point						
		10	28	90	182	365	700	
Nose / head only	Aluminum oxyhydroxide	5E+00	4E+00	5E+00	6E-01			
	MWCNT			2E-02	2E-02	8E-02		
	Silicon dioxide		7E-01	9E+00	9E+00	3E+01		
Whole body	Carbon Black		3E+00	2E-01	2E-01	1E+00	2E-01	
	MWCNT		6E+00					
	Nickel hydroxide			2E-02	2E-02			
	Silicon dioxide			2E-01	2E-01	2E-01	2E-01	
	Silver		9E-05	9E-03				
	Titanium dioxide	6E+00	4E-01	9E-02	9E-02	9E-02	9E-02	
Intratracheal	Aluminium oxide C				1E+02		1E+02	
	Aluminium trioxide	2E+00	2E+00	2E+00				
	Carbon Black	2E-01	1E+01	4E-01	7E+01	2E+02	1E+01	
	Cerium(IV) oxide	2E-01	5E-01					
	Iron(II,III) oxide	3E-01	1E+00					
	lamp black 101+diesel soot						1E+02	
	Manganese(IV) oxide		6E+01	1E+02				
	MWCNT	4E-02	4E-02	4E-02	2E-01			
	Nickel	5E-01	5E+00					
	Nickel oxide	3E-01	3E-01	3E-01	3E-01			
	Silicon dioxide	8E-03	8E-01	8E-01	5E+00	1E+01	1E+01	
	SWCNT	1E+00	5E+00	1E+00				
	Titanium dioxide	8E-01	8E-01	8E-01			1E+01	
	Toner	2E+02	2E+02	2E+02				
Pharyngeal	SWCNT	3E-01	5E-01	5E-01				

Tab. 16: LOELs per route, substance and time point

LOELs normalised doses for inhalation studies in mg/m³ and cumulative doses in mg/kg bw for instillation studies; Traffic light code used for illustration lower limit: 10 percentile set to red and upper limit: 90 percentile set to green

To further investigate the influence of particle composition; effects were identified that were either caused by reference particles (titanium oxide, silicon oxide, aluminium oxides and Carbon Black) or by heavy metals and oxides (silver, nickel and oxide, iron oxide, cerium oxide and manganese oxide). Reference particles cause overall 178 different effects (data not shown). The high number of effects is probably due to the fact

that especially Carbon Black and titanium dioxide are well investigated with numerous endpoints. A lower number of unique effects have been observed for the heavy metal based particles (Tab. 17). Interestingly, only one effect is caused by two different substances, but both are Nickel compounds. All other effects are unique per substance.

Target / Organ	Parameter / Effect	Substance
Adrenal gland	Weight	Manganese(IV) oxide
BALF	Apoptosis	Cerium(IV) oxide
BALF	Arginase-1 mRNA ex vivo	Cerium(IV) oxide
BALF	Caspase protein (CASP3) ex vivo	Cerium(IV) oxide
BALF	Caspase protein (CASP9) ex vivo	Cerium(IV) oxide
BALF	Cell cycle: G1 phase	Iron(II,III) oxide
BALF	Cell cycle: S phase	Iron(II,III) oxide
BALF	Chemokine mRNA (CCL3)	Nickel oxide
BALF	Chemokine protein (CCL2)	Nickel hydroxide
BALF	Chemokine protein (CCL2)	Nickel oxide
BALF	Cytokine-induced neutrophil chemoattractant protein (CINC-1)	Nickel oxide
BALF	Cytokine-induced neutrophil chemoattractant protein (CINC-2 $\alpha\beta$)	Nickel oxide
BALF	Interleukin protein (IL-1)	Iron(II,III) oxide
BALF	Interleukin protein (IL-12)	Iron(II,III) oxide
BALF	Interleukin protein (IL-12) ex vivo	Cerium(IV) oxide
BALF	Interleukin protein (IL-4)	Iron(II,III) oxide
BALF	Interleukin protein (IL-5)	Iron(II,III) oxide
BALF	Lipid peroxides (LPO)	Nickel
BALF	Nuclear factor mRNA (NF-κB) ex vivo	Cerium(IV) oxide
BALF	Phospholipids	Cerium(IV) oxide
BALF	Suppressor of chemokine signalling mRNA (SOCS-1) ex vivo	Cerium(IV) oxide
Brain	Functional disorders	Manganese(IV) oxide
Clinical chemistry	Calcium	Silver
Clinical chemistry	IgE	Iron(II,III) oxide
Clinical chemistry	Interleukin protein (IL-1)	Iron(II,III) oxide
Clinical chemistry	Interleukin protein (IL-12)	Iron(II,III) oxide
Clinical chemistry	Interleukin protein (IL-4)	Iron(II,III) oxide
Clinical chemistry	Interleukin protein (IL-5)	Iron(II,III) oxide
Clinical chemistry	Total protein	Silver
Clinical chemistry	Tumour necrosis factor protein (TNF- α)	Iron(II,III) oxide
Clinical symptoms	Behaviour abnormal	Manganese(IV) oxide

 Tab. 17:
 Parameter / Effects occurring only with heavy metals and oxides

Target / Organ	Parameter / Effect	Substance
Blood	B cells	Iron(II,III) oxide
Blood	Natural killer cells (NK)	Iron(II,III) oxide
Blood	Natural killer T cells (NKT)	Iron(II,III) oxide
Blood	T cells	Iron(II,III) oxide
Blood	T cells CD4+/CD8+	Iron(II,III) oxide
Liver	Hyperplasia	Silver
Liver	Necrosis	Silver
Liver	Vacuolization	Silver
Liver	Weight	Manganese(IV) oxide
Lung	Cytokine-induced neutrophil chemoattractant protein (CINC-1)	Nickel oxide
Lung	Cytokine-induced neutrophil chemoattractant protein (CINC-2 $\alpha\beta$)	Nickel oxide
Lung	Glycoprotein mRNA (OPN)	Cerium(IV) oxide
Lung	Heat shock protein mRNA (HSP1a)	Iron(II,III) oxide
Lung	Heat shock protein mRNA (HSP8)	Iron(II,III) oxide
Lung	Interleukin mRNA (IL-1 α)	Nickel hydroxide
Lung	Interleukin protein (IL-1 α)	Nickel oxide
Lung	Interleukin protein (IL-2)	Nickel oxide
Lung	Lipidosis	Cerium(IV) oxide
Lung	Matrix metalloproteinase mRNA (MMP-12)	Iron(II,III) oxide
Lung	Matrix metalloproteinase mRNA (MMP-19)	Iron(II,III) oxide
Lung	Matrix metalloproteinase mRNA (MMP-23)	Iron(II,III) oxide
Lung	MHC II mRNA (H2-Eb1)	Iron(II,III) oxide
Lung	MHC II mRNA (H2-T17)	Iron(II,III) oxide
Lung	MHC II mRNA (H2-T23)	Iron(II,III) oxide
Lung	Minute volume	Silver
Lung	Peak inspiration flow	Silver
Lung	PMN total	Cerium(IV) oxide
Lung	Proteinase inhibitor mRNA (SLPI)	Iron(II,III) oxide
Lung	Serum amyloid mRNA (SAA3)	Iron(II,III) oxide
Lung	Tidal volume	Silver
Nervous system	Functional disorders	Manganese(IV) oxide
Urine analysis	Protein	Silver

Silicon dioxide is frequently used as reference material in toxicity studies of particles. Therefore we analysed if there are silicon dioxide specific effects. Tab. 18 shows silicon dioxide specific effects and the size and

crystal structure responsible for the effect. Both types can cause significant effects in the lung, pleura and lymph nodes of different severity. The weight gain of thymus found for crystalline silica was transient.

Target / Organ	Parameter / Effect	Size & Crystal structure
Haematology	Neutrophils total	Nano amorphous or micro crystalline
Lung	Spongiosis	Nano amorphous or micro crystalline
Lung	Swelling	Nano amorphous or micro crystalline
Lymph node	Fibrosis	Nano amorphous or micro crystalline
Lymph node	Infiltration	Nano amorphous or micro crystalline
Lymph node	Inflammation	Nano amorphous or micro crystalline
Nose	Necrosis	Nano amorphous or micro crystalline
BALF	Chemotaxis	Micro crystalline
BALF	Phosphatidylglycerol/phosphatidylinositol (PG/PI)	Micro crystalline
Bronchi	Hyperplasia mucus cell	Micro crystalline
Clinical chemistry	Alanine aminotransferase (ALAT)	Micro crystalline
Clinical chemistry	Alkaline phosphatase	Micro crystalline
Lung	8-oxoGua	Micro crystalline
Lung	Hyperplasia alveolar type II cells	Micro crystalline
Lung	p53 mutations	Micro crystalline
Lymph node	Hypertrophy	Micro crystalline
Pleura	Fibrosis	Micro crystalline
Thymus	Weight	Micro crystalline
Bronchi	Apoptosis	Nano amorphous
Bronchi	Necrosis	Nano amorphous
Clinical chemistry	Globulin	Nano amorphous
Clinical chemistry	Histamine	Nano amorphous
Clinical symptoms	Respiratory distress	Nano amorphous
Haematology	Haematocrit	Nano amorphous
Haematology	Haemoglobin	Nano amorphous
Lung	Chemokine protein (CXCL2)	Nano amorphous
Lung	Interferon gamma mRNA (IFN-γ)	Nano amorphous
Lung	Interleukin mRNA (IL-4, IL-8, IL-10, IL-13)	Nano amorphous
Lung	Interleukin protein (IL-18, IL-4, IL-6, IL-8, IL-	Nano amorphous

 Tab. 18:
 Parameter / Effects occurring only with silicon dioxides

Target / Organ	Parameter / Effect	Size & Crystal structure
	10, IL-13)	
Lung	Laminin	Nano amorphous
Lung	Matrix metalloproteinase mRNA (MMP-9, MMP-10)	Nano amorphous
Lung	Matrix metalloproteinase protein (MMP-9)	Nano amorphous
Lung	Metallopeptidase inhibitor protein (TIMP-1)	Nano amorphous
Lung	Necrosis	Nano amorphous
Lymph node	Cell proliferation	Nano amorphous
Lymph node	Histiocytosis	Nano amorphous
Lymph node	Macrophage damage	Nano amorphous
Lymph node	Macrophage infiltration	Nano amorphous
Pleura	Changes in organ structure	Nano amorphous

Crystalline covers also mainly crystalline.

3.4.3.2 Tubes versus particles

To investigate also the influence of the shape on toxicity an analysis was performed if carbon nano tubes (CNTs) cause other effects than titanium oxide, silicon oxide, aluminium oxides, Carbon Black or heavy metal compounds. Tab. 19 shows effects identified only for tubes but not with "inert" particles, silicon dioxide or heavy metal based particles. Interestingly, all tube specific effects are unique per CNT type. Besides changes in cytokine levels other parts of the respiratory tract such as nose, pharynx and trachea are affected. Further thickening of the pleura was found, an effect that is consistent with the hypothesis that carbon nanotubes migrate to the pleura like asbestos fibres.

Tab. 19: Parameter / Effects occurring only with carbon nanotu
--

Target / Organ	Parameter / Effect	Substance
BALF	Collagen	MWCNT
BALF	Growth factor protein (TGF-β1)	SWCNT
BALF	Interleukin protein (IL-23)	SWCNT
BALF	Myeloperoxidase (MPO)	SWCNT
BALF	Reactive oxygen species (ROS)	SWCNT
Bronchi	Hypertrophy	MWCNT
Bronchi	Weight	SWCNT
Blood	Granulocytes	MWCNT
Blood	Leukocytes total	MWCNT
Larynx	Changes in organ structure	MWCNT
Lung	Chemokine protein (CCL11)	SWCNT

Target / Organ	Parameter / Effect	Substance
Lung	Chemokine protein (CCL17)	SWCNT
Lung	Chemokine protein (CCL22)	SWCNT
Lung	Cytokeratin	SWCNT
Lung	Expiratory time	SWCNT
Lung	Glutathione (GSH)	SWCNT
Lung	Histiocytosis	MWCNT
Lung	Interferon gamma protein (IFN-y)	SWCNT
Lung	Interleukin protein (IL-17A)	SWCNT
Lung	Interleukin protein (IL-23)	SWCNT
Lung	Interleukin protein (IL-33)	SWCNT
Lung	Pentosidine	SWCNT
Lymph node	Hypercellularity	MWCNT
Nose	Changes in organ structure	MWCNT
Nose	Eosinophilic structures	MWCNT
Nose	Infiltration	MWCNT
Pharynx	Hypercellularity	MWCNT
Pharynx	Mucus	MWCNT
Pleura	Thickening	MWCNT
Trachea	Hypercellularity	MWCNT
Trachea	Mucus	MWCNT

3.4.3.3 Diameter and specific Surface

There is concern, that particles with nanoscale diameter have a higher toxicity than particles of larger scale, due to their higher surface, inter alia. Therefore, we investigated, whether we can reproduce these results with queries in the PaFtox database.

The LOELs were analysed for up to four different subgroups regarding their diameter and for two different subgroups regarding their specific surface for six categories of study durations from 10 to 700 days in whole body and intratracheal studies. The results are presented in Tab. 20 for the different diameters and in Tab. 21 for different specific surfaces. Generally the LOELs are lower for the particles with the smaller diameter and the higher specific surface. The difference in LOEL for the study with the lowest LOEL for the respective substances and time point is up to two orders of magnitude. The LOELs differ for particles within the same diameter or surface category, confirming substance specific toxicity. Silver nanoparticles are by far the most toxic nanoparticles.

Application route	Substance	Diameter	Min LOEL per time point							
			10	28	90	182	365	700		
Nose / head only	Aluminium oxyhydroxide	< 56 nm	5E+00	4E+00	5E+00	6E-01				
	MWCNT	< 56 nm			2E-02	2E-02	8E-02			
	Silicon dioxide	< 56 nm		7E-01	9E+00	9E+00	3E+01			
Whole body	Carbon Black	< 56 nm		9E+00	2E-01	2E-01	1E+00	2E-01		
		> 56 nm		3E+00	9E+00	9E+00		9E+00		
	MWCNT	< 56 nm		6E+00						
	Nickel hydroxide	< 56 nm			2E-02	2E-02				
	Silicon dioxide	< 56 nm			2E-01	2E-01	2E-01	2E-01		
		> 56 nm			1E+01	1E+01	1E+01	1E+01		
	Silver	< 56 nm		9E-05	9E-03					
	Titanium dioxide	< 56 nm	6E+00		9E-02	9E-02	9E-02	9E-02		
		> 56 nm		4E-01	2E+00	2E+00	2E+00	2E+00		
Intratracheal	Aluminium oxide C	< 56 nm				1E+02		1E+02		
	Aluminium trioxide	< 56 nm	2E+00	2E+00	2E+00					
		> 56 nm	2E+00	2E+00	2E+00					
	Carbon Black	< 56 nm	2E-01	1E+01	4E-01	7E+01	2E+02	1E+01		
		> 56 nm	6E+00		2E+01	7E+01				
	Cerium(IV) oxide	< 56 nm	2E-01	5E-01						
	Iron(II,III) oxide	< 56 nm	3E-01	1E+00						
	Lamp black 101+diesel soot	> 56 nm						1E+02		
	Manganese(IV) oxide	< 56 nm		6E+01	1E+02					
	MWCNT	< 56 nm	4E-02	4E-02	4E-02	2E-01				
	Nickel	< 56 nm	5E-01	5E+00						
	Nickel oxide	< 56 nm	3E-01	3E-01	3E-01	3E-01				
		> 56 nm		7E+00	7E+00	7E+00				
	Silicon dioxide	< 56 nm	8E-03	8E-01	1E+00		5E+01	7E+01		
		> 56 nm	1E+00	8E-01	8E-01	5E+00	1E+01	1E+01		
	SWCNT	< 56 nm	1E+00	5E+00	1E+00					
	Titanium dioxide	< 56 nm	8E-01	8E-01	8E-01			4E+01		
		> 56 nm	5E+00	5E+00	2E+01			1E+01		
	Toner	> 56 nm	2E+02	2E+02	2E+02					
Pharyngeal	SWCNT	< 56 nm	3E-01	5E-01	5E-01					

Tab. 20: Influence of particle diameter on LOELs

LOELs normalised doses for inhalation studies in mg/m³ and cumulative doses in mg/kg bw for instillation studies; Traffic light code used for illustration lower limit: 10 percentile set to red and upper limit: 90 percentile set to green

		Category	Min LOEL	per time po	oint			
Application route	Name	specific surface	10	28	90	182	365	700
	Aluminum oxyhydroxide	400	5E+00	4E+00	5E+00	6E-01		
	MWCNT	400			2E-02	2E-02	8E-02	
Nose / head only	Silicon dioxide	70		7E-01				
		70			1E+00	1E+00	1E+00	1E+00
	Carbon Black	400		9E+00	2E-01	2E-01	1E+00	2E-01
	MWCNT	400		6E+00				
	Nickel hydroxide	70			2E-02	2E-02		
		70			1E+01	1E+01	1E+01	1E+01
	Silicon dioxide	400			2E-01	2E-01	2E-01	2E-01
Whole body	Titanium dioxide	70	6E+00	4E-01	9E-02	9E-02	9E-02	9E-02
	Aluminium oxide C	400				1E+02		1E+02
	Aluminium trioxide	400	2E+00	2E+00	2E+00			
		70		1E+01		7E+01		
	Carbon Black	400	2E-01	1E+01	4E-01	7E+01	2E+02	1E+01
	Cerium(IV) oxide	70	2E-01	5E-01				
	lamp black 101+diesel soot	70						1E+02
	Manganese(IV) oxide	70						
	MWCNT	70	4E-02	4E-02	4E-02	2E-01		
	Nickel	70	5E-01	5E+00				
		70	7E+00	7E+00	7E+00	7E+00		
	Nickel oxide	400	3E-01	3E-01	3E-01	3E-01		
		70	1E+00	8E-01	8E-01	5E+00	1E+01	1E+01
	Silicon dioxide	400	8E-03	8E-01	1E+00		5E+01	7E+01
		70	8E-01	8E-01	8E-01			1E+01
Intratracheal	Titanium dioxide	400	5E+00	5E+00	5E+00			
Pharyngeal	SWCNT	400	3E-01	5E-01	5E-01			

Tab. 21: Influence of specific surface on LOELs

LOELs normalised doses for inhalation studies in mg/m³ and cumulative doses in mg/kg bw for instillation studies; Traffic light code used for illustration lower limit: 10 percentile set to red and upper limit: 90 percentile set to green

3.4.4 Genotoxicity of nano-objects in vivo

An important question is, whether carcinogenicity of nano-objects can be predicted by studies on genotoxicity in vitro. In vitro studies are not subject of the PaFtox database. However, in some in vivo studies endpoints indicating genotoxicity have been investigated, such as 8-OHdG or HPRT mutations (Tab. 22). As Tab. 22 shows, only few studies are available. Parameter / Effects were found in 33 to 100 % of the studies for silicon dioxide, Carbon Black, titanium dioxide and SWCNT indicating the potential for

genotoxicity also for "inert" particles. Genotoxicity has been found also in other recent in vivo studies (Rittinghausen et al. 2012) with a high correlation with cell proliferation. Thus genotoxicity may arise as primary effect but more probably as secondary effect following cell proliferation.

		Num	ber of	studie	s effec	t meas	sured	Percentage positive effects (positive/measured)					
	Category time point	10	36	99	189	365	730	10	36	99	189	365	730
Whole body inhalation - Lun	ig	•	•	•						•		•	
8-OHdG	Carbon Black			3			3			67			67
HPRT mutations	Carbon Black			3	3	3				67	33	33	
	Silicon dioxide			1									
PAH-derived DNA adducts	Carbon Black			3						33			
Whole body inhalation - BAI	LF												.1
HPRT mutations	Carbon Black			6	5		5			67	60		60
Intratracheal instillation -	Lung												
8-OHdG	Carbon Black		2						100				
	Silicon dioxide	3	2					100	100				
	SWCNT			1						100			
8-oxoGua	Silicon dioxide		5	6					100	50			
HPRT mutations	Carbon Black						2						50
	Silicon dioxide						2						100
	Titanium dioxide						2						50
p53 mutations	Silicon dioxide		5	5					40	40			
Intratracheal instillation -	BALF												.1
HPRT mutations	Carbon Black						2						50
	Silicon dioxide						2						100
	Titanium dioxide						2						0

 Tab. 22:
 Genotoxic effects (measured and percentage positive effects)

Traffic light code used for illustration lower limit: 10 percentile set to red and upper limit: 90 percentile set to green

		Category time point	10	36	99	189	365	730
Target / Organ	Parameter / Effect	Substance						
Whole body inhal	ation	I						
Lung	8-OHdG	Carbon Black			1.4			1.4
	HPRT mutations	Carbon Black			1.3	9.4	9.4	
		Silicon dioxide						
	PAH-derived DNA adducts	Carbon Black			3.1			
BALF	HPRT mutations	Carbon Black			1.4	1.4		1.4
Intratracheal ins	tillation		I					
Lung	8-OHdG	Carbon Black		9.7				
		Silicon dioxide	0.8	0.8				
		SWCNT			11.3			
	8-oxoGua	Silicon dioxide		0.75	3			
	HPRT mutations	Carbon Black						100
		Silicon dioxide						10
		Titanium dioxide						100
	p53 mutations	Silicon dioxide		0.75	6			
BALF	HPRT mutations	Carbon Black						100
		Silicon dioxide						10
		Titanium dioxide						-

Tab. 23: "LOELS" for positive genotoxic effects

LOELs normalised doses for inhalation studies in mg/m³ and cumulative doses in mg/kg bw for instillation studies; Traffic light code used for illustration lower limit: 10 percentile set to red and upper limit: 90 percentile set to green

3.4.5 Carcinogenicity

Fig 5 shows an analysis for the chain of effects: inflammation, hyperplasia, metaplasia and tumour. The effects were counted for the lowest dose and the earliest time point the effect was observed for all studies. This graphic gives an indication what effect can be detected at which time point. While inflammation and hyperplasia were observed within one or three months, metaplasia, cysts, adenoma, carcinoma were determined at later stages, after one or two years. Similar observations were seen for intratracheal studies (data not shown).

Fig 5: Number of effects per category time point in whole body inhalation studies on carcinogenicity (query counted effects at minimum dose and earliest time point)

Fig 6 shows the LOELs for the same effects (inflammation, hyperplasia, metaplasia and tumour) for two or three different particles sizes of Carbon Black, silicon dioxide and titan dioxide. According to this preliminary analysis, considering the relevance of the effects (inverse the chain of effects) and the corresponding LOELs, the toxicity could be ranked as follows CB 50 ~ TiO2 500 > SiO2 50 > TiO2 50 > CB 100 > CB 500 > SiO2 8000. However, the data are limited to only few data points and do not allow any conclusion regarding the carcinogenicity of nano-objects.

Fig 6: Effect – "LOELs" per particle in whole body inhalation studies on carcinogenicity (query counted effects at min dose and first time point)

3.5 Correlations

3.5.1 Cell counts

Changed counts of different types of lymphocytes are often observed in BALF (Tab. 12). They are related to (acute) inflammation in the respiratory tract. In the PaFtox database they account for about 15% of all effects and are mainly determined in BALF (Tab. 24). Frequently affected cell types are alveolar macrophages and neutrophils. Neutrophils are also called polymorphonuclear neutrophils (PMN). And sometimes the term PMN is synonymously used to polymorphonuclear leukocytes (PML), which covers in addition to neutrophils, also eosinophil and basophil granulocytes. In the PaFtox database, both terms are separately recorded to keep the possibility to identify possible differences (Tab. 24). In the statistical analyses (Tab. 24).

and Tab. 25), they are separately counted but have been combined at a later stage for effect level/power analyses.

In Tab. 25 it was investigated, if the effects in BALF occur early or late during treatment. No consistent time pattern emerges for either of the parameters investigated. No consistent pattern was found in sensitivity concerning absolute or relative cell counts. Sometimes relative counts were positive more frequently, sometimes absolute counts.

Parameter / Effect	BALF	Blood	Lung	Nose
Alveolar macrophages relative	58/73			
Alveolar macrophages total	75/127			
Eosinophils total	3/8		0/2	
Erythrocytes		1/10		
Granulocytes	0/4	1/1		
Leukocytes total	23/26	1/1		
Lymphocytes relative	28/48			
Lymphocytes total	32/60	1/3		
Neutrophils relative	87/119			
Neutrophils total	72/86	12/19	7/23	1/3
PMN relative	87/123			
PMN total	84/130		1/1	

Tab. 24: Investigation of cells in different targets (statistically significant increased/measured or investigated)

Bold marked effects were analysed in more detail.

	Positive	/ Measure	d						
Category time point	1	3	10	21	36	99	189	365	730
Nose / head only	•	•	•	•	•	•	•	•	
Alveolar macrophages total						4/4	4/4	2/2	
Lymphocytes relative					1/1				
Lymphocytes total						1/4	2/4	1/2	
Neutrophils total				2/2	2/2		1/2		
PMN relative					1/1	6/6	6/6	2/3	
PMN total			2/5		4 / 10	8 / 12	8 / 12	2/3	
Whole body	•	•	•	•	•	•	•	•	
Alveolar macrophages relative			/1			12 / 16	12 / 14	4/6	7/7
Alveolar macrophages total						4/8	8 / 16	5/9	13 / 19
Granulocytes									4/4
Leukocytes total								2/2	3/4
Lymphocytes relative			/1			4/6	7/9	2/2	7/8
Lymphocytes total						2/2	3/4	/2	1/1
Neutrophils relative						10 / 14	14 / 19	8 / 11	7/8
Neutrophils total					1/1	2/2	4/4	3/4	3/5
PMN relative			0/1		0/2	11 / 12	7/7	1/3	5/7
PMN total	1/1		1/1		0/1	2/2		1/1	4/5
Intratracheal									
Alveolar macrophages relative	6/7	4/4	4/4	1/1	2/4	1/3			5/6
Alveolar macrophages total	2/4	7 / 10	7/8	3/6	7 / 11	4/5	0/2		
Eosinophils total		1/2	1/1		0/3	1/1	0/1		
Leukocytes total			4/4		8/8	5/5		3/3	
Lymphocytes relative	1/1	4/4	4/4	1/1	3/4				6/6
Lymphocytes total	1/1	3/6	4/5	1/1	2/9	2/2	1/1		
Neutrophils relative	12 / 14	16 / 17	6 / 14	3/3	3/6	4/6	1/1		5/6
Neutrophils total	3/3	15 / 18	5/6	3/3	6/7	8/9	1/2		
PMN relative	13 / 15	2/2	12 / 17		17 / 22	13 / 16	2/2	1/1	
PMN total	16 / 18		15 / 19		11 / 13	9 / 15	1/1	3/3	
Pharyngeal				1		1			
Alveolar macrophages total	0/3	3/3	4/4		3/3	2/3			
Lymphocytes total	2/3	3/3	3/3		3/3	1/3			
Neutrophils total	3/3	3/3	3/3		1/1	2/3			
PMN total	3/5		1/1						

Tab. 25: Frequency of increased / measured cell counts in BALF per time point category

Based on this overview, the effect levels of relative PMNs and relative neutrophils combined were further investigated in dependency of different measures of dose. As was shown by Oberdörster at al. 2005 for TiO2, surface area may be a suitable dose measure for comparing effects of nanoparticles with particles of larger size. Therefore we compared both: dose as mass unit in mg/kg bw for intratracheal studies or mg/m^3 for inhalation studies and surface area (dose as mass multiplied by the specific surface if provided for the respective particles in the studies) for the time point day 1. Fig 7 shows selected trend analyses performed for all corresponding particles available for the particular application route and time point category. Further differences in substance, size and crystal structure are marked by different symbols. Fig 7 A shows relative neutrophils (incl. PMNs) for intratracheal instillations 1 day after instillation in dependency of applied dose in mg/kg bw. The Plot Fig 7 B shows the same values in dependency of particle surface. Fig 7 C and Fig 7 D show the corresponding values for the time point categories 5-10 and 11-36 days after instillations, respectively. Finally, Fig 7 E and Fig 7 F show the results for whole body exposure studies for the time point categories 37-99 and 100-189 days, respectively. Due to the larger spread in the figure, particle surface as dose measure seems to better illustrate the dose-response for different particle sizes and compositions. Therefore the following analyses have been performed solely based on surface. Additionally, a regression line has been introduced into the figures as visual aid for distinguishing effect levels for different particles.

Overall, a rough dose response relationship can be found for the different particles depending on particle surface as dose measure.

Some particles (aluminium trioxide or titanium dioxide) lie below the regression line indicating a lower toxicity than average, while silicon dioxide lies above. Interestingly, this includes also amorphous silicon dioxide particles which are generally considered to have a lower toxicity than crystalline silica.

Generally the pattern is similar with all durations and also in intratracheal studies compared to inhalation studies. The steepness of the dose-response curve is also similar. In contrast to studies with intratracheal instillation few inhalation studies are available for silicon dioxide. Rutile, the crystalline form of titanium dioxide with higher toxicity lies above the regression line.

Fig 7: Correlation of relative number of neutrophils with particle mass or particle surface area

3.5.2 Alveolar macrophages

Similar analyses were performed for the relative alveolar macrophage counts in whole body studies and total alveolar macrophage counts for intratracheal studies (data not shown). A general negative trend was found, but some particles showed a positive trend: cerium oxide (4 points) and nickel oxide (2 points) in intratracheal studies at time category 11-36 days after instillation (not at time point 3 days) and titanium oxide (2 points) in whole body studies at time category 37-99 and 100-189 days (negative in intratracheal studies).

3.5.3 Total Protein and lactate dehydrogenase

As earlier mentioned (Tab. 12), the effects total protein and lactate dehydrogenase (LDH) in BALF are more frequently measured than other effects. Therefore, a detailed analysis was performed also for these endpoints. Tab. 26 shows the corresponding time related distribution of the number of measurements for both effects.

Category time point	1	3	10	36	99	189	365	730			
Whole body inhalation											
Total protein			1	1	34	29	13	23			
Lactate dehydrogenase (LDH)				1	33	31	15	27			
Intratracheal instillation											
Total protein	32	23	21	27	28	2	6				
Lactate dehydrogenase (LDH)	50	11	45	26	37	2	6				

 Tab. 26:
 Time related distribution of measurements of total protein and lactate dehydrogenase

Based on this overview (Tab. 26), the percentage changes of total protein measured in BALF were further investigated in dependency of particle surface area as dose measures for several time point categories: For intratracheal instillation the time point categories 1, 11-36 and 37-99 days, and for whole body exposure inhalation studies the time points 37-99 and 100-189 days (Fig 7).

Fig 8 shows selected trend analyses for percentage change of total protein in dependency of particle surface area performed for all corresponding particles available for the particular application route and time point category. Further differences in substance, size and crystal structure are marked by different symbols. Fig 8A shows the results for intratracheal instillations 1 day after instillation. The Plots Fig 8 B, Fig 8 C and Fig 8 D show the corresponding values for the time point categories 3 days, 11-36 and 37-99 days after instillation, respectively. Finally, Fig 8 E and Fig 8 F show the results for whole body exposure studies for the time point categories 37-99 and 100-189 days, respectively.

Overall, a slight dose response relationship can be found for the different particles with particle surface area as dose measure.

Unfortunately, the data amount does not allow a more detailed analysis regarding differences between different particle substances or other properties. However, two results are considered as very interesting: First, nickel led to very high protein contents in BALF at the three time point categories (1 day, 3 and 11-36 days for i.tr. studies), and second nano quartz seems to be less toxic than amorphous nano silicon dioxide. Aluminium oxide is again less toxic.

Fig 8: Correlation of total protein with particle surface area

Time or application route related differences were not identified. The trend and the effect level (with few exceptions) are similar with all durations and also in intratracheal studies compared to inhalation studies.

Based on the overview presented above (Tab. 26), the percentage changes of LDH measured in BALF were also further investigated in dependency of particle surface area as dose measures for several time point categories: For intratracheal instillation the time point categories 1, 11-36 and 37-99 days, and for whole body exposure inhalation studies the time points 37-99 and 100-189 days (Fig 9).

Fig 9 shows selected trend analyses for percentage change of LDH in dependency of particle surface area performed for all corresponding particles available for the particular application route and time point category. Further differences in substance, size and crystal structure are marked by different symbols. Fig 9 A shows the results for intratracheal instillations 1 day after instillation. The Fig 9 B and Fig 9 C show the corresponding values for the time point categories 5-10 days and 37-99 days after instillation, respectively. And the plots Fig 9 C, Fig 9 E and Fig 9 F show the results for whole body exposure studies for the time point categories 37-99, 100-189 and 366-730 days, respectively.

The results differ for each panel.

A slight dose response relationship can be found for the different particles in intratracheal studies at time point categories 1 day or 5-10 days after instillation and even more powerful correlations can be found for some substances (cerium oxide, titanium oxide (nano and fine) and Carbon Black) one day after instillation. The data at time point category 37-99 does not allow analogue conclusions. The analyses for whole body exposure studies suffer from the limited number of data. The corresponding analyses cover mainly titanium dioxide and Carbon Black and show only weak correlations (Fig 9 D to F).

Surprisingly, titanium dioxide led to significant higher effect level than cerium oxide one day after intratracheal instillation (Fig 9 A) and at time point category 5-10 days similar levels were achieved.

However, the slight trend is similar at all time point categories and also in intratracheal studies compared to inhalation studies.

Fig 9: Correlation of LDH with particle surface area

3.5.4 Infiltration

Infiltration of inflammatory cells is the first response of the immune system. The precise description of this effect differs between the several publications. Currently two types of infiltrations are distinguished in the database. Terms like hypercellularity, infiltration of (inflammatory) cells, neutrophils, mononuclear cells (mainly lymphocytes, monocytes and plasma cells) and infiltration of polymorphonuclear leukocytes are summarised under the effect "infiltration". Beside this common term, the term "macrophage infiltration" is separately recorded.

Parameter / Effect	Category time point	1	3	10	36	99	189	365	730
Nose/head only inhalatio	n	1		1			1		
Infiltration	Aluminum oxyhydroxide				2		2		
	MWCNT					1	1	1	
	Silicon dioxide				2				
Macrophage infiltration	Aluminum oxyhydroxide				2		2		
	MWCNT					1			
Whole body inhalation		I							
Infiltration	Carbon Black					2	2	1	4
	Nickel hydroxide						1		
	Silicon dioxide					5	4	6	1
	Silver					1			
	Titanium dioxide					3	2	1	1
Macrophage infiltration	Carbon Black					3	4	1	6
	Silicon dioxide					2	1	1	
Intratracheal instillation		I							
Infiltration	Carbon Black				1	1			1
	Iron(II,III) oxide	1		1	2				
	MWCNT		1	1	1				
	Nickel	1	1	1	1				
	Nickel oxide		1	1	1	2	1		
	Silicon dioxide	2	3	3	10	9	1		2
	SWCNT					1			
	Titanium dioxide	5	3	1					
Macrophage infiltration	Cerium(IV) oxide				1				
	Silicon dioxide	1	1	1	1	1			
	Titanium dioxide	5	6	5	3	1			

Tab.	27:	Number	of	studies	positive	infiltrations
iub.		number	<u>.</u>	Judics	positive	initiations

Traffic light code used for illustration lower limit: 1 set to red and ideal minimal upper limit: 20 set to green

		Т		1	1	1	1		1
Parameter / Effect	Category time point	1	3	10	36	99	189	365	730
Nose/head only	inhalation								<u>.</u>
	Aluminum oxyhydroxide				5.1E+00		5.1E+00		
	MWCNT					8.0E-02	1.1E+00	2.9E-01	
Infiltration	Silicon dioxide				6.6E-01				
Macrophage	Aluminum oxyhydroxide				5.1E+00		5.1E+00		
infiltration	MWCNT					1.8E-02			
Whole body inha	lation								
	Carbon Black					1.3E+00	2.5E+00	1.2E+00	1.2E+00
	Nickel hydroxide						1.9E-02		
	Silicon dioxide					2.3E-01	2.3E-01	2.3E-01	1.0E+01
	Silver					8.6E-03			
Infiltration	Titanium dioxide					4.0E+00	4.3E+01	4.3E+01	4.3E+01
Macrophage	Carbon Black					1.2E+00	1.2E+00	1.2E+00	1.2E+00
infiltration	Silicon dioxide					9.0E+00	9.0E+00	9.0E+00	
Intratracheal ins	stillation								
	Carbon Black				3.0E+01	9.0E+01			2.5E+01
	Iron(II,III) oxide	1.0E+00		1.0E+00	1.0E+00				
	MWCNT		4.0E-02	4.0E-02	4.0E-02				
	Nickel	5.3E+00	5.3E+00	5.3E+00	5.3E+00				
	Nickel oxide		3.3E-01	3.3E-01	3.3E-01	3.3E-01	3.3E-01		
	Silicon dioxide	8.2E-01	8.2E-03	8.2E-01	8.2E-01	1.0E+00	5.0E+00		1.5E+01
	SWCNT					1.1E+01			
Infiltration	Titanium dioxide	5.0E+00	5.0E+00	5.0E+00					
	Cerium(IV) oxide				3.5E+00				
Macrophage	Silicon dioxide	5.0E+00	5.0E+00	5.0E+00	5.0E+00	5.0E+00			
infiltration	Titanium dioxide	5.0E+00	5.0E+00	3.3E+00	5.0E+00	5.0E+00			

Tab. 28: "LOELs" for infiltration and macrophage infiltration

LOELs normalised doses for inhalation studies in mg/m³ and cumulative doses in mg/kg bw for instillation studies. Traffic light code used for illustration lower limit: 10 percentile set to red and upper limit: 90 percentile set to green

3.5.5 Lung weight

Based on our experience with RepDose, we know that lung weight is a sensible term for lung damages. In contrast to chemicals it might be possible that the lung weight gain resulted from lung burden by the nano-objects. Therefore, the percentage of burden of the lung weight was determined (see Tab. 29). In all studies lung burden contributed to a small degree to the lung weight increase, the maximum was 11 % in a

carcinogenicity study with titanium dioxide. Therefore, the lung weight gain compared to control is caused by other factors, e.g. influx of inflammatory cells, or fibrosis.

Category time point	category time oint 1-10		11-36		37-99	37-99		100-189		218-365		366-730	
	min	max	min	max	min	max	min	max	min	max	min	max	
Nose/head only in	nhalatio	n	1	1				I	1	1			
Aluminum oxyhydroxide			0.08	5.96	0.10	5.57	0.003	5.03					
MWCNT					0.03	0.08	0.005	0.08	0.02	0.05			
Silicon dioxide			0.17	0.37									
Whole body inhala	Whole body inhalation												
Carbon Black			0.15	0.21	0.14	0.61	0.25	0.82	0.29	0.74	0.18	1.02	
Silicon dioxide					1E-04	3E-03	0	5E-04	4E-04	1E-03	4E-04	7E-04	
Titanium dioxide					0.27	6.46	0.78	6.40	0.58	6.35	0.65	10.88	
Intratracheal inst	tillation	•											
Carbon Black							0.56	0.56	0.36	0.36			
MWCNT	0.11	0.19											
Silicon dioxide									0.01	0.01			

 Tab. 29:
 Minimum and Maximum percentages of burden of the lung weight

Green: 10 percentile; red: 90 percentile

Category time point	1-10		11-36		37-99		100-189		218-365		366-730	
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Nose/head only inhalation		I										I
Aluminum oxyhydroxide			115	117	106	106	108	115				
MWCNT					121	176	113	169	127	161		
Silicon dioxide			114	150								
Whole body inhalation												
Carbon Black			131	133	129	192	114	235	137	500	194	517
Silicon dioxide					120	230	110	405	100	430	355	420
Titanium dioxide					147	151	120	239	135	450	132	427
Intratracheal instillation												
Carbon Black							149	149	123	123		
MWCNT	122	122										
Silicon dioxide									165	165		

Tab. 30: Minimum and maximum of percentage change of lung weight

Traffic light code used for illustration lower limit: 10 percentile set to green and upper limit: 90 percentile set to red

Tab. 30 shows that for all particles and MWCNT lung weight is increased and the increase can be detected already at early time points, indicating that lung weight is a sensitive parameter. Lung weight was increased in 47 studies. The lung weight LOEL was at study LOEL in 85 % of these studies.

Tab. 31:"LOELs" for lung weight

Category time point	1-10		11-36		37-99		100-189		218-365		366-730	
	Norm Dose	Orig Dose										
Nose/head only inhalation												
Aluminum oxyhydroxide			5	28	5	29	1	3				
MWCNT					0.3	1.6	0.1	0.5	0.3	2		
Silicon dioxide			9	51								
Whole body inhalation	1	1			1		-		1			_
Carbon Black			9	50	2	7	1	2	1	2	1	2
Silicon dioxide					6	31	6	31	6	35	10	59
Titanium dioxide					5	10	5	10	5	10	5	10
Intratracheal instillation	1	1	-									-
Carbon Black							75	1	250	5		
MWCNT	1	1										
Silicon dioxide									50	0.5		

LOELs normalised doses for inhalation studies in mg/m³ and cumulative doses in mg/kg bw for instillation studies; * Original dose in mg; Traffic light code used for illustration lower limit: 10 percentile set to green and upper limit: 90 percentile set to red.

4 Discussion

4.1 Results

4.1.1 Carcinogenicity

The original focus of this project was to derive structure activity relationships for nano-objects with respect to carcinogenicity. However, as discussed with UBA, this requires a huge data set including numerous carcinogenicity studies, which are currently not available. Carcinogenicity studies are, however, limited to 4 in inhalation studies (Titanium dioxide – 21 & 250 nm and Carbon Black – 14 & 37 nm) and 20 in intratracheal studies (Aluminium oxide C - 13 nm, Carbon Black - 14 & 95 nm, Silicon dioxide - 14 & 1100 nm, Titanium dioxide - 21, 25 & 200 nm. As Tab. 29 reveals for Titanium dioxide, the tumours were induced under severe overload conditions (lung weight contains 11% burden). Therefore, it is questionable, whether they are suitable for risk assessment at all. In addition, there is no negative study available that would allow identifying relevant precursors for the development of cancer. Thus, the statement that the potential carcinogenic risk of nanomaterials can currently be assessed only on a case-by-case basis (Becker et al., 2011) is still true.

4.1.2 Availability of studies for different particles and fibres

The nano-objects to be analysed were selected together with the sponsor and included Carbon Black and related compounds, titanium dioxide, aluminium oxide, silicon dioxide, heavy metals and their oxides (silver, nickel, manganese, iron, and cerium), single and multiwall carbon nano tubes. With respect to numbers of studies in the database, there is a strong imbalance for these nano-objects: numerous studies are available for titanium dioxide, Carbon Black and silicon dioxide for different particle sizes, application

routes and study durations, while for other particles especially the heavy metals only few studies are available.

According to our literature search more than 100 additional studies are available including several other compounds or modifications thereof that could be entered into the database.

4.1.3 Particle and fibre characterisation

Besides the chemical composition, the special properties (high specific surface area or specific volume) of the nano-objects are considered a crucial/elementary cause for hazard differences compared to larger particles. Therefore the particle characterisation is as important as the determination of the chemical composition. However particle characterisation itself in the nanoscale dimension is a relatively new area of research and technical development. Difficulties arise as the values from different measurement techniques are difficult or hardly to compare. The importance is recognized by international standardisation organisation which implemented technical committees (TC) to derive standard protocols for characterisation of nanomaterials (nano-objects and nanostructured materials) as well as the surface chemistry (TC 229 Nanotechnologies and TC 201 Surface chemical analysis, respectively).

Nanoparticles in nanomaterials are usually present as clusters of aggregates and/or agglomerates. While primary nanoparticles within aggregates are bound by strong chemical bonds (i.e. covalent or ionic bonds), binding between agglomerates is caused by van der Waals forces, which are much weaker. However, for inhalation studies nano-objects may be dispersed in air (aerosols) and for instillations in liquids. The aggregation status differs between liquid suspensions and aerosols, and is affected by many factors, such as the dispersion technique, dispersion aids, age of dispersion and experimental conditions. Further details see BAuA research report F2133 (Schaudien et al., 2011).

The size of the nano-objects or aggregates is considered to be relevant for their deposition behaviour in the lung. The deposition efficiency in the parts pharynx, bronchi and alveoli differs and depends on the particle size inhaled. Oberdörster et al illustrates these differences (see Fig 10), based on to the predictive mathematical model (International Commission on Radiological Protection 1994). Despite the deposition, also the disposition is considered to be fundamentally different from larger particles (Oberdörster et al., 2005).

Summarising the costs for the several characterisation tests, it is clear why none of the currently available studies fulfil the ISO guideline recommendations. On the other hand, the degree of characterisation is an important part for the quality of a publication / study. An addition it might be possible that some characterisation data are available to later time point, when identity parameters are consolidated.

Fig 10: Predicted fractional deposition of inhaled particles (Oberdörster et al., 2005)

4.1.4 Application routes

Different application routes are used in experimental studies to assess potential inhalation hazard. In principal, four exposure techniques can be distinguished, the inhalation techniques nose / head only and whole body and the instillation types intratracheal and pharyngeal. They differ with respect to exposure condition, to suitability for regulatory purposes, and to costs (Tab. 32). Due to several reasons, these application techniques could be compared only to a limited extent.

- While in inhalation studies, the (nano-)objects are actively inhaled, the exposure in instillation studies
 occurs passively. Due to these different exposure techniques, the deposition rate is completely different.
 In inhalation studies it depends on several physical parameters (Heyder, 2004; International Commission
 on Radiological Protection, 1994) and in instillation studies a full deposition can be assumed.
- 2. The continuity of exposure differs. In inhalation studies the exposure occurs continuously, at least for certain duration. In last years, exposure durations of 6 h/d and 5 d/wk are commonly used. In contrast, instillation studies are always event related exposure studies, also if the instillations are repeated daily. This difference results in different kinetics in the body, e.g. efficacy of protection mechanism, clearance, transport or distribution kinetic (Oberdörster et al., 2005; Sturm and Hofmann, 2003, 2006).

- 3. Whole body inhalation studies are technically much easier than nose only and traditionally often used. However, rats do protect themselves by hiding their nose in the fur. In that case the derived LOEL would be too high. The second issue is that the particles are deposited on the fur and taken up orally during their grooming (Oberdörster et al., 2002). In that case the systemic distribution of the particles is biased and possible effects could not be assigned correctly.
- 4. Instillation studies have some limitations, like the non-physiological rapid delivery of the particles or fibres, the possible delivery of non-respirable aggregates, and the bypassing of the nose (Driscoll et al., 2000). Additionally, especially studies with low instillation number, often apply high doses to achieve similar doses as in inhalation studies. This leads to acute overload situations. However, when particle deposition was comparable, pulmonary responses to bolus instillation tended to reflect the pulmonary response to inhalation (Henderson et al., 1995). Nevertheless, intratracheal studies are very useful for mechanistic considerations or identification of hazard potential.
- 5. Pharyngeal studies are considered to better simulate the deposition behaviour than intratracheal studies and avoid the trauma associated with intratracheal instillation (Rao et al., 2003). Impaction of nanoparticle in the pharynx and subsequently diffusion into the lung is considered as possible mechanism for the deposition of airborne nano-objects. Pharyngeal application has the same limitations as other instillation techniques (Shvedova et al., 2005).

Application route	Nose / head only	Whole body	Intratracheal	Pharyngeal
Туре	Inhalation	Inhalation	Instillation	Instillation
Costs	+++	++	+	+
Feasibility (number of institutes)	+	++	+++	+++
Exposure type	Active inhalation of aerosols	Active inhalation of aerosols	Passive infusion of suspensions	Passive infusion of suspensions
Exposure regime	Continuous exposure several h/d	Continuous exposure several h/d	Event related exposure	Event related exposure
Feature	State of art method	Rodents protect themselves (nose in the fur) Particle on the fur could be taken up orally	Reflects artificial situations Insertion of needle or cannula through laryngeal opening	Is considered to reflect the impaction of nano- object in the pharynx
Animal stress by exposure technique	-	-	+++	++

Tab. 32: Comparison of application routes

No complete list

As described above intratracheal studies can generally be seen only as tool for hazard identification. As demonstrated in Tab. 16, Tab. 20 and Tab. 21 the toxicity ranking for different particles is similar in intratracheal studies compared to inhalation studies, e.g. effect levels for silicon dioxide are lower than for Carbon Black or for titanium dioxide. Therefore intratracheal studies may be useful at a screening level for identifying the general rank of toxicity for different particles or fibres, while inhalation studies then serve for risk assessment.

4.1.5 Dose measure

An adequate dose is necessary to derive reliable dose response curves. Instead of particle mass as dose measure, the particle number or particle surface were proposed and discussed (Donaldson and Poland, 2013; Oberdörster et al., 2005, 2007; Wittmaack, 2007). As particle number is currently seldom available, a corresponding analysis could not be performed. Therefore, after an initial comparison of dose measures mass and surface (Fig 7), surface was used as dose measure in our analyses on neutrophils/PMNs (Fig 7), total protein (Fig 8) and LDH (Fig 9). Particle surface is calculated by multiplying the specific surface of the particles with the corresponding mass dose and thus combines the normal dose measure mass with the property specific surface of the primary particle. The figures clearly demonstrate different effect levels for the different particles, but no consistent dose response was detected for one particle type in most of the studies. An exception is LDH at day 1 (Fig 9). There regression lines have been inserted for different particle types. However, the relevance of this finding only for one parameter and one time point is questionable. In interpreting this lack of dose response, one has to be aware that several studies are combined in these figures, where particles may differ from study to study as well as treatment of the particles before exposure. Furthermore, there are studies with rats or mice, which may give different results.
The specific surface used for the calculation of surface in Fig 7, Fig 8 and Fig 9 is based on the data for characterising the primary particles. However, nano-objects tend to aggregate or agglomerate in the exposure atmosphere or instillation medium and are therefore seldom applied as real nano-object (Fig 3). Furthermore, several studies have shown that aggregates/agglomerates stay stable in the lung. On the other side, our analyses have shown that the toxicity of nanoparticles tend to be higher than the toxicity of larger particles. Therefore it may be possible that the surface of the individual particles is still available for inducing reactions in the airways. Therefore it might be helpful to identify a relevant property of the secondary particles (aggregates/agglomerates) and to include this into the dose measure (e.g. MMAD, specific surface area or volume, biologically available surface area, (Han et al., 2012)).

An additional drawback is that not for all particles specific surfaces are available. For this reason e.g. silver, the most toxic particle in our LOEL analyses (Tab. 16, Tab. 20, Tab. 21) is missing in the three figures. On the other side, this presentation of the data allows an easy comparison of effect sizes.

Overall our analyses of dose response have to be considered as a first tier that was possible within the scope of this pilot project. More detailed analyses are desirable involving all time points, routes, measures of dose and also other endpoints. Also according to our analyses particle surface seems to be a better dose measure than particle mass.

4.1.6 Target organs and important effects

As expected, the respiratory tract with lung, nose, trachea, larynx, pharynx, bronchi, parameters in BALF and lymph nodes are important targets in studies with nano-objects (Fig 4, Tab. 12).

Many different effects are found in histopathological examinations of the respiratory tract, including infiltration (Tab. 12, Tab. 27, Tab. 28), fibrosis, inflammation, hyperplasia and different types of tumours (Tab. 12). In addition lung weight turned out to be a sensitive parameter for particle toxicity (Tab. 29 and Tab. 30). Increased lung weight may be caused by several processes in the lung such as invasion of inflammatory cells, haemorrhage, proteinosis, cell proliferation, fibrosis, collagen, oedema, granuloma, hyperplasia or tumours.

An important effect in BALF is increased numbers of neutrophils/PMNs and macrophages. This parameter has been further investigated in Fig 7. As described in section 3.5.1. Other frequent effects in BALF are total protein and LDH (Tab. 12), which also have been further explored (Fig 8, Fig 9).

Many studies investigated only effects in the respiratory tract. Therefore effects at other locations than the respiratory tract are not detected in a query for frequent effects. To detect also studies, where other target organs are studied we made a specific query (Tab. 13). Indeed, indications for migration of the nano-objects were found: In several studies besides the lymph nodes also effects in the haematological system were found. Some studies reveal effects in the pleura, known to be primarily affected by fibres. Effects in the liver probably come from oral uptake of the nano-objects, either as a result of clearance or from grooming the fur in whole body inhalation studies (see 4.1.4).

4.1.7 New parameters

In addition to the parameters mentioned above, different cytokines have been investigated. As Tab. 17 and Tab. 19 show for the example of heavy metals and nanotubes, there is a large variety and few have been studied in more than 1 study. Cytokines are often determined in in vitro studies, thus they may build a link to in vitro studies. However, actually no conclusions can be drawn on the relevance of these investigations.

It may be interesting to find out, which of the many new endpoints beyond the scope of OECD guideline studies in studies with particles or fibres are sensitive and also relevant for investigating the mode of action of particles and fibres.

4.1.8 LOELs

Effect LOELs are suitable tools for comparing endpoints/effects in toxicological studies. They have already been successfully used in our analyses with RepDose (Batke et al., 2011; Bitsch et al., 2006; Escher et al., 2010). Therefore we performed corresponding analyses with the PaFtox database.

At first we have compared the toxicity of different nanomaterials. The most toxic compound was silver (Tab. 16, Tab. 20, Tab. 21). High toxicity was also found for MWCNTs confirming the concern for the toxicity of nanotubes.

Another important question is, if – in general – nanoparticles are more toxic than larger particles with the same composition. Our analyses with the PaFtox database (Tab. 20, Tab. 21) have indeed shown that based on LOELs the toxicity of nanoparticles is generally higher than for the corresponding fine particles. Lower LOELs have been found for different time points for nanosized Carbon Black, silicon dioxide, titanium dioxide and Nickel oxide in inhalation and in intratracheal studies than for particles with diameters above 250 nm. The ratio of LOELs was calculated if pairs of LOELs for fine and nanoparticles of the same substance were available (whole body inhalation and intratracheal instillation). The median ratio of LOELs of nanoparticles (< 56 nm) and larger particles in Tab. 20 is about 18 (n=31). A similar pattern is observed, when LOELs are compared for different surface categories (Tab. 21). The median ratio here is 5 for LOELs of nanoparticles (>70 m²/g) and larger particles (n=26).

Although the general trend is obvious, these results have to be treated with care, because some of the LOELs are not true LOELs, i.e. dose levels, where only marginal effects occur. In the case of particle or fibre studies, often only one dose level has been used, that had been selected to cause a significant effect. This is different from OECD guidelines, where three dose levels are, and the lowest dose is intended to provide the NOEL, the next dose the "real" LOEL. Thus it is not clear, whether these LOELs are real LOELs, as often the corresponding NOEL is missing (in 47 of 55 with more than 1 dose level), which would allow to identify the real LOEL. NOELs are available for subacute or subchronic inhalation studies with Silicon dioxide, Aluminium oxyhydroxide, Titan dioxide and Carbon Black.

In a similar approach Gebel (2012) has analysed tumour rates in carcinogenicity studies with GBS including talc, toner, coal dust, titanium dioxide, Carbon Black and diesel exhaust particulates. Gebel found, when comparing carcinogenic potency of GBP of fine particles and nanoparticles a median ratio of 2.26 if the dose measure was based on particle mass and a ratio of 0.91 when the dose measure was based on surface area of the particles. While we made a pairwise comparison i.e. compared fine particles with nanoparticles for each substance, e.g. TiO_2 , Gebel has pooled potency indices for all different particles.

For a better comparison, for studies where the data basis consists of 3 dose levels and more, dose response could be modelled, as performed for TiO_2 by Dankovic et al. (2007). Suitable parameters would be parameters that are measured in many studies and are rather sensitive, such as neutrophils/PMNs, total protein in BALF, or lung weight. For these parameters one may compare the dose levels of nanoparticles and larger particles for a given effect size and derive a more reliable ratio.

4.1.9 Exposure duration versus time point

Currently, the PaFtox database contains long term studies i.e. the exposure duration in inhalation studies or observation duration in instillation studies is longer than 20 days. Shorter time points or categories thereof

analysed in this database are interim sacrifices. However, there are many other studies available with shorter study duration and valuable information on effects as already entered but also information on kinetics and fate of nano-objects in the body. Therefore these studies could supplement the current database, e.g. the study of Kreyling (2010).

4.1.10 Overload

If one looks at the definition of lung overload with a particle mass of 1-2 mg/g lung = 0.1 - 0.2% of (Oberdörster et al., 1990), inhalation studies with titanium dioxide and aluminium oxyhydroxide have been performed under severe overload conditions (Tab. 29). Also with Carbon Black studies overload was achieved, while studies with MWCNT just reach the border for overload. Studies with silicon dioxide were mostly below the threshold. In general it is questionable, whether studies with overload conditions are reasonable for characterizing the toxicity of a nano-object. It is assumed, that under overload situation unspecific responses occur that have not much to do with realistic exposure situations. However the latter have to be evaluated for the purpose of risk assessment.

4.1.11 Reversibility of effects

It was analysed if effects appear or disappear during the exposure or post exposure duration (3.4.2). Interestingly, no effect disappears during the postexposure duration indicating that no effect was in general reversible. However, it can be assumed, that at least for some effects the grading/scoring may be lower after postexposure. This has still to be analysed. Furthermore some effects appear firstly in the postexposure duration. The later appearing effects are mainly associated with chronic inflammation or follow up reaction (worst case tumour) to long term irritations by the nano-objects. This general effect pattern is different from studies with chemicals.

4.1.12 Genotoxicity

Genotoxicity is discussed as one possible mode of action for particles (Schins, 2002). However, *in vitro* genotoxicity may not be relevant in vivo due to defence mechanisms (Donaldson et al., 2010). In addition recent analyses have shown, that carcinogenicity is not predicted very well (Roller, 2011). In the PaFtox database genotoxicity *in vivo* was only included as endpoint, when it was analysed in corresponding long term studies (Tab. 22). For the different nano-objects positive as well as negative results were obtained for endpoints like 8-OHdG, 8-oxoGua, HPRT mutations and p53 mutations. For analysis of genotoxicity in vivo in more detail, it would be necessary to include specific genotoxicity studies in vivo into the database.

4.2 Concepts for Grouping of nanomaterials

4.2.1 Groups proposed in the literature

Based on the presumption that there are common modes of action for several types of nanomaterials, groups for different types of nano-objects have been proposed. These groups will be presented in the following including the compounds assigned to these groups and the rationale for grouping. Based on our analyses of the data in the PaFtox database these groupings will be evaluated.

Nano GBP

GBP means Granular Biopersistent Particles with no or little intrinsic chemical toxicity (inert particles (DFG, 2013)). This grouping of nanoparticles is consistent with the grouping of granular micromaterials (Greim and Ziegler-Skylakakis, 2007). Roller and Pott (2006) originally introduced the term GBP with a slightly different definition, i.e. granular biodurable particles without known significant specific toxicity. According to Gebel (2012) there are also other abbreviations in the literature, i.e. PSP for poorly soluble particles and PSLT for poorly soluble, low toxicity particles that are specifying the same group of particles.

(Nano)particles assigned to this group are e.g.:

TiO₂, BaSO₄ (Dankovic et al., 2007), talc, toner, coal dust, Carbon Black, diesel exhaust emissions (Dankovic et al., 2007; Gebel, 2012; Roller, 2009), zirconium oxide (Packroff, 2011b).

GBP (nano)particles included in the PaFtox Database are Carbon Black, aluminium oxide, aluminium trioxide, aluminium oxyhydroxide, titanium dioxide and toner (Tab. 11).

These particles are called biodurable or persistent due to the fact that these particles stay in the lung in inhalation studies and after intratracheal administration and are not readily removed or dissolved. The PaFtox database contains data on lung burden of the GBP TiO₂, Carbon Black and aluminium oxyhydroxide in inhalation studies. Particle load in the lung is high, demonstrating the biopersistence of these particles.

Typical effects caused by GBP are inflammation, oxidative stress and secondary genotoxicity at the lung as the target organ after inhalation (DFG, 2013; Greim and Ziegler-Skylakakis, 2007). Accordingly analyses of the PaFtox database indicate the following important effects: in BALF neutrophils/PMNs, total cells, macrophages as well as LDH and total protein are increased, the lung weight is increased. Findings in histopathological examinations include infiltration of macrophages, hyperplasia of alveolar type II cells, fibrosis and finally tumours.

Generally no NOELs are provided in these proposals for grouping, that would separate particles with little intrinsic toxicity from particles with higher toxicity. Based on our data the limit for the LOEL in inhalation studies could be about 0.1 mg/m³ (Tab. 20). Usually LOELs decrease with increasing exposure duration. This was not evident from our analyses (Tab. 20), which include also short study durations. Therefore, it may be possible to use this preliminary threshold irrespective of study duration. When considering this value one has to be aware that the exposure concentration was normalized with respect to exposure duration to 24 hours/day and 7 days/week. This would include aluminium oxyhydroxide, Carbon Black and amorphous silicon dioxide, while titanium dioxide would be just below the limit. For intratracheal studies, the data are too inconsistent to derive such a value.

(Nano)particles with specific toxicity

In contrast to the "inert" particles described above, there are particles with specific toxicity, which have a higher toxicity than GBS.

Crystalline silica usually is considered to belong to this group. An interesting finding in the analyses of specific effects of silica (Tab. 18) is that nano amorphous or micro crystalline silica cause necrosis in the nose, bronchi, and lung reflecting the potential of silica to cause severe effects as a consequence of inflammation.

Another specific subgroup with high toxicity according to DFG (2013) are metal-based particles (presumably poorly soluble metal compounds). We propose, however, to use the more specific term "heavy metal-based particles", as the light metals titanium and aluminium are also metals.

Examples for heavy metals belonging to this group are copper (DFG, 2013), cadmium, nickel, cobalt (Packroff, 2011b).

In the PaFtox database the following heavy metal compounds are included; iron(II,III) oxide, manganese(IV) oxide, nickel hydroxide, nickel oxide and silver.

According to DFG (2013), the "toxicity depends largely on the actual compound, i e. type of metal, metal species and surface characteristics; relevant endpoints are again oxidative stress and inflammation as well as metal-specific cellular interactions."

Analyses of the PaFtox database correspondingly show that heavy metal based particles cause effects similar to GBS, but in addition, some metal specific effects were found (Tab. 17), e.g.

- increased weight of the adrenal gland and functional disorders of the brain and nervous system, increased liver weight for manganese oxide,
- liver hyperplasia, necrosis, vacuolization and weight increase for silver.

In this group of nanoparticles there may be differences in toxicity depending on solubility as stated by DFG (2013): "Interestingly, some nanoparticles, as shown in the case of copper, appear to be more toxic and stimulate more intense inflammatory responses than do their water soluble or microscale particle counterparts, based on the same metal content. This appears not to be due to increased extracellular solubility, but may be explained by higher intracellular bioavailability after endocytosis and lysosomal dissolution of the particles, although this still has to be confirmed experimentally". Similarly, soluble nickel sulphate nanoparticles were less toxic than less soluble nickel hydroxide nanoparticles in an inhalation study (Kang et al., 2011).

Analyses of the influence of solubility on the toxicity of nanoparticles were not possible with the PaFtox database, because data on solubility were not available. However, instead of water solubility, data on solubility in artificial body fluids, i.e. alveolar fluid, interstitial fluid and stomach fluid are considered as more relevant and should be measured for particles that have been investigated in toxicological studies in order to derive correlations.

Soluble (Nano)particles without significant toxicity

Another group that has been proposed are "soluble nanoparticles without significant toxicity" (Packroff, 2011b). Amorphous silicon dioxide belongs to that group.

This is consistent with our analyses showing low toxicity of silicon dioxide nanoparticles in subchronic to chronic inhalation studies (Tab. 20, Tab. 21) and a recent evaluation indicating low genotoxic/carcinogenic potential (Rittinghausen et al., 2013).

In contrast, in intratracheal studies low effect concentrations were found especially for acute effects, e.g. neutrophil count is a sensitive parameter (Fig 7) and serious effects are found also for amorphous silica, e.g. inflammation, necrosis, spongiosis, histiocytosis or changes in organ structure (Tab. 18). The acute toxicity is consistent with recent findings of Pavan et al. (2013), where fully amorphous silica showed more haemolytic activity than crystalline silica. The authors found that particle size and silanols or siloxane bridges at the surface are the main actors for the haemolytic activity, while crystallinity or free radical production are no strict predictors. In other in vitro tests (cytotoxic activity, oxidative stress, and inflammatory response) all amorphous silicas where less toxic than crystalline, but among the amorphous silicas pyrogenic silicas, irrespective of their size and agglomeration/ aggregation pattern, appeared more reactive towards cells than the precipitated ones (Gazzano et al., 2012).

Thus, it may be justified only for long-term studies to speak about low toxicity of amorphous silicon dioxide. The low toxicity presumably is mainly triggered by lack of accumulation and adaptation in the body in inhalation studies or dissolution in intratracheal studies.

We are not aware about clear criteria to be categorized as "soluble" nanoparticle. However, measuring stability of nanoparticles in artificial body fluids (as indicated above) could provide information on the dissolution behaviour of nanoparticles and borders should be defined to distinguish between high and low solubility.

Nanotubes (Nanofibres)

Fibre-like nanomaterials are also called HARN, which refers to High Aspect Ratio Nano-objects with the following specifications according to Tran et al. (2008):

- Length to diameter aspect ratio greater than 10 to 1
- Diameter thin enough to pass ciliated airways
- Length long enough to initiate the onset of e.g. frustrated phagocytosis and other inflammatory pathways,
- The nanomaterial must be biopersistent

From experience with asbestos and synthetic mineral fibres there is concern that the shape of the materials is an important parameter determining toxicity, especially carcinogenicity. Health effects of asbestos comprise several types of pleural and parenchymal lung disease associated with inhalation of asbestos fibres. Nanomaterials with fibrous shape therefore have been separated as a group. In fact several studies have confirmed the concern for carcinogenicity for fibrous nanomaterials, e.g. Takagi et al. (2008).

In the PaFtox database intratracheal and inhalation studies with SWCNT and MWCNT are included. Their toxicity ranges from low to high, indicating that in addition to shape as parameter determining toxicity additional factors are necessary.

When analysing the effects in studies with nanotubes in the PaFtox database, effects typical for asbestos-like fibres could be found such as thickening of the pleura indicating migration of fibres to the pleura and potential for induction of mesotheliomas, a tumour in the pleura typical for fibre exposure.

It is important to note that the chemical composition and size may be not sufficient to characterise a particle sufficiently. For silicon dioxide, crystalline and amorphous silicon dioxide are distinguished. Crystalline silicon dioxide is more toxic and more stable, while amorphous silicon dioxide has high acute toxicity and low long term toxicity and is soluble to some degree (Rittinghausen et al., 2013). Similarly for titanium dioxide two crystalline modifications, rutile and anatase are known that differ with respect to their crystal structure and with respect to toxicity. In addition to crystal structure, surface modifications are discussed to change the toxicity (Rossi et al., 2010) and are also subject of an ongoing BAuA research project at Fraunhofer ITEM (F2246).

4.2.2 Grouping of nanomaterials for optimized testing strategies

Nanomaterials fall under the legislation of REACH, where testing requirements are still discussed. It will be impossible to perform a full testing program for all nanomaterials with all modifications and in all use scenarios, notwithstanding that modification or use/release scenarios may alter their biological effects.

Alternatively, it should be evaluated, if it is possible to assign certain biological effects to specific material properties (physical properties and chemical and crystal structure) and group nanomaterials based on these material properties.

According to Nel et al. (2013), a high throughput-platform is required in analogy to the US ToxCast Project to investigate the bio-physico-chemical interactions at the nano/bio interface in order to make predictions about the physico-chemical properties of nanomaterials that may lead to pathology or disease outcome in vivo. In vivo results are used to validate and improve the in vitro high throughput screening and to establish structure-activity relationships that allow hazard ranking and modelling by an appropriate combination of in vitro and in vivo testing.

In the following parameters are briefly specified which may be part of a grouping strategy.

Toxicity in vivo

Performing studies in vivo would be the most reliable and toxicologically sound approach for assessing the risk of nanomaterials. The question is, whether there may be surrogates for chronic inhalation studies which render testing of nanomaterials more effective:

For in vivo studies study duration, application route, scope of examination may be analysed.

Concerning study duration a short term inhalation test has been proposed by Ma-Hock et al. (2009) based on comparison of a 5 day inhalation study with a 90 day inhalation study. Rats shall be exposed for 5 days, 6h/day. Examinations shall be performed at day 3 and 21 postexposure. Sensitive parameters that should be measured in BALF are cell counts, total protein levels, enzyme activities and mediators of inflammatory cell infiltration (MCP-1, MCP-3, MDC, IL-8, MIP-2) and cell proliferation (M-CSF, osteopontin) as well as immune modulation (IL-1, IL-6, TNF- α).

Our preliminary analyses support the view that short-term tests with appropriate postexposure periods may be sufficient for identification of risks of nano-objects. LOELs for short term exposure of nano-objects (i.e. 10 days) are in a similar order of magnitude as LOELs for longer durations up to chronic (Tab. 20, Tab. 21). Sensitive parameters are number of neutrophils and total protein in BALF as well as lung weight.

Concerning exposure route, intratracheal studies are frequently performed instead of inhalation studies, which are much more expensive. For risk assessment however, inhalation studies are clearly preferable. For hazard ranking or forming of groups, intratracheal studies seem to be sufficient. As discussed under "GBS" dose levels may be provided that allow distinguishing GBS from particles with specific toxicity.

Toxicity in vitro

In in vitro studies genotoxicity and generation of reactive oxygen species are frequently investigated with respect to their general predictive power for in vivo situations.

In vitro DNA damage tests (especially the Comet assay) and in vitro chromosome mutation assays are the most frequently used genotoxicity tests on nano-objects. According to Roller (2011) nearly all types of nanomaterials and control dusts used in the in vitro assays showed genotoxic effects in cell cultures (e.g. CoCr particles, diesel soot, crystalline and amorphous SiO₂,TiO₂, Carbon Black) but not consistently in all studies. Roller concluded that there is no clear correlation of the probability of a positive in vitro test with particle properties. We came to a similar conclusion in an evaluation of the literature in a research project from the German BAUA (Ziemann et al., 2011). Unfortunately, in most studies nano-objects used were not well characterized with respect to chemical composition and physicochemical properties. Therefore more

research is necessary with well characterized nanomaterial to identify suitable genotoxicity tests and dose measures for grouping of nano-objects.

According to Rushton et al. (2010) in vitro tests on ROS generation correlate well with inflammation in vivo (increase of neutrophils after intratracheal instillation), provided that particles are compared based on particle surface and the steepest slope of the dose response curve as dose metric.

Toxicokinetics

Fate and kinetics may also give a measure for grouping nanomaterials, for example, if the distribution and mode of action are the same, but the bioavailability is different (due to differences in size). Identical distribution patterns in tissues could be a criterion for grouping different nanomaterials.

An example would be grouping of nanomaterials in a separate group that can be found in other locations than the respiratory tract, raising concern for nano-objects specific systemic effects.

Biopersistence is another important criterion for particle and fibre toxicity, because it is assumed that it has impact on the mode of action and reversibility of effects. If a nanomaterial rapidly dissolves, the substance could be treated as a conventional chemical. We are not aware about criteria for defining nanomaterials as persistent or not.

Physicochemical properties

Several physicochemical properties of nanoparticles are currently proposed to be good predictors of toxicity of nanoparticles. In the following some examples are given from recent studies:

Crystal structure is an important determinant for reactivity of the surface of a nanomaterial. For silicon dioxide, crystalline and amorphous silicon dioxide are distinguished. Crystalline silicon dioxide is more toxic and more stable, while amorphous silicon dioxide has high acute toxicity and low long term toxicity and is soluble to some degree (Rittinghausen et al., 2013). Similarly for titanium dioxide two crystalline modifications, rutile and anatase are known that differ with respect to their crystal structure and with respect to toxicity. Jiang et al. (2008) showed that the in vitro-reactivity of different types of TiO₂ nanoparticles depends on the defect site density in the crystal structure. The number of defects per unit surface area was translated into the activity in producing ROS in vitro. Amorphous TiO₂ has much higher surface defect density compared to anatase and rutile TiO₂ since its structure is not periodic. These analyses correlate with generation of ROS in in vitro systems as well as pulmonary inflammatory response of nanoparticles determined by number of neutrophils in lung lavage 24 hous after intratracheal instillation of different nanomaterials (Rushton et al., 2010).

In addition to crystal structure, surface modifications are discussed to change the toxicity (Rossi et al., 2010) and are also subject of an ongoing BAuA research project at Fraunhofer ITEM (F2246).

The zeta potential provides information concerning the particles surface charge. It is the electrical potential created between the surface of a particle with its associated ions, and it's medium. According toCho et al. (2012) the acute pulmonary inflammogenicity of 15 nanoparticles showed a significant correlation for low solubility nanoparticles. This correlation found for zeta potential was not applicable for soluble nanoparticles.

Conduction band energy levels have recently been proposed as promising approach for future screening of nanomaterials (Zhang et al., 2012). For 24 different metal oxide nanoparticles of the same size it was shown that the toxicity of nanoparticles was high when the conduction band energy levels of the metal oxides was

close to the redox potential in cells which ranges from -4.12 to -4.84eV. Metals with conduction band energy outside this range were less toxic. Soluble nanoparticles had a higher toxicity than predicted.

Both analyses support the general view that soluble and insoluble nanomaterials have to be distinguished.

Dose measure for grouping of nanoparticles

In the conventional chemical toxicology, researchers generally use the mass as the metric to describe dose. In the case of nanoparticles, the particle number or the surface area have been discussed. Several recent studies have confirmed the use of particle surface as generally usable dose measure for insoluble particles (Han et al., 2012; Jiang et al., 2008; Rushton et al., 2010).

Concerning effect size, the reference values ED10 or ED50 (dose with 10 or 50 % effect) have been used, LOELs and NOELs (Roller, 2011), or the steeped slope of the dose response curve (Rushton et al., 2010).

Combination of parameters

As already obvious from groupings of nanoparticles currently proposed (see 4.2.1) several parameters are necessary for specifying a group, i.e. shape, biopersistence and toxicity.

Fig 11: Illustration of grouping of nanoparticles based on material properties and/or biological effects (from Oomen et al. (2013)).

Fig 11 shows nanomaterials grouped according to surface chemistry/activity, material, shape, size, solubility, release of ions, ADCE (absorption, distribution, corona formation, and elimination), early biological effects and also nanomaterials not assignable to a group. A given nanomaterial could also belong to more than one group.

A large number of property combinations should be considered in order to assess the overall hazard of a single material type.

The PaFtox database would be a useful tool in the future for collecting data on the parameters described above, selecting suitable properties and validate the groupings.

5 Conclusion and outlook

The amount and quality of cancer studies as well as studies on genotoxicity of nanomaterials are insufficient to assess the carcinogenicity of nanomaterials. On the other side cell proliferation in the lung as a consequence of inflammation may be an important precursor of cancer. Therefore repeated dose inhalation studies or studies with intratracheal instillation were analysed with the purpose to identify effects that may be

precursors of carcinogenicity and to analyse dose response for these effects as basis for regulation of nanomaterials. For getting a better overview and as basis for statistical analyses and analyses of dose response the data were collected in the relational database PaFtox.

Despite the heterogeneous data available, some general conclusions can be drawn.

Inflammation was detected with all nanomaterials investigated, however, at different dose levels. Sensitive parameters of nano-object toxicity are lung weight, numbers of neutrophils/PMNs in BALF, as well as total protein and LDH in BALF. Further histopathological examinations of the overall respiratory tract reveal numerous effects that are related to inflammation and subsequent cell proliferation.

Nano-objects have consistently a higher toxicity than non-nano-objects. On the other side there are considerable differences in the toxicity of different materials. From the particles selected for this project, silver had the highest toxicity.

Although we did not detect a reliable dose response for effects as a function of particle surface, this dose measure gave a good graphical representation of the toxicity of different particles. While inhalation studies are preferable for risk assessment, intratracheal studies are suitable for ranking toxicity of different nano-objects.

We have used our data also to reflect on proposals for grouping of nanomaterials made by different institutions. Although groups are proposed, the criteria for assigning nanomaterials to these groups are not well defined, this refers to toxicity as well as solubility. Concerning toxicity a preliminary LOEL of 0.1 mg/m³ (exposure 24 hours/day, 7 days/week) is proposed to distinguish so called "inert particles" (carbon black, titanium dioxide, silicon dioxide) from particles with specific toxicity, i.e. particles with specific toxicity have lower LOELs. Our data further support to have nanotubes in a separate group. Currently interesting new parameters are identified that influence the toxicity of (nano)particles that may help in the future for better separation of groups.

Currently, only a selection of particles and fibres was analysed by means of the database. In the last years a huge amount of short term in vivo and in vitro studies with various nanomaterials was performed. At least some studies are publicly available and the nanomaterial investigated fulfil more criteria of nano-object characterisation. It would therefore be desirable to analyse all these data along the lines of this project to identify more criteria for grouping approaches and /or to identify patterns of nanomaterial behaviour. Also recent studies with a more guideline-like design as undertaken under the OECD sponsorship program should be included. By specific searches more information for the physico-chemical characterization of the particles and fibres should be integrated, such as BET surface or solubility. Based on a broader database, additional and more specific queries should be performed addressing the question of dose response, particle specific effects, prediction of long term effects (including cancer) from short term studies, influence of surface changes on particle toxicity etc. Based on such data, criteria for read across and QSAR-like approaches for nanoparticles could be developed as well as final criteria for grouping of nanomaterials.

6 References

- Batke M, Escher S, Hoffmann-Doerr S, Melber C, Messinger H and Mangelsdorf I, (2011): Evaluation of time extrapolation factors based on the database RepDose. Toxicology Letters, 205, 122-129.
- BAuA (2007): Leitfaden für Tätigkeiten mit Nanomaterialien am Arbeitsplatz. Available from <u>www.baua.de/nn_44628/de/Themen-von-A-Z/Gefahrstoffe/Nanotechnologie/pdf/Leitfaden-Nanomaterialien.pdf</u>
- BAuA/BfR/UBA (2007): Nanotechnologie: Gesundheits- und Umweltrisiken von Nanomaterialien Forschungsstrategie. Available from <u>www.baua.de/nn_47716/de/Themen-von-A-</u> Z/Gefahrstoffe/Nanotechnologie/pdf/Forschungsstrategie.pdf
- Becker H, Herzberg F, Schulte A and Kolossa-Gehring M, (2011): The carcinogenic potential of nanomaterials, their release from products and options for regulating them. Int J Hyg Environ Health, 214, 231-238.
- Bitsch A, Jacobi S, Melber C, Wahnschaffe U, Simetska N and Mangelsdorf I, (2006): REPDOSE: A database on repeated dose toxicity studies of commercial chemicals--A multifunctional tool. Regulatory Toxicology and Pharmacology, 46, 202-210.
- Brunauer S, Emmett PH and Teller E, (1938): Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60, 309-319.
- Cho WS, Duffin R, Thielbeer F, Bradley M, Megson IL, Macnee W, Poland CA, Tran CL and Donaldson K, (2012): Zeta potential and solubility to toxic ions as mechanisms of lung inflammation caused by metal/metal oxide nanoparticles. Toxicological Sciences, 126, 469-477.
- Creutzenberg O, Bellmann B, Korolewitz R, Koch W, Mangelsdorf I, Tillmann T and Schaudien D, (2012): Change in agglomeration status and toxicokinetic fate of various nanoparticles in vivo following lung exposure in rats. Inhalation Toxicology, 24, 821-830.
- Dankovic D, Kuempel E and Wheeler M, (2007): An approach to risk assessment for TiO2. Inhalation Toxicology, 19 Suppl 1, 205-212.
- DFG (Deutsche Forschungsgemeinschaft), (2013): Nanomaterials. Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area. DFG_Publikationen.
- Donaldson K and Poland CA, (2013): Nanotoxicity: challenging the myth of nano-specific toxicity. Current Opinion in Biotechnology.
- Donaldson K, Poland CA and Schins RP, (2010): Possible genotoxic mechanisms of nanoparticles: criteria for improved test strategies. Nanotoxicology, 4, 414-420.
- Driscoll KE, Costa DL, Hatch G, Henderson R, Oberdorster G, Salem H and Schlesinger RB, (2000): Intratracheal Instillation as an Exposure Technique for the Evaluation of Respiratory Tract Toxicity: Uses and Limitations. Toxicological Sciences, 55, 24-35.
- EC (2010): European Commission recommendation on the definition of the term "Nanomaterial". Available from http://ec.europa.eu/environment/consultations/pdf/recommendation_nano.pdf
- Escher SE, Tluczkiewicz I, Batke M, Bitsch A, Melber C, Kroese ED, Buist HE and Mangelsdorf I, (2010): Evaluation of inhalation TTC values with the database RepDose. Regulatory Toxicology and Pharmacology, 58, 259-274.
- Gazzano E, Ghiazza M, Polimeni M, Bolis V, Fenoglio I, Attanasio A, Mazzucco G, Fubini B and Ghigo D, (2012): Physicochemical determinants in the cellular responses to nanostructured amorphous silicas. Toxicological Sciences, 128, 158-170.
- Gebel T, (2012): Small difference in carcinogenic potency between GBP nanomaterials and GBP micromaterials. Archives of Toxicology, 86, 995-1007.
- Gonzalez L, Lison D and Kirsch-Volders M, (2008): Genotoxicity of engineered nanomaterials: A critical review. Nanotoxicology, 2, 252-273.
- Greim H and Ziegler-Skylakakis K, (2007): Risk assessment for biopersistent granular particles. Inhalation Toxicology, 19 Suppl 1, 199-204.

- Han X, Corson N, Wade-Mercer P, Gelein R, Jiang J, Sahu M, Biswas P, Finkelstein JN, Elder A and Oberdorster G, (2012): Assessing the relevance of in vitro studies in nanotoxicology by examining correlations between in vitro and in vivo data. Toxicology, 297, 1-9.
- Henderson RF, Driscoll KE, Harkema JR, Lindenschmidt RC, Chang IY, Maples KR and Barr EB, (1995): A Comparison of the Inflammatory Response of the Lung to Inhaled versus Instilled Particles in F344 Rats. Fundamental and Applied Toxicology, 24, 183-197.
- Heyder J, (2004): Deposition of Inhaled Particles in the Human Respiratory Tract and Consequences for Regional Targeting in Respiratory Drug Delivery. Proc Am Thorac Soc, 1, 315-320.
- International Commission on Radiological Protection, (1994): Human respiratory tract model for radiological protection. A report of a Task Group of the International Commission on Radiological Protection. Annals of the ICRP, 24, 1-482.
- Jiang J, Oberdorster G, Elder A, Gelein R, Mercer P and Biswas P, (2008): Does Nanoparticle Activity Depend upon Size and Crystal Phase? Nanotoxicology, 2, 33-42.
- Kang GS, Gillespie PA, Gunnison A, Rengifo H, Koberstein J and Chen LC, (2011): Comparative pulmonary toxicity of inhaled nickel nanoparticles; role of deposited dose and solubility. Inhalation Toxicology, 23, 95-103.
- Kolling A, Ernst H, Rittinghausen S and Heinrich U, (2011): Relationship of pulmonary toxicity and carcinogenicity of fine and ultrafine granular dusts in a rat bioassay. Inhalation Toxicology, 23, 544-554.
- Kreyling WGW, A.; Semmler-Behnke, M., (2010): Quantitative Biokinetik-Analyse radioaktiv markierter inhalierter Titandioxid-Nanopartikel in einem Rattenmodell., FKZ 3707 61 301/01; UBA-FB 001357.
- Ma-Hock L, Burkhardt S, Strauss V, Gamer A, Wiench K, van Ravenzwaay B and Landsiedel R, (2009): Development of a Short-Term Inhalation Test in the Rat Using Nano-Titanium Dioxide as a Model Substance. Inhalation Toxicology, 21, 102-118.
- Nel A, Zhao Y and Mädler L, (2013): Nanomaterial Toxicity Testing in the 21st Century: Use of a Predictive Toxicological Approach and High-Throughput Screening. Acc. Chem . Res., 46, 607-621.
- Oberdörster G, Ferin J, Finkelstein G, Wade P and Corson N, (1990): Increased pulmonary toxicity of ultrafine particles? II. Lung lavage studies. Journal of Aerosol Science, 21, 384-387.
- Oberdörster G, Oberdörster E and Oberdörster J, (2005): Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives, 113, 823-839.
- Oberdörster G, Oberdörster E and Oberdörster J, (2007): Concepts of nanoparticle dose metric and response metric. Environmental Health Perspectives, 115, A290.
- Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Lunts A, Kreyling W and Cox C, (2002): Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicol Environ Health A, 65, 1531-1543.
- Oomen AG, Bos PM, Fernandes TF, Hund-Rinke K, Boraschi D, Byrne HJ, Aschberger K, Gottardo S, von der Kammer F, Kuhnel D, Hristozov D, Marcomini A, Migliore L, Scott-Fordsmand J, Wick P and Landsiedel R, (2013): Concern-driven integrated approaches to nanomaterial testing and assessment - report of the NanoSafety Cluster Working Group 10. Nanotoxicology.
- Pauluhn J, (2010): Subchronic 13-week inhalation exposure of rats to multiwalled carbon nanotubes: toxic effects are determined by density of agglomerate structures, not fibrillar structures. Toxicological Sciences, 113, 226-242.
- Pavan C, Tomatis M, Ghiazza M, Rabolli V, Bolis V, Lison DF and Fubini B, (2013): In Search of the Chemical Basis of the Hemolytic Potential of Silicas. Chemical Research in Toxicology.
- Rao GV, Tinkle S, Weissman DN, Antonini JM, Kashon ML, Salmen R, Battelli LA, Willard PA, Hoover MD and Hubbs AF, (2003): Efficacy of a technique for exposing the mouse lung to particles aspirated from the pharynx. J Toxicol Environ Health A, 66, 1441-1452.
- Rittinghausen S, Bellmann B, Creutzenberg O, Ernst H, Kolling A, Mangelsdorf I, Kellner R, Beneke S and Ziemann C, (2013): Evaluation of immunohistochemical markers to detect the genotoxic mode of action of fine and ultrafine dusts in rat lungs. Toxicology, 303, 177-186.
- Roller M, (2009): Carcinogenicity of inhaled nanoparticles. Inhalation Toxicology, 21, 144-157.

- Roller M, (2011): In vitro genotoxicity data of nanomaterials compared to carcinogenic potency of inorganic substances after inhalational exposure. Mutation Research, 727, 72-85.
- Roller M and Pott F, (2006): Lung tumor risk estimates from rat studies with not specifically toxic granular dusts. Annals of the New York Academy of Sciences, 1076, 266-280.
- Rossi EM, Pylkkanen L, Koivisto AJ, Vippola M, Jensen KA, Miettinen M, Sirola K, Nykasenoja H, Karisola P, Stjernvall T, Vanhala E, Kiilunen M, Pasanen P, Makinen M, Hameri K, Joutsensaari J, Tuomi T, Jokiniemi J, Wolff H, Savolainen K, Matikainen S and Alenius H, (2010): Airway exposure to silica-coated TiO2 nanoparticles induces pulmonary neutrophilia in mice. Toxicological Sciences, 113, 422-433.
- Rushton EK, Jiang J, Leonard SS, Eberly S, Castranova V, Biswas P, Elder A, Han X, Gelein R, Finkelstein J and Oberdorster G, (2010): Concept of assessing nanoparticle hazards considering nanoparticle dosemetric and chemical/biological response metrics. J Toxicol Environ Health A, 73, 445-461.
- Schaudien D, Knebel J, Mangelsdorf I, Voss J-U, Koch W and Creutzenberg O (2011): BAuA Research Project F 2133 - Dispersion and Retention of Dusts Consisting of Ultrafine Primary Particles in Lungs.
- Schins RPF, (2002): MECHANISMS OF GENOTOXICITY OF PARTICLES AND FIBERS. Inhalation Toxicology, 14, 57-78.
- Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI, Tyurina YY, Gorelik O, Arepalli S, Schwegler-Berry D, Hubbs AF, Antonini J, Evans DE, Ku BK, Ramsey D, Maynard A, Kagan VE, Castranova V and Baron P, (2005): Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol, 289, L698-708.
- Sturm R and Hofmann W, (2003): Mechanistic interpretation of the slow bronchial clearance phase. Radiat Prot Dosimetry, 105, 101-104.
- Sturm R and Hofmann W, (2006): A multi-compartment model for slow bronchial clearance of insoluble particles extension of the ICRP human respiratory tract models. Radiat Prot Dosimetry, 118, 384-394.
- Takagi A, Hirose A, Nishimura T, Fukumori N, Ogata A, Ohashi N, Kitajima S and Kanno J, (2008): Induction of mesothelioma in p53+/- mouse by intraperitoneal application of multi-wall carbon nanotube. Journal of Toxicological Sciences, 33, 105-116.
- Tcheremenskaia O, Benigni R, Nikolova I, Jeliazkova N, Escher SE, Batke M, Baier T, Poroikov V, Lagunin A, Rautenberg M and Hardy B, (2012): OpenTox predictive toxicology framework: toxicological ontology and semantic media wiki-based OpenToxipedia. J Biomed Semantics, 3 Suppl 1, S7.
- Tran CL, Hankin SM, Ross B, Aitken RJ, Jones AD, Donaldson K, Stone V and Tantra R (IOM Institute of Occupational Medicine,), (2008): An outline scoping study to determine whether high aspect ratio nanoparticles (HARN) should raise the same concerns as do asbestos fibres. CB0406; August 13, 2008, 59 p.
- Van Doren E, De Temmerman P-J, Francisco M and Mast J, (2011): Determination of the volume-specific surface area by using transmission electron tomography for characterization and definition of nanomaterials. J Nanobiotechnology, 9, 17.
- Wittmaack K, (2007): In search of the most relevant parameter for quantifying lung inflammatory response to nanoparticle exposure: Particle number, surface area, or what? Environmental Health Perspectives, 115, 187-194.
- Zhang H, Ji Z, Xia T, Meng H, Low-Kam C, Liu R, Pokhrel S, Lin S, Wang X, Liao YP, Wang M, Li L, Rallo R, Damoiseaux R, Telesca D, Madler L, Cohen Y, Zink JI and Nel AE, (2012): Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. Acs Nano, 6, 4349-4368.
- Ziemann C, Rittinghausen S, Ernst H, Kolling A, Mangelsdorf I and Creutzenberg O, (2011): Genotoxic mode of action of fine and ultrafine dusts in lungs. Federal Institute for Occupational Safety and Health, Dortmund, Berlin, Dresden, pp.

7 Appendix

7.1 Publications in PaFtox database (October 2012)

Author	Year	Publication	Pages
Bai R et al.	2010	Toxicology Letters	288-300
Belinsky SA, et al.	1995	Report HEI-RR-68 Part III	1-25
Bermudez E, et al.	2002	Toxicological Sciences	86-97
Bermudez E, et al.	2004	Toxicological Sciences	347-357
Borm PJA, et al.	2005	Toxicol Appl Pharmacol	157-167
Borm PJA, et al.	2005	Toxicology Applied Pharmacology	157-167
Carter JM, et al.	2006	J Occup Environ Med	1265-1278
Chen H-W, et al.	2006	FASEB Journal	2393-2395
Chen H-W, et al.	2006	FASEB Journal	E1732-E1741
Chen Y, et al.	2004	Toxicology Industrial Health	21-27
Chen Z, et al.	2008	Environ Sci Technol	8985-8992,
			Support Info
Cho W-S, et al.	2007	Toxicology Letters	24-33
Choi M, et al.	2008	Toxicology Letters	97-101
Creutzenberg 0, et al.	1990	J Aerosol Science	S455-S458
Dasenbrock C, et al.	1996	Toxicology Letters	15-21
Driscoll KE, et al.	1996	Toxicology Applied Pharmacology	372 - 380
Driscoll KE, et al.	1997	Carcinogenesis	423-430
Elder A, et al.	2005	Toxicological Sciences	614-629
Endoh S, Uchida K	2008	Int Symp risk assessment manufactured nanoparticles	21-30
Ernst H, et al.	2002	Exp Toxic Pathol	109-126
Ferin J, et al.	1991	J Aerosol Medicine	57-68
Ferin J, et al.	1992	Am J Resp Cell Mol Biol	535-542
Gallagher J, et al.	2003	Toxicology Applied Pharmacology	224-231
Gillespie PA, et al.	2010	Nanotoxicology	106-119
Heinrich U, and Fuhst, R	1992	"Abschlussbericht: Untersuchungen zur tumorinduzierenden Wirkung von inhalierten Dieselmotorabgasen und anderen Teststäuben in der Mäuselunge. in German"	
Heinrich U, and Fuhst, R	1992	"Abschlussbericht: Vergleichende Untersuchungen zur Frage der tumorinduzierenden Wirkung von Diese1motorabgasen in der Rattenlunge. in German"	
Heinrich U, et al.	1995	Inhalation Toxicology	533-556
Hext PM, et al.	2002	Ann Occup Hyg	191-196
Hyun J-S, et al.	2008	Toxicology Letters	24-28
Inoue K, et al.	2005	Respiratory Research	1-12
Inoue K, et al.	2010	Free Rad Biol Med	924-934

Author	Year	Publication	Pages
Ji JH, et al.	2007	Inhalation Toxicology	857-871
Johnston CJ, et al.	2000	Toxicological Sciences	405-413
Kaewamatawong T, et al.	2006	Toxicologic Pathology	958-965
Kim JS, et al.	2011	Safe Health Work	34-38
Kobayashi N, et al.	2009	Toxicology	110-118
Kobayashi N, et al.	2010	Toxicology	143-153
Koike E, et al.	2008	Int J Immunopathol Pharmacol	35-42
Kolling A, et al.	2011	Inhalation Toxicology	544-554
Lee KP, & Kelly, DP	1992	Fund Appl Toxicol	399-410
Lee KP, & Kelly, DP	1993	Toxicology	205-222
Lee KP, et al.	1985	Exp Mol Pathol	331-343
Lee KP, et al.	1985	Toxicol Appl Pharmacol	179-192
Lee KP, et al.	1986	Environ Research	144-167
Li J et al.	2007	Environ Toxicol	415-421
Ma JY, et al.	2011	Nanotoxicology	312-325
Ma-Hock L, et al.	2009	Toxicological Sciences	468-481
Mauderly JL, et al.	1995	Report HEI-RR-68 Part I	1-106
Morimoto Y, et al.	2010	Nanotoxicology	161-176
Muhle H, et al.	1994	In: Mohr U, et al. (Ed.) Toxic and carcinogenic effects of solid particles in the respiratory tract	29-41
Nikula KJ, et al.	1995	Fund Appl Toxicol	80-94
Nishi K, et al.	2009	Inhalation Toxicology	1030-1039
Niwa Y, et al.	2008	Circulation Journal	144-149
Oberdörster G, et al.	1990	J Aerosol Science	384-387
Oberdörster G, et al.	1994	Ann Occup Hyg	295-302
Oberdörster G, et al.	1994	Environ Health Perspect	173-179
Ogami A, et al.	2009	Inhalation Toxicology	812-818
Oszlánczi G, et al.	2010	Ecotox Environ Safety	2004-2009
Park EJ, et al.	2010	Toxicology	65-71
Pauluhn J	2009	Toxicological Sciences	152-167
Pauluhn J	2009	Toxicology	140-148
Pauluhn J	2010	Regulatory Toxicology Pharmacology	78-89
Pauluhn J	2010	Toxicological Sciences	226-242
Pott F, and Roller M	2005	Eur J Oncol	249-281
Pott F, and Roller M	2005	Eur J Oncol	3606
Randerath K, et al.	1995	Report HEI-RR-68 Part II, NTIS PB96-138623	
Rehn B, et al.	2003	Toxicology Applied Pharmacology	84-95

Author	Year	Publication	Pages
Reuzel PGJ, et al.	1991	Food Chem Toxicol	341-354
Roller M	2008	Forschungsprojekt F 2083	
Roller M, and Pott F	2006	Ann NY Acad Sci	266-280
Rossi EM, et al.	2010	Particle Fibre Toxicology	1-14
Sager TM	2008	Dissertation	1-290
Sager TM and Castranova V	2009	Particle Fibre Toxicology	1-12
Sager TM, et al.	2008	Particle Fibre Toxicology	1-15
Santhanam P, et al.	2008	Int J Nanotechnol	30-54
Seiler F, et al.	2001	Arch Toxicol	716-719
Shvedova AA, et al.	2005	Am J Physiol Lung Cell Mol Physiol	L698-L708
Shvedova AA, et al.	2008	Am J Physiol Lung Cell Mol Physiol	L552-L565
Sung J, et al.	2008	Inhalation Toxicology	567-574
Sung J, et al.	2009	Toxicological Sciences	452-461
Warheit DB, et al.	1991	Fund Appl Toxicol	590-601
Warheit DB, et al.	1995	Scand J Environ Health	19-21
Warheit DB, et al.	2004	Toxicological Sciences	117-125
Sung J, et al.	2008	Inhalation Toxicology	567-574
Warheit DB, et al.	2007	Toxicological Sciences	270-280
Warheit DB, et al.	2007	Toxicology	90-104
Zhang QW, et al.	1998	J Occup Health	171-176
Zhang QW, et al.	1998	J Toxicol Environ Health A	423-438

7.2 Data analysis by databases

In this project, a database has been used for the analysis of repeated dose toxicity studies with nano-objects. It may be questioned, why the PaFtox Database has been used although several databases on nanomaterials are available already. Therefore in the following the already existing databases are described briefly and then the special features of the PaFtox Database are discussed.

7.2.1 NanoSafety Cluster

The EU projects addressing all aspects of nanosafety including toxicology, ecotoxicology, exposure assessment, mechanisms of interaction, risk assessment and standardisation can be found on the corresponding website - NanoSafety Cluster¹. This initiative helps to maximise the synergies between the existing FP6 and FP7 projects. Participation in the NanoSafety cluster is voluntary for projects that commenced prior to April 2009, and is compulsory for nano-EHS projects that have started since April 2009. The goal is to provide industrial stakeholders and the general public with appropriate knowledge on the risks of nanomaterials for human health and the environment.

7.2.2 DaNa

DaNa² is an umbrella project aiming at collecting and evaluating scientific results in an interdisciplinary approach with scientists from different research areas, such as human and environmental toxicology, biology, physics, chemistry, and sociology. Research findings from the field of human and environmental nanotoxicology which fulfil the criteria³ are summarised and presented together with material properties and possible applications for interested laymen and stakeholders. The DaNa project team wishes to provide for more transparency and to process results of research on nanomaterials and their influence on humans and the environment in an understandable way.

7.2.3 Database on Research into the Safety of Manufactured Nanomaterials

The OECD Working Party on Manufactured Nanomaterials (WPMN) developed the "Database on Research into the Safety of Manufactured Nanomaterials⁴", which is an inventory of safety research information on manufactured (engineered) nanomaterials. It is designed as a global resource (Database), which details research projects, helps to identify research needs, provides opportunities to identify the similar fields, and may lead to create new collaboration and networks.

The following information is stored in distinct fields:

- Project Title; Start date; End date;
- Project Status (Current; planned; or completed);

¹ <u>http://www.nanosafetycluster.eu/</u>

² <u>http://nanopartikel.info/cms/lang/en/Projekte/dana;jsessionid=E81E1110A9100B389E0F010A2294E942</u>

³ <u>http://nanopartikel.info/cms/lang/en/Wissensbasis/kriterienkatalog</u>

⁴ <u>http://www.oecd.org/env/ehs/nanosafety/oecddatabaseonresearchintothesafetyofmanufacturednanomaterials.htm</u>

- Country or organisation;
- Funding information (where available, on approximate total funding; approximate annual funding; and funding source);
- Project Summary; Project URL; Related web links;
- Investigator information: name, research affiliation, contact details;
- Categorisation by material name, relevance to the safety, research themes, test methods;
- Overall outcomes and outputs.

NHECD

NHECD⁵ is a free access, robust and sustainable web based information system including a knowledge repository on the impact of nanoparticles on health, safety and the environment. It includes a robust content management system (CMS) as its backbone, to hold unstructured data (e.g., scientific papers and other relevant publications). It also includes a mechanism for automatically updating its knowledge repository, thus enabling the creation of a large and developing collection of published data on environmental and health effects following exposure to nanoparticles.

NHECD is based on text mining methods and algorithms that make possible the transition from metadata (such as author names, journals, keywords) to more sophisticated metadata and to additional information extracted from the scientific papers themselves. These methods and algorithms were implemented to specifically extract pertinent information from large amount of documents. NHECD created a systematic domain model of concepts and terms (i.e., a wide set of domain taxonomies) to support the categorization of published papers and the information extraction process within this project. Up to now around 10,000 open source articles have been gathered. NHECD is intended for - academics, industry, public institutions and the general public.

Besides the databases on research projects or databases / information platforms containing different level of toxicological information, databases on products containing nanomaterial are available. The Danish Consumer Council and the Danish Ecological Council have created a nano database⁶ that will help consumers to identify more than 1,200 products that may contain nanomaterials. A German database⁷ was developed by BUND containing more than 1000 products available in Germany.

⁵ <u>http://nhecd.jrc.ec.europa.eu/</u>

⁶ <u>http://nano.taenk.dk/</u> (Posted on December 25, 2012)

⁷ http://www.bund.net/themen_und_projekte/nanotechnologie/nanoproduktdatenbank/

7.2.4 Special features of the PaFtox database

As can be seen from the description of the databases above, they are rather general, either related to collections of research projects or publications. The PaFTox Database in contrast contains all details for repeated dose toxicity studies (up to livelong exposure) in a very structured way.

There are several advantages in using such a database for toxicological analyses: the structure of the database forces the user to collect data systematically. Deficiencies in study description and design become obvious and can be accounted for in the analyses. Different queries allow systematic data mining of large datasets. As a result effect patterns, LOELs, dose response can be compared for different types of (nano-)objects, for different studies and sensitive parameters can be identified. Further, the results of the database queries can be further analysed by statistics and these results can be easily visualized (e.g. Fig 7, Fig 8, Fig 9), which improves understanding compared with lengthy descriptions in the text or huge tables.

Based on our experiences with RepDose we made several improvements:

We included the scope of examination. This was especially important for studies with particles and fibres, because currently available studies with (nano-)objects are mostly not according to guidelines and differ widely in scope investigated; this relates to organs as well as to endpoints investigated. With the scope of examination, it is possible to query, how often effects have been examined and how often they were positive. The scope of examination has already been taken into consideration in our analyses in Tab. 24 and Tab. 25. As the scope of examination is differing from studies according to OECD guidelines the Klimisch code is not useful for this database and the criteria used in the database RepDose were adapted for the PaFtox database (see 2.2.3).

In addition for each effect the effect levels or incidences were entered into the database, including significance. This rendered data entry very time consuming (see example data sheets in the Appendix), but allowed queries on effect levels e.g. for neutrophils/PMN levels (Fig 7), total protein (Fig 8), LDH (Fig 9), lung burden (Tab. 29), lung weight (Tab. 30) and allows future analyses of dose response with the benchmark dose approach.

7.3 Study reports from PaFtox database (October 2012)

Carbon Black

molecular weight 12 g/mol

Study Data

Specification by Producer / Supplier

Primary particle

object

study pk 4108

synonym Printex 90TM

size	diameter in nm	inner diameter in nm	outer diameter in nm	length in nm
mean	14			
SD				
min				
max				

medium		determ. method
distribution type	no data	surface property
cristal structure		shape
specific surface in m²/g solubility in mg/l		specific volume in m³/g at in °C
particle density in g/cm ³		
additional	High-purity furnace carbon black	
reference	Heinrich & Fuhst (1992)	
producer	Degussa, Frankfurt, Germany	

Specification by Authors

object Primary particle

size	diame	eter in nm	inner diameter in n	m	outer diameter in nm	length in nm
mean						
SD						
min						
max						
medium				dete	rm. method	
distribution	type	no data		surf	ace property	
cristal strue	cture			shaj	be	
specific su m²/g	rface in	227		spec m³/g	cific volume in	
solubility in	mg/l			at in	°C	
particle der g/cm ³	nsity in	1.85				
additional		coarse particles removed by a cyclone with 50% cut-off diameter ca. 1 µm for a flow rate of 100 m3/h; spec. surface area by BETg, 0,04% extractable organic matter				
reference		Heinrich & Fu	uhst (1992)			

Hydrodynamic diameter

median	640 nm	distibution type no dat	ta	
GSD	2.6	bulk density	mg/ml	
min	nm	isoelectric point	in	

	Carbon Black						
max	nm	zeta potential	mV	in			
medium		peak SPR	nm	in			
determ. method	10-stage Berner impactor	conductivity	µS/cm	in			
sample treatment		solubility	mg/L	in	at	°C	
applic. medium							
dispersant							
additional							

Study Design

species	rat	strain	Wistar (Crl:(WI) BR)
sex	female	animal/group	100
route	whole-body	age of animal	7 w
purity			
exposure in h/d	18	exposure in d/w	5
study dur. in d	730	postexp. dur. in d	182
no. of instillation		frequency	
exposure (additional) dose /	whole-body in 6 or 12 m3 horizonta mg/m3 as time-weighted average cumulative exposure 102,2 g/m3 x	al flow type chambers; of 7,4 mg/m³ for 4 mor h	nominal concentration of 11,6 hths + 12,2 mg/m³ for 20 months,
concentration	0	1 dose study	
11-1-1	11.63	reliability <u>B</u>	
Unit		confidential	
mg/m³			
additional	interim sacrifices at d 91, 182, 365 number of animals (control/expose carcinogenicity: 220/100, additiona histology (serial sacrifice): 80/80 DNA-adducts (d 14, 60, 730): 14/1 lung burden: 66/66 lung clearance: 28/28, measured a μ m) BALF only after 730 d CB burden after digestion of tissue	5, 547, 670, 730 and 9 ed): ally 4 as clearance of radiola e measured by turbidit	10 d beled Fe2O3 tracer particles (MMAD 0,35 y of particles suspended in 0,01 N NaOH

Reference					
author	Heinrich U, and Fuhst, R	source	Abschlussbericht: Vergl Frage der tumorinduzie Dieselmotorabgasen in in German	eichend Unte renden Wirku der Rattenlu	ersuchungen zur ung von nge. Final Report
volume	07VAG06	year	1992	page	1-56 plus Append
institution	Fraunhofer ITEM				
author	Muhle H, et al.	source	In: Mohr U, et al. (Ed.) T of solid particles in the r	Toxic and car	rcinogenic effects act
volume		year	1994	page	29-41
institution	Fraunhofer ITEM				
author	Creutzenberg O, et al.	source	J Aerosol Science		
volume	21, Suppl 1	year	1990	page	S455-S458
institution	Fraunhofer ITEM				
author	Heinrich U, et al.	source	Inhalation Toxicology		
volume	7	year	1995	page	533-556
institution	Fraunhofer ITEM				

			Carbo	on Bla	ck		
Scope							
organ	animal/grou	p nec	ropsy org	an weight	histopatho	ology	
guideline							
body weight	100	[
		ſ	_				
lung	100	l					
additional	total lung b radiolabele	ourden (r d tracer j	io lavage); r particles; PA	istopatho .H-DNA ad	: H&E stain ducts by 32	; alveolar lung 2P-postlabeling	clearance of (total lung)
nose	100	l			✓		
additional	nasal and p	aranasa	l cavities				
larynx	100	[✓		
trachea	100	[✓		
BALF		[
alveolar n	nacrophages		granulocytes	;		lymphocytes	
lactate de	hydrogenase (LD	H)	hydroxyprolir	ne		total protein	
β-glucuro	nidase						
additional	both lobes,	5x4ml					
BALF effect		sex	LOEL study unit	LOEL ma/ka	tran- sient		
lactate dehydrogena	ase (LDH)	female	11.63	8.3736			
%	dose	sex	timepoin	t level	score	significance	%
	0	female	730	100		n.g.	100
	11.63	female	730	1700		<0.01	1700
	additional	sign. incre exposure	ease of LDH act + 6 mo p-e (see	ivity (% of co additional d	ntrol) after 24 ata in Study กเ	mo exposure (Fig.23 umber 3999)	5), effect lower than after 18
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
β-glucuronidase		female	11.63	8.3736			
%	dose	sex	timepoin	t level	score	significance	%
	0	female	730	100		n.g.	100
	11.63	female	730	7200		<0.01	7200
	additional	sign. incre after 18 n	ease of β-glucur no exposure + 6	onidase activ mo p-e (see	vity (% of contr additional data	ol) after 24 mo expo a in Study number 39	sure (Fig. 26), effect lower 999)
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
total protein		female	11.63	8.3736			
%	dose	sex	timepoin	t level	score	significance	%
	0	female	730	100		n.g.	100
	11.63	female	730	1100		<0.01	1100
	additional	sign. incre exposure	ease of totasl pr + 6 mo p-e (see	otein (% of co additional da	ontrol) after 24 ata in Study nu	mo exposure (Fig. umber 3999)	27), effect comparable to 1

			Carbor	n Blac	k		
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
hydroxyproline		female	11.63	8.3736			
%	dose	sex	timepoint	level	score	significance	%
	0	female	730	100		n.g.	100
	11.63	female	730	310		<0.01	310
	additional	sign. incr after 18 r	ease of free hydro no exposure + 6 m	xyproline (% 10 p-e (see a	of control) afte dditional data	er 24 mo exposure in Study number 39	(Fig.28), effect higher tha 199)
effect		sex	LOEL	LOEL	tran-		
			study unit	mg/kg	sient		
alveolar macrophage	s total	female	11.63	2.64318			
x10E6/ml	dose	sex	timepoint	level	score	significance	%
	0	female	670	0.29		n.g.	100
	0	female	730	0.95		n.g.	100
	11.63	female	670	2.29		n.g.	789.65
	11.63	female	730	3.05		n.g.	321.05
	additional	increase mo p-e (s	of number of AM a see additional data	after 22 and 2 in Study nu	24 mo exposu mber 3999)	re, effects compara	ble to 18 mo exposure +
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
PMN total		female	11.63	8.3736			
x10E6/ml	dose	sex	timepoint	level	score	significance	%
	0	female	670	0		n.g.	100
	0	female	730	0		n.g.	100
	11.63	female	670	2.19		n.g.	
	11.63	female	730	3.14		n.g.	
	additional	increase or 6 mo p	of number of PMN p-e (see additional	s after 22 ar data in Stud	nd 24 mo expo y number 3999	osure, effects highe	r than after 18 mo exposu
effect		sex	LOEL study unit	LOEL ma/ka	tran- sient		
lymphocytes total		female					
x10E6/ml							
	additional	no effect	: number of lympho	ocytes (Fig.2	9)		
ody weight							
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
weight decreased		female	11.63	8.3736			
gram	dose	sex	timepoint	level	score	significance	%
	0	female	730	417		n.g.	100
	0	female	910	390		n.g.	100
	11.63	female	730	325		<0.05	77.93
	11.63	female	910	323		<0.05	82.82
	additional	sian dec	rease of hw from o	ad 400 of e	exposure throu	ahout d 910	

clinical symptoms

			Carbor	n Black	K			
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient			
mortality		female	11.63	8.3736				
%	dose	sex	timepoint	level	score	significance	%	
	0	female	730	42		n.g.	100	
	0	female	912	85		n.g.	100	
	11.63	female	730	56		<0.05	133.33	
	11.63	female	912	92		<0.05	108.23	

additional mean lifetime sign. decreased; increase of mortality (% of rats) at termination of exposure and after р-е

lung

effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
weight		female	11.63	8.3736			
gram	dose	sex	timepoint	level	score	significance	%
	0	female	91	1.28		n.g.	100
	0	female	182	1.55		n.g.	100
	0	female	365	1.33		n.g.	100
	0	female	547	1.54		n.g.	100
	0	female	670	1.34		n.g.	100
	0	female	730	1.44		n.g.	100
	11.63	female	91	2.24		<0.001	175
	11.63	female	182	3.64		<0.001	234.83
	11.63	female	365	6.46		<0.001	485.71
	11.63	female	547	7.64		<0.001	496.1
	11.63	female	670	6.93		<0.001	517.16
	11.63	female	730	6.83		<0.001	474.3
	additional	sign. inci exposure	reases of lung wet e (no data for p-e)	wt. with maxi	mum after 18	mo exposure, sligh	tly reversible within 24 mo
effect		sex	LOEL study unit	LOEL ma/ka	tran- sient		
burden		female	11.63	8.3736			
mg/total lung	dose	sex	timepoint	level	score	significance	%
	0	female	91	0		n.g.	100
	0	female	182	0		n.g.	100
	0	female	365	0		n.g.	100
	0	female	547	0		n.g.	100
	0	female	670	0		n.g.	100
	0	female	730	0		n.g.	100
	11.63	female	91	7.56		n.g.	
	11.63	female	182	19.9		n.g.	
	11.63	female	365	38		n.g.	
	11.63	female	547	50.2		n.g.	
	11.63	female	670	45.2		n.g.	
	11.63	female	730	43.9		n.g.	
	additional	increase	of total lung burde	n (no lavage) or clearance	up to 18 mo	exposure, slight inc	rease within 24 mo expos

expo) + p-Study Number 3999

			Carbor	n Black	< c		
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
alveolar clearance		female	11.63	8.3736			
days	dose	sex	timepoint	level	score	significance	%
	0	female	91	61		n.g.	100
	0	female	365	72		n.g.	100
	0	female	547	96		n.g.	100
	11.63	female	91	244		<0.01	400
	11.63	female	365	368		<0.01	511 11
	11.63	female	547	363		<0.01	378 12
	additional	sign. incr	ease of clearance	time for radio	labeled tracer	particles (Fe-59-o) for 18 mo exposur	kid) from 3 mo exposure
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
hyperplasia bronchio	lo-alveolar	female	11.63	8.3736			
%	dose	sex	timepoint	level	score	significance	%
	0	female	182	0		na	100
	0	female	010	0		n.g.	100
	11 62	fomolo	192	100	minimal	11.g.	100
	11.03	famala	102	100	minima	<0.01	
	additional	sign incr	910	90 -alveolar byp	severe	0.01> 20 rats at 6 mo evr	osure and 96/100 rate
	uuunonui	24 mo ex	psoure + 6 mo p-e				
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
fibrosis		female	11.63	8.3736			
%	dose	sex	timepoint	level	score	significance	%
	0	female	182	0		n.q.	100
	0	female	365	10	minimal	n.a.	
	0	female	547	5.6	minimal	na	
	0	female	730	0		n.a.	100
	0	female	910	4 1	mild	na	
	0	female	910	4 1	minimal	n.g.	
	11.63	fomalo	192	100	minimal	n.g.	
	11.03	fomolo	102	52.6	mild	n.g.	
	11.03	female	305	52.0		n.g.	
	11.63	temale	365	5.3	meaium	n.g.	
	11.63	female	547	66.7	medium	n.g.	
	11.63	female	547	33.3	mila	n.g.	
			=	111	minimal	n.g.	
	11.63	temale	730		minina		
	11.63 11.63	female	730 730	11.1	severe	n.g.	
	11.63 11.63 11.63	female female female	730 730 730	11.1 77.8	severe medium	n.g. n.g.	
	11.63 11.63 11.63 11.63	female female female female	730 730 730 910	11.1 77.8 30	severe medium medium	n.g. n.g. n.g.	
	11.63 11.63 11.63 11.63 11.63	female female female female female	730 730 730 910 910	11.1 77.8 30 2	severe medium medium minimal	n.g. n.g. n.g. n.g.	
	11.63 11.63 11.63 11.63 11.63 11.63	female female female female female female	730 730 730 910 910 910	11.1 77.8 30 2 57	severe medium medium minimal mild	n.g. n.g. n.g. n.g. n.g.	
	11.63 11.63 11.63 11.63 11.63 11.63 additional	female female female female female female time-dep reversible	730 730 730 910 910 910 endent increase of a in severity at 24 n	11.1 77.8 30 2 57 incidences a no exposure	medium medium minimal mild nd severity of + 6 mo p-e	n.g. n.g. n.g. n.g. n.g. interstitial fibrosis a	at >= 6 mo exposure; ef
effect	11.63 11.63 11.63 11.63 11.63 11.63 additional	female female female female female female time-dep reversible	730 730 730 910 910 910 endent increase of a in severity at 24 r LOEL study unit	11.1 11.1 77.8 30 2 57 incidences a no exposure LOEL mg/kg	severe medium medium minimal mild nd severity of + 6 mo p-e tran- sient	n.g. n.g. n.g. n.g. interstitial fibrosis a	at >= 6 mo exposure; ef
effect bronchiolo-alveolar a	11.63 11.63 11.63 11.63 11.63 11.63 additional	female female female female female time-dep reversible sex female	730 730 730 910 910 910 endent increase of a in severity at 24 m LOEL study unit 11.63	11.1 11.1 77.8 30 2 57 incidences a no exposure LOEL mg/kg 8.3736	severe medium medium minimal mild nd severity of + 6 mo p-e tran- sient	n.g. n.g. n.g. n.g. interstitial fibrosis a	at >= 6 mo exposure; ef
effect bronchiolo-alveolar a %	11.63 11.63 11.63 11.63 11.63 11.63 additional denoma dose	female female female female female time-dep reversible sex female sex	730 730 730 910 910 endent increase of a in severity at 24 m LOEL study unit 11.63 timepoint	11.1 11.1 77.8 30 2 57 incidences a no exposure LOEL mg/kg 8.3736 level	severe medium medium minimal mild nd severity of + 6 mo p-e tran- sient sient score	n.g. n.g. n.g. n.g. interstitial fibrosis a	at >= 6 mo exposure; ef
effect bronchiolo-alveolar a %	11.63 11.63 11.63 11.63 11.63 additional denoma dose 0	female female female female female time-dep reversible sex female sex female	730 730 730 910 910 endent increase of a in severity at 24 r LOEL study unit 11.63 timepoint 910	11.1 11.1 77.8 30 2 57 incidences a no exposure LOEL mg/kg 8.3736 level 0	severe medium medium minimal mild nd severity of + 6 mo p-e tran- sient sient score	n.g. n.g. n.g. n.g. interstitial fibrosis a significance n.g.	at >= 6 mo exposure; ef
effect bronchiolo-alveolar a %	11.63 11.63 11.63 11.63 11.63 additional denoma dose 0 11.63	female female female female female female time-dep reversible sex female sex female female	730 730 730 910 910 910 endent increase of e in severity at 24 n LOEL study unit 11.63 timepoint 910 910	11.1 11.1 77.8 30 2 57 incidences a no exposure LOEL mg/kg 8.3736 level 0 13	severe medium medium minimal mild nd severity of + 6 mo p-e tran- sient sient score	n.g. n.g. n.g. n.g. interstitial fibrosis a significance n.g. <0.05	at >= 6 mo exposure; ef

Page 6 from 8

			Carbor	n Black	C		
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
bronchiolo-alveolar adenocarcinoma		female	11.63	8.3736			
%	dose	sex	timepoint	level	score	significance	%
	0	female	910	0.46		n.g.	100
	11.63	female	910	13		<0.05	2826.1
	additional	increase	d incidence of bron	chiolo-alveola	ar adenocarci	noma 13/100 vs. 1/2	217 in controls
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
squamous cell carcino	oma	female	11.63	8.3736			
%	dose	sex	timepoint	level	score	significance	%
	0	female	910	0		n.g.	100
	11.63	female	910	4		n.g.	
	additional	increase	d incidence of squa	mous cell ca	rcinoma 4/10	0 vs. 0/217 in contro	bls
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
benign cystic keratiniz squamous-cell tumor	zing	female	11.63	8.3736			
%	dose	sex	timepoint	level	score	significance	%
	0	female	910	0		n.g.	100
	11.63	female	910	20		n.a.	
				20			
	additional	increase	d incidence of beni	gn cystic kera	ıtinizing squa	mous-cell tumour 20)/100 vs. 0/217 in cor
effect	additional	increased sex	d incidence of beni LOEL study unit	gn cystic kera	tinizing squa tran- sient	mous-cell tumour 20	0/100 vs. 0/217 in cor
effect	additional	increased sex female	d incidence of benin LOEL study unit 11.63	gn cystic kera	tinizing squa tran- sient	mous-cell tumour 2(0/100 vs. 0/217 in cor
effect clearance	additional	increased sex female sex	d incidence of benin LOEL study unit 11.63 timepoint	gn cystic kera LOEL mg/kg 8.3736 level	tinizing squa tran- sient score	mous-cell tumour 20	0/100 vs. 0/217 in cor
effect clearance %	additional dose	increased sex female sex female	d incidence of benin LOEL study unit 11.63 timepoint 730	gn cystic kera LOEL mg/kg 8.3736 level	ttinizing squa tran- sient score	significance	0/100 vs. 0/217 in cor % 100
effect clearance %	additional dose 0 11.63	increased sex female female female	d incidence of benin LOEL study unit 11.63 timepoint 730 730	LOEL Mg/kg 8.3736 Ievel 0 100	tinizing squa tran- sient Score	n.g. n.g.	0/100 vs. 0/217 in cor % 100
effect clearance %	dose 0 11.63 additional	female female particle-la	d incidence of benin LOEL study unit 11.63 timepoint 730 730 aden macrophages	s in lungs of a	tinizing squa tran- sient score II CB-expose	mous-cell tumour 20 significance n.g. n.g. d rats	0/100 vs. 0/217 in cor % 100
effect clearance % effect	dose 0 11.63 additional	increased sex female female female particle-la sex	d incidence of benin LOEL study unit 11.63 timepoint 730 730 aden macrophages LOEL study unit	LOEL mg/kg 8.3736 level 0 100 s in lungs of a LOEL mg/kg	tinizing squa tran- sient score II CB-exposed tran- sient	n.g. n.g. d rats	0/100 vs. 0/217 in cor % 100
effect clearance % effect PAH-derived DNA ad	dose 0 11.63 additional	increased sex female sex female particle-la sex	d incidence of benin LOEL study unit 11.63 timepoint 730 730 aden macrophages LOEL study unit	sin lungs of a	tinizing squa tran- sient score II CB-expose tran- sient	n.g. n.g. n.g. d rats	0/100 vs. 0/217 in cor % 100
effect clearance % effect PAH-derived DNA ad	additional dose 0 11.63 additional	increased sex female female female particle-la sex female	d incidence of benin LOEL study unit 11.63 timepoint 730 730 aden macrophages LOEL study unit	LOEL mg/kg 8.3736 level 0 100 sin lungs of a LOEL mg/kg	tinizing squa tran- sient score II CB-exposed tran- sient	n.g. n.g. n.g. d rats	0/100 vs. 0/217 in cor % 100
effect clearance % effect PAH-derived DNA ad n.a.	additional dose 0 11.63 additional ducts additional	increased sex female female particle-la sex female no effect	d incidence of benin LOEL study unit 11.63 timepoint 730 730 aden macrophages LOEL study unit	LOEL mg/kg 8.3736 level 0 100 in lungs of a LOEL mg/kg	tinizing squa tran- sient score II CB-exposed tran- sient ued DNA add	mous-cell tumour 20 significance n.g. n.g. d rats	0/100 vs. 0/217 in cor % 100
effect clearance % effect PAH-derived DNA ad n.a. /mph node	additional dose 0 11.63 additional ducts additional	increased sex female female particle-la sex female no effect	d incidence of benin LOEL study unit 11.63 timepoint 730 730 aden macrophages LOEL study unit	LOEL mg/kg 8.3736 level 0 100 tin lungs of a LOEL mg/kg	tinizing squa tran- sient score II CB-expose tran- sient ved DNA add	mous-cell tumour 20 significance n.g. n.g. d rats	0/100 vs. 0/217 in cor % 100
effect clearance % effect PAH-derived DNA ad n.a. ymph node effect	additional dose 0 11.63 additional ducts additional	increased sex female female female particle-la sex female no effect sex	d incidence of benin LOEL study unit 11.63 timepoint 730 aden macrophages LOEL study unit no increased leve LOEL study unit	LOEL mg/kg 8.3736 level 0 100 in lungs of a LOEL mg/kg	tinizing squa tran- sient score II CB-exposed tran- sient ved DNA add tran- sient	mous-cell tumour 20 significance n.g. n.g. d rats	0/100 vs. 0/217 in cor % 100
effect clearance % effect PAH-derived DNA ad n.a. /mph node effect weight	additional 0 11.63 additional ducts additional	increased sex female female particle-la sex female no effect sex female	d incidence of benin LOEL study unit 11.63 timepoint 730 730 aden macrophages LOEL study unit : no increased leve LOEL study unit 11.63	LOEL mg/kg 8.3736 level 0 100 tin lungs of a LOEL mg/kg 8.3736	tinizing squa tran- sient score II CB-expose tran- sient ved DNA add tran- sient	mous-cell tumour 20 significance n.g. n.g. d rats	0/100 vs. 0/217 in cor % 100
effect clearance % effect PAH-derived DNA ad n.a. /mph node effect weight %	additional dose 0 11.63 additional ducts additional	increased sex female female female particle-la sex female no effect sex female sex	d incidence of benin LOEL study unit 11.63 timepoint 730 aden macrophages LOEL study unit no increased leve LOEL study unit 11.63 timepoint	LOEL mg/kg 8.3736 level 0 100 sin lungs of a LOEL mg/kg 8.3736 level	tinizing squa tran- sient Score II CB-exposed tran- sient ved DNA add tran- sient Score	mous-cell tumour 20 significance n.g. n.g. d rats ucts (32P postlabeli)/100 vs. 0/217 in cor % 100 ing)
effect clearance % effect PAH-derived DNA ad n.a. /mph node effect weight %	additional dose 0 11.63 additional ducts additional dose 0	increased sex female female female particle-la sex female no effect sex female sex female	d incidence of benin LOEL study unit 11.63 timepoint 730 aden macrophages LOEL study unit c no increased leve LOEL study unit 11.63 timepoint 730 730 730 730 730 730 730 730	LOEL mg/kg 8.3736 level 0 100 in lungs of a LOEL mg/kg I of PAH-deri LOEL mg/kg 8.3736 level 100	tinizing squa tran- sient Score II CB-exposed tran- sient ved DNA add tran- sient Sient Score	significance n.g. ucts (32P postlabeli significance n.g.	0/100 vs. 0/217 in cor % 100
effect clearance % effect PAH-derived DNA ad n.a. /mph node effect weight %	additional dose 0 11.63 additional ducts additional ducts 0 11.63	increased sex female female female particle-la sex female no effect sex female sex female female	d incidence of benin LOEL study unit 11.63 timepoint 730 aden macrophages LOEL study unit c no increased leve LOEL study unit 11.63 timepoint 730 730 730 730 730 730 730 730	LOEL mg/kg 8.3736 level 0 100 s in lungs of a LOEL mg/kg 8.3736 level 8.3736 level 100 800	tinizing squa tran- sient score II CB-exposed tran- sient ved DNA add tran- sient Score	significance n.g. n.g. d rats ucts (32P postlabeli significance n.g. n.g. n.g.	0/100 vs. 0/217 in cor % 100 ing) % 100 800

			Carbor	n Black	<		
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
burden		female	11.63	8.3736			
mg/organ	dose	sex	timepoint	level	score	significance	%
	0	female	670	0		n.g.	100
	11.63	female	670	6.72		n.g.	
	additional	increase	of retained particle	mass in LAL	.N		
nose							
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
squamous cell met	taplasia	female	11.63	8.3736			
%	dose	sex	timepoint	level	score	significance	%
	0	female	365	0		n.g.	100
	0	female	547	0		n.g.	100
	0	female	730	0		n.g.	100
	0	female	910	7.7		n.g.	100
	11.63	female	365	27.8		n.g.	
	11.63	female	547	68.8		n.g.	
	11.63	female	730	55.6		n.g.	
	11.63	female	910	61		n.g.	792.2
	additional	increase after >= 1	d incidences of squ 12 mo exposure, ef	amous cell m	netaplasia in e rsible after 24	pithelia of nasal ca mo exposure + 6 m	vity and paranasal sinuses no p-e
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
degeneration		female	11.63	8.3736			
%	dose	sex	timepoint	level	score	significance	%
	0	female	182	0		n.g.	100
	0	female	365	9.5		n.g.	100
	0	female	547	33.3		n.g.	100
	0	female	730	0		n.g.	100
	0	female	910	34.4		n.g.	100
	11.63	female	182	30		n.g.	
	11.63	female	365	100		n.g.	1052.6
	11.63	female	547	100		n.g.	300.3
	11.63	female	730	88.9		n.g.	
	11.63	female	910	75		n.g.	218.02
	additional	sign. incr paranasa	ease of incidences al sinuses after >= 1	of degenera 6 mo exposu	tive changes i re, effect sligh	n mucus membrane tly reversible after 2	es of nasal cavity and 24 mo exposure + 6 mo p-e
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
inflammation		female	11.63	8.3736			
%	dose	sex	timepoint	level	score	significance	%
	0	female	365	4.8		n.g.	100
	0	female	547	0		n.g.	100
	0	female	730	10		n.g.	100
	0	female	910	5.9		n.g.	100
	11.63	female	365	22.2		n.g.	462.5
	11.63	female	547	50		n.g.	
	11.63	female	730	55.6		n.g.	556
	11.63	female	910	40		n.g.	677.96
	additional	increase sinuses a	d incidences of infla after >= 12 mo exp	ammatory cha osure, effect	anges in mucu slightly revers	us membranes of na ible after 24 mo exp	asal cavity and paranasal posure + 6 mo p-e

Page 8 from 8

Carbon Black

molecular weight 12 g/mol

study pk 4131

Study Data

Specification by Producer / Supplier

Primary particle

object

synonym Elftex-12

size	diameter in nm	inner diameter in nm	outer diameter in nm	length in nm
mean	37			
SD				
min				
max				

producer	Cabot, Boston, MA	
reference	Ash M, Ash I (Ed.) Handbook of F	illers, Extenders, and Diluents, 2007, p.
additional		
particle density in g/cm ³		
m²/g solubility in mg/l		m³/g at in °C
specific surface in	43	specific volume in
cristal structure		shape
distribution type	no data	surface property
medium		determ. method

Specification by Authors

object Primary particle

size	diameter in nm	inner diameter in nm	outer diameter in nm	length in nm
mean				
SD				
min				
max				
medium		dete	erm. method	
distribution	type no data	sur	face property	
cristal struc	ture	sha	ре	
specific sur m²/g	face in	spe m³/	cific volume in g	

m³/g at in °C

g/cm³ additional

reference

solubility in mg/l particle density in

Hydrodynamic diameter

median	nm	distibution type bidi	spers
GSD		bulk density	mg/ml
min	nm	isoelectric point	in

		Carbon Black				
max	nm	zeta potential	mV	in		
medium		peak SPR	nm	in		
determ. method		conductivity	µS/cm	in		
sample treatment		solubility	mg/L	in	at	٥C
applic. medium						
dispersant						
additional	bimodal particle size dis diffusion diameter 100 r impactor): MMAD 1950	stribution: small-size mode (parall nm, GSD 2,16, 33% of particle ma nm, GSD 1.84, 67% of particle m	el-floe diffusio ass; large-size ass	n battery mode (d	∕): mass m cascade	redian

Study Design

species	rat	strain	F344/N
sex	male & female	animal/group	114-118
route	whole-body	age of animal	7.5 w
purity			
exposure in h/d	16	exposure in d/w	5
study dur. in d	730	postexp. dur. in d	42
no. of instillation		frequency	
exposure (additional)	whole-body, airflow 425 l/min; nor 6,55 +-0,06 mg/m3	ninal conc. 2,5 and 6,5	i mg/m3, analytical conc. 2,46+-0,03;
dose / concentration Unit mg/m ³	0 2.46 6.55	1 dose study reliability Confidential	
additional	Serial sacrifices (N=3 per sex/grou histopatho all tp, BALF at d 365, 5 nonneoplastic findings (sacrifice, e 780 d (18 mo - end of life), N=71-8 24 mo), N=54-77 per sex/group; 7 neoplastic findings (except sacrific sex/group genotoxicity: PAH-DNA adducts ar alveolar type II cells (d 91, HD, N= adenocarcinomas, N=3 squamous micronuclei in circulating lymphocy (only at d 91, N=3/sex) lung burden (all tp): optical density LALN (all tp): digestion of tissue w dioxide and measured by IR spect Clearance of radiolabeled carbon I whole-body counting at d 0, 4, 7, 1 Translocation and sequestration o histopatho and morphometry on d macrophages, aggregated macrop	IP) at d 91, 182, 365, 5 47 & 700; 50 perthanasia, death): 547 66 per sex/group; squa 80 d (24 mo - end of lif eed betw. mo 3 - 12): 7 5/sex); mutations of K cell carcinomas, N=1 /tes ex vivo (only at d S r at 620 nm after homo ith acid, washed residu rometry black [7Be]CB after sin 3, 28, 35, 42, 56, 73, 8 f inhaled fluorescent la 1, 4, 28 & 90 (N=2/sex) hages & other location	i47, 700, terminal sacrifice about d 772; 7 d (<= 18 mo), N=32-44 per sex/group; mous cysts (incl. died animals): 730 d (18 - ie), N=0-36 80 d (18 mo - end of life), N=105-109 per p, HD, N=3/sex); PAH-DNA adducts in -ras or p53 in lung tumors (N=14 adenosquamous carcinomas); SCE and 01, N=3/sex); Hb-adducts in erythrocytes genization of left lung in saline; burden in ue of inorganic carbon converted to carbon ngle exposures on d 91 & 547 (N=8/sex): 84, 98, 112 & 126 d after exposure atex microspheres applied on d 81 & 547: k) to identify microspheres in single alveolar ns

Reference					
author	Mauderly JL, et al.	source	Report HEI-RR-68 Par	tl	
volume		year	1995	page	1-106
institution	Lovelace Biomed. & Environm.	Research Insti	tute, Albuquerque		
author	Belinsky SA, et al.	source	Report HEI-RR-68 Par	t III	
author volume	Belinsky SA, et al.	source year	Report HEI-RR-68 Par 1995	t III page	1-25

author								
volume	Randerath K, et al.		source vear	Repor 1995	t HEI-RR-68	Part II, NTIS PB	96-138623	
institution	Lovelace Biomed.	& Environr	n. Research Ins	stitute, Albu	Iquerque			
author volume	Nikula KJ, et al. 25		source year	Fund / 1995	Appl Toxicol	page	80-94	
institution	Inhalation Toxicolo	gy Resear	ch Institute					
Saana								
Scope	animal/arou	n noor		woight	histopathal			
organ	animai/grou	p neci	opsy organ	rweight	nistopatiloi	Jgy		
guideline		Г	7					
body weight	115	L						
lung	115			✓	✓			
additional	histopatho DNA adduc cells; immu p53 in lung	e): H&E stain -postlabeling hemistry of pl by PCR	n; lung bu in total lu 53 proteir	rden (left lø ung; PAH-D n in lung tu	bbe after lavag NA adducts in mors; mutation	e, N=3); PAH- alveolar type II ns of K-ras or		
mortality	115 pee	[
clinical symptoms	115	[
lvmph node	3	[✓				
additional	narticle bur	den						
BALF	3	[
	-							
additional	left lobe 2	x2 ml for	f 2x2 5 ml fo	or m				
additional haematology	left lobe, 2: 3	x2 ml for	f, 2x2,5 ml fo	or m				
additional haematology additional	left lobe, 2: 3 genotoxicit	x2 ml for [y: SCE ar	f, 2x2,5 ml fo	or m i in prima	Iry cultures	of circulating	lymphocytes ex	
additional haematology additional	left lobe, 2: 3 genotoxicit vivo; Hb-ac	x2 ml for [y: SCE ar Iducts	f, 2x2,5 ml fo	or m i in prima	U nry cultures	of circulating	lymphocytes ex	
additional haematology additional	left lobe, 2: 3 genotoxicit vivo; Hb-ac	x2 ml for [y: SCE ar iducts	f, 2x2,5 ml fo	or m	Unry cultures	of circulating	lymphocytes ex	
additional haematology additional Effect data BALF	left lobe, 2: 3 genotoxicit vivo; Hb-ad	x2 ml for [y: SCE ar Iducts	f, 2x2,5 ml fo	or m	Unry cultures	of circulating	lymphocytes ex	
additional haematology additional Effect data BALF effect	left lobe, 2: 3 genotoxicit vivo; Hb-ad	x2 ml for [y: SCE ar Iducts sex	f, 2x2,5 ml fo d micronucle LOEL study unit	i in prima	tran- sient	of circulating	lymphocytes ex	
additional haematology additional Effect data BALF effect total protein	left lobe, 2: 3 genotoxicit vivo; Hb-ad	x2 ml for [y: SCE a dducts sex male &	f, 2x2,5 ml fo	i in prima	tran- sient	of circulating	lymphocytes ex	
additional haematology additional Effect data BALF effect total protein	left lobe, 2: 3 genotoxicit vivo; Hb-ac	x2 ml for [y: SCE ar dducts sex male & female	f, 2x2,5 ml fo	or m i in prima LOEL mg/kg	tran- sient	of circulating	lymphocytes ex	
additional haematology additional Effect data BALF effect total protein mg/ml	left lobe, 2: 3 genotoxicit vivo; Hb-ad	x2 ml for [y: SCE ar Iducts sex male & female	f, 2x2,5 ml fo	or m i in prima LOEL mg/kg	tran- sient	of circulating	lymphocytes ex	
additional haematology additional Effect data BALF effect total protein mg/ml	left lobe, 2: 3 genotoxicit vivo; Hb-ac	x2 ml for (2) y: SCE and dducts sex male & female no effect (f, 2x2,5 ml fo nd micronucle LOEL study unit	i in prima	tran- sient	of circulating	lymphocytes ex	
additional haematology additional Effect data BALF effect total protein mg/ml effect	left lobe, 2: 3 genotoxicit vivo; Hb-ac	x2 ml for [y: SCE al dducts sex male & female no effect (sex	f, 2x2,5 ml fo d micronucle LOEL study unit Mauderly: Tab.E1 LOEL study unit	LOEL mg/kg	tran- sient tran- sient	of circulating	lymphocytes ex	
additional haematology additional Effect data BALF effect total protein mg/ml effect glutathione redu	left lobe, 2: 3 genotoxicit vivo; Hb-ad additional	x2 ml for [y: SCE ard ducts sex male & female no effect (sex male & female	f, 2x2,5 ml fo d micronucle LOEL study unit Mauderly: Tab.E1 LOEL study unit 2.46	LOEL mg/kg I-E3) LOEL mg/kg 1.5744	tran- sient tran- sient	of circulating	lymphocytes ex	
additional haematology additional Effect data BALF effect total protein mg/ml effect glutathione redu	left lobe, 2: 3 genotoxicit vivo; Hb-ad additional uctase dose	x2 ml for [y: SCE al dducts sex male & female no effect (sex male & female sex	f, 2x2,5 ml fo nd micronucle LOEL study unit Mauderly: Tab.E1 LOEL study unit 2.46 timepoint	LOEL mg/kg I-E3) LOEL mg/kg 1.5744 level	tran- sient tran- sient tran- sient score	of circulating	lymphocytes ex	
additional haematology additional Effect data BALF effect total protein mg/ml effect glutathione redu	left lobe, 2: 3 genotoxicit, vivo; Hb-ac additional uctase dose 0	x2 ml for [y: SCE ar dducts sex male & female no effect (sex male & female sex male & f	f, 2x2,5 ml fo d micronucle LOEL study unit LOEL study unit 2.46 timepoint 365	LOEL mg/kg I-E3) LOEL mg/kg 1.5744 level 34	tran- sient tran- sient sient sient score	of circulating	lymphocytes ex % 100	
additional haematology additional Effect data BALF effect total protein mg/ml effect glutathione redu	left lobe, 2: 3 genotoxicit, vivo; Hb-ad additional uctase dose 0 0	x2 ml for [y: SCE ar dducts sex male & female no effect (sex male & female sex male & f male & f	f, 2x2,5 ml fo d micronucle LOEL study unit LOEL study unit 2.46 timepoint 365 547	I-E3) LOEL mg/kg 1.5744 level 34 20	tran- sient tran- sient sient score	of circulating significance n.g. n.g.	lymphocytes ex % 100 100	
additional haematology additional Effect data BALF effect total protein mg/ml effect glutathione redu units/liter (U/l)	left lobe, 2: 3 genotoxicit, vivo; Hb-ad additional uctase dose 0 0 0	x2 ml for y: SCE and dducts sex male & female no effect (sex male & female sex male & female sex male & female sex male & female	f, 2x2,5 ml fo d micronucle LOEL study unit LOEL study unit 2.46 timepoint 365 547 700	LOEL mg/kg 1.E3) LOEL mg/kg 1.5744 level 34 20 19	tran- sient tran- sient sient sient score	of circulating significance n.g. n.g. n.g.	lymphocytes ex % 100 100 100	
additional haematology additional Effect data BALF effect total protein mg/ml effect glutathione redu units/liter (U/l)	additional uctase dose 0 0 2.46	x2 ml for y: SCE and dducts sex male & female no effect (sex male & female sex male & female sex male & female sex female sex male & female sex female sex male & female sex female sex male & female sex female sex male & female sex female sex female sex female sex female sex female sex female sex female sex female sex female & female sex female & female sex female & female sex female & female & female sex female & female & f	f, 2x2,5 ml fo d micronucle LOEL study unit LOEL study unit 2.46 timepoint 365 547 700 365	LOEL mg/kg 1.5744 level 34 20 19 33	tran- sient tran- sient tran- sient score	of circulating significance n.g. n.g. n.g. n.g. n.n.g.	lymphocytes ex % 100 100 100 97.05	
additional haematology additional Effect data BALF effect total protein mg/ml effect glutathione redu units/liter (U/l)	additional additional uctase actase	x2 mI for [y: SCE al dducts sex male & female no effect (sex male & female sex male & female sex male & female sex male & female sex	f, 2x2,5 ml fo ind micronucle LOEL study unit Mauderly: Tab.E1 LOEL study unit 2.46 timepoint 365 547 700 365 547	LOEL mg/kg 1-E3) LOEL mg/kg 1.5744 level 34 20 19 33 32	tran- sient tran- sient sient sient score	of circulating significance n.g. n.g. n.g. n.ne none none	Vymphocytes ex % 100 100 100 97.05 160	
additional haematology additional Effect data BALF effect total protein mg/ml effect glutathione redu units/liter (U/l)	additional additional uctase actase	x2 mI for [y: SCE al dducts sex male & female no effect (sex male & female sex male & female sex male & female sex male & female sex	f, 2x2,5 ml fo ind micronucle LOEL study unit Mauderly: Tab.E1 LOEL study unit 2.46 timepoint 365 547 700 365 547 700 365	or m ☐ ii in prima LOEL mg/kg I-E3) LOEL mg/kg 1.5744 level 34 20 19 33 32 40 1-	tran- sient tran- sient sient sient score	of circulating significance n.g. n.g. n.g. n.ne none none <0.05	Vmphocytes ex % 100 100 100 97.05 160 210.52	
additional haematology additional Effect data BALF effect total protein mg/ml effect glutathione redu units/liter (U/l)	additional additional uctase actase additional	x2 ml for [y: SCE ard ducts sex male & female no effect (sex male & female sex male & f male & f male	f, 2x2,5 ml fo d micronucle LOEL study unit LOEL study unit 2.46 timepoint 365 547 700 365 547 700 365 547 700 365	or m ☐ ii in prima LOEL mg/kg 1.5744 level 34 20 19 33 32 40 48 	tran- sient tran- sient sient score	of circulating significance n.g. n.g. n.g. n.ne none solo5 none	lymphocytes ex % 100 100 97.05 160 210.52 141.17	
additional haematology additional Effect data BALF effect total protein mg/ml effect glutathione redu units/liter (U/l)	additional additional uctase dose 0 0 0 2.46 2.46 2.46 2.46 6.55 6.55	x2 ml for [y: SCE and dducts sex male & female no effect (sex male & female sex male & f male & f e male & f male & f male & f	f, 2x2,5 ml fo d micronucle LOEL study unit LOEL study unit 2.46 timepoint 365 547 700 365 547 700 365 547 700 365 547	br m i in prima LOEL mg/kg 1-E3) LOEL mg/kg 1.5744 level 34 20 19 33 32 40 48 52 	tran- sient tran- sient sient sient score	of circulating significance n.g. n.g. n.g. none none <0.05 none none none none	lymphocytes ex % 100 100 97.05 160 210.52 141.17 260 200 40	

Page 3 from 26

			Carbor	n Black	<		
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
β-glucuronidase		male & female	2.46	1.5744			
units/liter (U/I)	dose	sex	timepoint	level	score	significance	%
	0	male & f	365	0.26		n.g.	100
	0	male & f	547	0.25		n.g.	100
	0	male & f	700	0.09		n.g.	100
	2.46	male & f	365	4.13		<0.05	1588.5
	2.46	male & f	547	5.25		<0.05	2100
	2.46	male & f	700	4.07		<0.05	4522.2
	6.55	male & f	365	11.94		<0.05	4592.3
	6.55	male & f	547	11.13		<0.05	4452
	6.55	male & f	700	9.63		none	10700
	additional	sign. incre (Mauderly	ease at LD & HD, i r: Tab.E1-E3)	increase at H	ID at d 700 nc	ot sign. due to high \$	SD, effects not revers
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
lactate dehydrogena	ase (LDH)	male &	2.46	1.5744			
units/liter (U/I)	dose	sex	timepoint	level	score	significance	%
	0	male & f	365	112		n.a.	100
	0	male & f	547	86		n.g.	100
	0	male & f	700	76		n.a.	100
	2 46	male & f	365	368		<0.05	328 57
	2.46	male & f	547	280		<0.05	325 58
	2.10	male & f	700	335		<0.00	440 78
	6 55	male & f	365	653		<0.00	583.03
	6.55	male & f	547	553		<0.00	643.02
	6 55	male & f	700	535		<0.05	703.94
	additional	sign, dose	e-related increase	at all tp. not	reversible (Ma	uderly: Tab.E1-E3	703.34
effect		sex	LOEL	LOEL	tran-		
			study unit	mg/kg	sient		
neutrophils total		male & female	2.46	1.5744			
x10E3/ml	dose	sex	timepoint	level	score	significance	%
	0	male & f	365	14		n.g.	100
	0	male & f	547	9		n.g.	100
	0	male & f	700	4		n.g.	100
	2.46	male & f	365	864		<0.05	6171.4
	2.46	male & f	547	865		none	9611.1
	2.46	male & f	700	854		none	21350
	6.55	male & f	365	1417		<0.05	10121
	6.55	male & f	547	1976		<0.05	21956
	6.55	male & f	700	943		< 0.05	23575
	additional	sign incre	aso at LD at d 36	5 at ∐D at a	ll to other inc	roasos at L D not si	n due to high SD m

at HD at d 547 (Mauderly: Tab.E1-E3)

			Carbor	n Black	<		
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
alveolar macroph	ages total	male & female	2.46	1.5744			
x10E3/ml	dose	sex	timepoint	level	score	significance	%
	0	male & f	365	850		n.g.	100
	0	male & f	547	575		n.g.	100
	0	male & f	700	660		n.g.	100
	2.46	male & f	365	1889		<0.05	222.23
	2.46	male & f	547	1259		<0.05	218.95
	2.46	male & f	700	726		none	110
	6.55	male & f	365	1192		none	
	6.55	male & f	547	1877		none	326.43
	6.55	male & f	700	855		none	129.54
effect	additional	sign. incre increases sex	not dose-related,	acrophages a all doses rev LOEL	versible withir tran-	a 547 d, increases a a d 700 (Mauderly: 1	tt HD not sign. due to Γab.E1-E3)
			study unit	mg/kg	sient		
leukocytes		male & female	2.46	1.5744			
x10E3/ml	dose	sex	timepoint	level	score	significance	%
	0	male & f	365	874		n.g.	100
	0	male & f	547	591		n.g.	100
	0	male & f	700	664		n.g.	100
	2.46	male & f	365	2820		<0.05	322.65
	2.46	male & f	547	2149		none	363.62
	2.46	male & f	700	1583		<0.05	238.4
	6.55	male & f	365	2659		<0.05	304.23
	6.55	male & f	547	3899		<0.05	659.72
	6.55	male & f	700	1806		<0.05	271.98
	additional	sign. incre reversible	ease of total leuko (Mauderly: Tab F	cytes, increa: 1-E3)	se of LD at d	547 not sign. due to	o high SD, effect partly

body weight

Carbon Black								
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient			
weight decreased		male & female	2.46	1.5744				
gram	dose	sex	timepoint	level	score	significance	%	
	0	female	300	272		n.g.	100	
	0	male	450	485		n.g.	100	
	0	male	500	485		n.g.	100	
	0	female	500	324		n.g.	100	
	0	male	680	405		n.g.	100	
	0	female	730	296		n.g.	100	
	2.46	female	300	268		none	98.52	
	2.46	male	450	480		none	98.96	
	2.46	male	500	465		<0.05	95.87	
	2.46	female	500	314		<0.05	96.91	
	2.46	male	680	385		<0.05	95.06	
	2.46	female	730	268		<0.05	90.54	
	6.55	female	300	260		<0.05	95.58	
	6.55	male	450	440		<0.05	90.72	
	6.55	female	500	296		<0.05	91.35	
	6.55	female	500	435		<0.05	134.25	
	6.55	male	680	355		<0.05	87.65	
	6.55	female	730	244		<0.05	82.43	
	additional	sign. dos	e-dependent decre	ease of bw, p	<0.05 at HD a	after ~d300(f)+450(r	n), at LD after d500 (f+m	
clinical symptoms								
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient			
mortality		male & female	2.46	1.5744				
median survival ti	dose	sex	timepoint	level	score	significance	%	

780

780

780

780

780

780

639

696

605

707

599

675

sign. increase in LD m and HD m & f, m more sensitive, LOEL f = 6,55 mg/m3

0

0

2.46

2.46

6.55

6.55

additional

male

male

female

female

male

female

100

100

94.67

93.74

96.98

101.58

n.g.

n.g.

<0.05

none

<0.05

<0.05

			Carbor	n Black	<		
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
mortality		male & female	2.46	1.5744			
%	dose	sex	timepoint	level	score	significance	%
	0	male	547	16		n.g.	100
	0	female	547	8		n.g.	100
	0	male	700	92		n.g.	100
	0	female	700	48		n.g.	100
	2.46	male	547	30		n.g.	187.5
	2.46	female	547	8		n.g.	100
	2.46	male	700	92		n.g.	100
	2.46	female	700	42		n.g.	87.5
	6.55	male	547	28		n.g.	175
	6.55	female	547	14		n.g.	175
	6.55	male	700	98		n.g.	106.52
	6.55	female	700	62		n.g.	129.16
	additional	increased LOEL f 6,	l mortality in m at l 55 mg/m3	_D & HD afte	r 500 d, and in	f at HD after 700 o	d (Fig.1); m more sens
naematology							
effect		sex	LOEL	LOEL	tran-		
			study unit	mg/kg	sient		
SCE		male & female					
n.a.							
	additional	no effect: investigat	no increase of SC ed at later tp	E in primary	cultures of circ	ulating lymphocyte	es ex vivo at d 91 (not
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
micronuclei		male & female					
n.a.							
	additional	no effect: investigat	no increase of mi	cronuclei in ir	n primary cultur	es of circulating ly	/mphocytes ex vivo at o
ung							
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
tumor supressor protein p53		male & female	6.55	4.192			
n.a.	dose	sex	timepoint	level	score	significance	%
	0	male & f	780		no chande	n.a.	
	6.55	male & f	780			n.a.	
	additional	p53 prote	in in 1/3 squamou	s cell carcino	mas in HD oro	up (sex not specifi	ied) with 26-50% of nuc
		showing i	mmunoreactivity			, (,

effect fibrosis % dos % do % do	e	sex male & female sex male female male	LOEL study unit 2.46 timepoint	LOEL mg/kg 1.5744	tran- sient		
fibrosis % dos % d	e	male & female sex male female male	2.46 timepoint	1.5744			
% dos	e	sex male female male	timepoint				
effect bronchiolo-alveolar adenocarcinoma % dos 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	male female male		level	score	significance	%
effect bronchiolo-alveolar adenocarcinoma % dos 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	female male	547	3		n.g.	100
effect bronchiolo-alveolar adenocarcinoma % dos 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	male	547	0		n.g.	100
effect bronchiolo-alveolar adenocarcinoma % dos 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<u>_</u>		772	1		n.g.	100
2.4 2.4 2.4 6.5 6.5 addi effect bronchiolo-alveolar adenocarcinoma % dos 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	~	female	772	2		n.g.	100
2.4 2.4 6.5 6.5 6.5 addi effect bronchiolo-alveolar adenocarcinoma % dos 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6	male	547	61		n.g.	2033.3
2.4 6.5 6.5 6.5 addi effect bronchiolo-alveolar adenocarcinoma % dos 0 0 0 2.4 2.4 6.5 8 6.5 8 4ddi	6	female	547	52		n.g.	
2.4 6.5 6.5 effect bronchiolo-alveolar adenocarcinoma % dos 0 0 0 2.4 2.4 6.5 6.5 addi	6	male	772	92		n.g.	9200
6. 6. 6. addi effect bronchiolo-alveolar adenocarcinoma % dos 0 0 0 0 0 0 0 0 0 0 0 0 0	6	female	772	96		n.g.	4800
6.4 6.4 addi effect bronchiolo-alveolar adenocarcinoma % dos 0 0 0 0 2.4 2.4 6.5 6.5 addi	5	male	547	75		n.g.	2500
6.5 6.5 addi effect bronchiolo-alveolar adenocarcinoma % dos 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5	female	547	78		n.g.	
6.4 addi effect bronchiolo-alveolar adenocarcinoma % dos 0 0 0 0 2.4 6.5 6.5 6.5 addi	5	male	772	99		n.g.	9900
effect bronchiolo-alveolar adenocarcinoma % dos 0 0 0 2.4 2.4 6.5 6.5 addi	5	female	772	100		n.g.	5000
effect bronchiolo-alveolar adenocarcinoma % dos 0 0 0 2.4 2.4 6.5 6.5 addi	ional	increase 547 with with incre N=23, 21	of incidences of in dose- and time-de ased interstitial ag , 27 ; >547d, m N=	terstitial fibro pendent incre ggregation of =86, 71, 71, f	osis in alveolar ease of severi macrophages f N=91, 95, 87	septa for rats died ty scores, prominen ; n of control, LD, H (tab.5,6)	or euthanized < d 547 or t lesion >=365d, correlati ID: <547d, m N=32, 44, 4
bronchiolo-alveolar adenocarcinoma % dos 0 0 2.4 2.4 6.5 6.5 addi		sex	LOEL	LOEL	tran-		
bronchiolo-alveolar adenocarcinoma % do: 0 0 2.4 2.4 2.4 6.5 6.5 addi			study unit	mg/kg	sient		
% dos 0 0 2.4 2.4 6.5 6.5 addi		female	2.46	1.5744			
0 2.4 2.4 6.5 6.5 addi	e	sex	timepoint	level	score	significance	%
0 2.4 2.6 6.5 6.5 addi		male	772	0.92		n.g.	100
2.4 2.4 6.5 6.5 addi		female	772	0		n.g.	100
2.4 6.5 6.5 addi	6	male	772	0.94		n.g.	102.17
6.5 6.5 addi	6	female	772	5.6		n.g.	
6.5 addi	5	male	772	0.94		n.g.	102.17
addi	5	female	772	19		n.a.	
	ional	dose-dep hyperplas 105; bias	endent increase in ia; susceptible rat ed by low survival	n f (tab.10), p s (>365 d up rates of m >=	athogenesis fi to d 772; con = 680 d	rom a continuum tha trol, LD, HD): m N=	at began with alveolar epi 109, 106, 106, f N=105,
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
p53 mutations		male & female					
n.a.		Torriaro					
addi	ional	no effect:	no increase of mu	utations of p5	53 in lung tumo	ors	
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
K-ras mutations		male & female					
n.a.							
addi	ional	no effect:	no increase of mu	utations of K-	ras in lung tur	nors	
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
PAH-derived DNA adducts		male &	-				
n.a.		remale					
addi	ional	no effect:	no increased leve	l of PAH-der	ived DNA add	ucts in total lung tis	sue (32P postlabelina)

			Carbor	n Black	k							
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient							
deposits		male & female	2.46	1.5744								
n.a.	dose	sex	timepoint	level	score	significance	%					
	0	male & f	365		no change	n.a.						
	0	male & f	547		no change	n.a.						
	0	male & f	772		no change	n.a.						
	2.46	male & f	365			n.a.						
	2.46	male & f	547			n.a.						
	2.46	male & f	772			n.a.						
	6.55	male & f	365			n.a.						
	6.55	male & f	547			n.a.						
	6.55	male & f	772			n.a.						
	additional	increased 365d (see	incidences of cho inflammation)	lesterol clefts	s (by-products c	of necrosis) as par	t of inflammatory response					
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient							
infiltration		male & female	2.46	1.5744								
n.a.	dose	sex	timepoint	level	score	significance	%					
	0	male & f	365		no change	n.a.						
	0	male & f	547		no change	n.a.						
	0	male & f	772		no change	n.a.						
	2.46	male & f	365		Ū.	n.a.						
	2.46	male & f	547			n.a.						
	2.46	male & f	772			n.a.						
	6.55	male & f	365			n.a.						
	6.55	male & f	547			n.a.						
	6.55	male & f	772			n.a.						
	additional	increased inflammat	incidences of infil ion)	tration of neu	utrophils as part	of inflammatory r	esponse >= 365d (see					
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient							
adenosquamous	carcinoma	male & female	6.55	4.192								
%	dose	sex	timepoint	level	score	significance	%					
	0	male	772	0		n.g.	100					
	0	female	772	0		n.g.	100					
	2.46	male	772	0		n.g.						
	2.46	female	772	0		n.g.						
	6.55	male	772	0.94		n.g.						
	6.55	female	772	0.95		n.g.						
	additional	single cas	es at HD m and f	(tab.10); sus	ceptible rats (>3	365 d up to d 772:	control, LD, HD): m N=10					
		106, 106,	f N=105, 107, 10	5; biased by	low survival rate	es of m >= 680 d						
	Carbon Black											
------------------	--------------	------------------	--------------------	---------------	----------------	--------------	--------	--	--	--	--	--
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient							
squamous cell ca	arcinoma	male & female	6.55	4.192								
%	dose	sex	timepoint	level	score	significance	%					
	0	male	772	0.92		n.g.	100					
	0	female	772	0		n.g.	100					
	2.46	male	772	0		n.g.	0					
	2.46	female	772	0		n.g.						
	6.55	male	772	1.89		n.g.	205.43					
	6.55	female	772	0.95		n.g.						

additional single cases at HD m & f and at control m (tab.10); susceptible rats (>365 d up to d 772; control, LD HD): m N=109, 106, 106, f N=105, 107, 105; biased by low survival rates of m >= 680 d

effect		sex	LOEL study unit	LOEL mg/kg	tran- sient			
bronchiolo-alveolar adenoma		female	2.46	1.5744	5744			
%	dose	sex	timepoint	level	score	significance	%	
	0	male	772	0.92		n.g.	100	
	0	female	772	0		n.g.	100	
	2.46	male	772	0.94		n.g.	102.17	
	2.46	female	772	1.87		n.g.		
	6.55	male	772	0		n.g.	0	
	6.55	female	772	12.4		n.g.		
	additional	dose-dep	oendent increase in	f (tab.10); pa	athogenesis f	rom a continuum th	at began with alv	eolar epith

dose-dependent increase in f (tab.10); pathogenesis from a continuum that began with alveolar epith hyperplasia; n of susceptible rats (>365 d up to d 772; control, LD, HD): m N=109, 106, 106, f N=10 107, 105; biased by low survival rates of m >= 680 d

effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
squamous cysts		male & female	2.46	1.5744			
%	dose	sex	timepoint	level	score	significance	%
	0	male	730	0		n.g.	100
	0	female	730	0		n.g.	100
	0	male	772	0		n.g.	100
	0	female	772	0		n.g.	100
	2.46	male	730	0		n.g.	
	2.46	female	730	1.9		n.g.	
	2.46	male	772	100		n.g.	
	2.46	female	772	19.4		n.g.	
	6.55	male	730	5.4		n.g.	
	6.55	female	730	7.2		n.g.	
	6.55	female	772	44.4		n.g.	
	additional	f more se epitheliur increase, 730 d, m	nsitive, LOEL m = n with central kera only HD in m; >73 N=77, 72, 74, f N	6,55 mg/m3 tin accumula 30 d increase =56, 54, 69;	: increased ind tion) at d 547- d effect in f, lo >730d, m N=9	cidences of squamo 730 in LD & HD f w ow survival rate of m 9, 1, 0, f N=35, 36,	us cysts (squamous ith dose- & time-dependen i ; N of control, LD, HD: 54 18 (tab.7)

			Carbor	n Black	<		
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
squamous metaplasia		female	6.55	4.192			
%	dose	sex	timepoint	level	score	significance	%
	0	male	547	0		n.g.	100
	0	female	547	0		n.g.	100
	0	male	772	0		n.g.	100
	0	female	772	0		n.g.	100
	2.46	male	547	2		n.g.	
	2.46	female	547	0		n.g.	
	2.46	male	772	1		n.g.	
	2.46	female	772	6		n.g.	
	6.55	male	547	2		n.g.	
	6.55	female	547	0		n.g.	
	6.55	male	772	3		n.g.	
	6.55	female	772	24		n.g.	
	additional	sign. effe <547 d, r	ect at HD f > 547 fo n N=32, 44, 44, f N	r rats died or I=23, 21, 27 ;	euthanized < ; >547 d, m N	d 547 or > d 547 (i =86, 71, 71, f N=91	tab.5,6); N of control, LD, , 95, 87
effect		sex	LOEL	LOEL	tran-		
			study unit	mg/kg	sient		
fibrosis		male & female	2.46	1.5744			
%	dose	sex	timepoint	level	score	significance	%
	0	male	547	0		n.g.	100
	0	female	547	0		n.g.	100
	0	male	772	0		n.g.	100
	0	female	772	0		n.g.	100
	2.46	male	547	0		n.g.	
	2.46	female	547	0		n.g.	
	2.46	male	772	6		n.g.	
	2.46	female	772	17		n.g.	
	6.55	male	547	2		n.g.	
	6.55	female	547	7		n.g.	
	6.55	male	772	25		n.g.	
	6.55	female	772	31		n.g.	
	additional	increase dense co associate increase severity s N=91, 95	of incidences of fo Ilagen bundles and ed neutrophils) for of severity scores scores; n of control 5, 87 (tab.5,6)	cal fibrosis wi I small alveol rats died or e >= d485 in f a , LD, HD: <54	ith epithelial h ar structures, uthanized < c and d516 in m 47d, m N=32,	yperplasia (nodula surreounded by hy 1547 or > d 547 wit a; f more sensitive v 44, 44, f N=23, 21,	r focus of fibrosis compose perplastic epithelium and h dose- and time-depende vith higher incidences and 27; >547d, m N=86, 71,

	Carbon Black									
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient					
hyperplasia al	veolar type II cells	male & female	2.46	1.5744						
%	dose	sex	timepoint	level	score	significance	%			
	0	male & f	91	0		n.g.	100			
	0	male & f	182	0		n.g.	100			
	0	male & f	365	0		n.g.	100			
	0	male & f	547	0		n.g.	100			
	0	male & f	700	0		n.g.	100			
	0	male & f	772	12		n.g.	100			
	2.46	male & f	91	67		n.g.				
	2.46	male & f	182	100		n.g.				
	2.46	male & f	365	100		n.g.				
	2.46	male & f	547	100		n.g.				
	2.46	male & f	700	100		n.g.				
	2.46	male & f	772	100		n.g.	833.33			
	6.55	male & f	91	100		n.g.				
	6.55	male & f	182	100		n.g.				
	6.55	male & f	365	100		n.g.				
	6.55	male & f	547	100		n.g.				
	6.55	male & f	700	100		n.g.				
	6.55	male & f	772	100		n.g.	833.33			
	additional	incrosco	of incidences of al	voolar opithol	ial hyporplasi	a (increased numbe	or of alvoolar type II	colle) (

litional increase of incidences of alveolar epithelial hyperplasia (increased number of alveolar type II cells) (affected rats), all rats affected at LD >= d 182 & at HD all tp, not reversible during 42 d p-e with dos and time-dependent increase of grading (see hyperplasia: grading); serial sacrifices: N=3/sex and g terminal sacrifice control, LD, HD: N=34, 18, 12 (Mauderley: Tab.F1, F3, F5, F7, F8, F9)

effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
alveolar proteinosis		male & female	2.46	1.5744			
%	dose	sex	timepoint	level	score	significance	%
	0	male	547	0		n.g.	100
	0	female	547	0		n.g.	100
	0	male	772	0		n.g.	100
	0	female	772	0		n.g.	100
	2.46	male	547	0		n.g.	
	2.46	female	547	14		n.g.	
	2.46	male	772	0		n.g.	
	2.46	female	772	27		n.g.	
	6.55	male	547	18		n.g.	
	6.55	female	547	56		n.g.	
	6.55	male	772	25		n.g.	
	6.55	female	772	99		n.g.	
	additional	f more se euthanize seen in L 44, f N=2	ensitive, LOEL m 6 ed < d 547 or > d D & HD f, only HD 3, 21, 27 ; >547d,	6,55 mg/m3; i 547, dose- ai m and at low m N=86, 71,	increase of in nd time-depen ver incidence 71, f N=91, 9	cidences of alveola ndent increase of se than in f; n of contro 5, 87 (tab.5,6)	r proteinosis for rats died or everity scores >=365d; effec ol, LD, HD: < 547d, m N=32

			Carbor	DIAC	`		
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
fibrosis		male & female	2.46	1.5744			
%	dose	sex	timepoint	level	score	significance	%
	0	male & f	700	0		n.g.	100
	0	male & f	772	0		n.g.	100
	2.46	male & f	700	0		n.g.	
	2.46	male & f	772	28		n.g.	
	6.55	male & f	700	67		n.g.	
	6.55	male & f	772	33		n.q.	
	additional	increase o reversible control, L	of incidences of fo at HD, for grading D, HD: N=34, 18,	cal fibrosis (% g see fibrosis 12 (Mauderle	% affected rat : grading; ser ey: Tab.F1, F3	s), from d 700 at HE ial sacrifices: N=3/s , F5, F7, F8, F9)	D & at d 772 at LD, partly ex and group; terminal s
effect		sex	LOEL	LOEL	tran-		
			study unit	mg/kg	sient		
inflammation		male & female	2.46	1.5744			
%	dose	sex	timepoint	level	score	significance	%
	0	male	547	0		n.g.	100
	0	female	547	0		n.g.	100
	0	male	772	1		n.g.	100
	0	female	772	5		n.g.	100
	2.46	male	547	9		n.g.	
	2.46	female	547	24		n.g.	
	2.46	male	772	14		n.g.	1400
	2.46	female	772	34		n.g.	680
	6.55	male	547	20		n.g.	
	6.55	female	547	37		n.g.	
	6.55	male	772	34		n.g.	3400
	6.55	female	772	63		n.g.	1260
	additional	increase of scores >= cholestero f N=91, 9	of incidences of ch 365d, focal aggre ol clefts; n of contr 5, 87 (tab.5,6)	ronic-active i egates of neu ol, LD, HD: <	inflammation, trophils, dege 547d, m N=3	dose- and time-dep enerate inflammator 2, 44, 44, f N=23, 2	pendent increase of seve y cells, cell debris and 1, 27 ; <780d, m N=86,
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
hyperplasia alveola	ar type II cells	male & female	2.46	1.5744			
%	dose	sex	timepoint	level	score	significance	%
	0	male	547	0		n.g.	100
	0	female	547	0		n.g.	100
	0	male	772	2		n.g.	100
	0	female	772	9		n.g.	100
	2.46	male	547	98		n.g.	
	2.46	female	547	90		n.g.	
	2.46	male	772	100		n.g.	5000
	2.46	female	772	100		n.g.	1111.1
	6.55	male	547	100		n.g.	
	6.55	female	547	93		n.g.	
	6.55	male	772	100		n.g.	5000
	6.55	female	772	100		n.g.	1111.1
	additional	increase rats died d91, local	of incidences of al or euthanized $< d$ lization mainly in c	veolar epithe 547 or > d 5 entriacinar re	elial hyperplas 47, dose- an egion; n of cor	ia (increased numb d time-dependent ir htrol, LD, HD: <547	per of alveolar type II cell ncrease of severity score d, m N=32, 44, 44, f N=

Carbon Black										
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient					
macrophage infiltration		male & female	2.46	1.5744						
%	dose	sex	timepoint	level	score	significance	%			
	0	male	547	3		n.g.	100			
	0	female	547	0		n.g.	100			
	0	male	772	0		n.g.	100			
	0	female	772	4		n.g.	100			
	2.46	male	547	100		n.g.	3333.3			
	2.46	female	547	100		n.g.	2500			
	2.46	male	772	100		n.g.	3333.3			
	2.46	female	772	100		n.g.	2500			
	6.55	male	547	10		n.g.	333.33			
	6.55	female	547	96		n.g.				
	6.55	male	772	100		n.g.				
	6.55	female	772	100		n.g.	2500			
	additional	increase died or e control, L	of incidences of er uthanized < d 547 .D, HD: <547 d, m	nlarged alveol or > d 547; at N=32, 44, 44	lar macropha t later tps ma , f N=23, 21,	ges (alveolar macro crophage aggregati 27 ; >547d, m N=86	phage hyperplasia) for ra on in centriacinar region; 5, 71, 71, f N=91, 95, 87			

			Carbor	n Black	¢		
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
burden		male & female	2.46	1.5744			
mg/total lung	dose	sex	timepoint	level	score	significance	%
	0	male	91	0		n.g.	100
	0	female	91	0		n.g.	100
	0	male	182	0		n.g.	100
	0	female	182	0		n.g.	100
	0	male	365	0		n.g.	100
	0	female	365	0		n.g.	100
	0	male	547	0		n.g.	100
	0	female	547	0		n.g.	100
	0	male	700	0		n.g.	100
	0	female	700	0		n.g.	100
	2.46	male	91	1.7		n.g.	100
	2.46	female	91	1.7		n.g.	
	2.46	male	182	5.6		n.g.	
	2.46	female	182	3.3		n.g.	
	2.46	male	365	7.9		n.g.	
	2.46	female	365	6.2		n.g.	
	2.46	male	547	16		n.g.	
	2.46	female	547	12.1		n.g.	
	2.46	male	700	24.7		n.g.	
	2.46	female	700	17.3		n.g.	
	6.55	male	91	5.9		n.g.	347.05
	6.55	female	91	4.9		n.g.	
	6.55	male	182	13.7		n.g.	
	6.55	female	182	11		n.g.	
	6.55	male	365	15.1		n.g.	
	6.55	female	365	12.2		n.g.	
	6.55	male	547	29.9		n.g.	
	6.55	female	547	22.7		n.g.	
	6.55	male	700	40.1		n.g.	
	6.55	female	700	36.9		n.g.	
	additional	dose & til after 365	me-dependent incr d control values as	ease of total sumed, tab.3	lung burden (5)	no lavage), progres	sive accumulation acceler

Carbon Black											
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient						
metaplasia		male & female	2.46	1.5744							
%	dose	sex	timepoint	level	score	significance	%				
	0	male	547	0		n.g.	100				
	0	female	547	0		n.g.	100				
	0	male	780	0		n.g.	100				
	0	female	780	1		n.g.	100				
	2.46	male	547	2		n.g.					
	2.46	female	547	29		n.g.					
	2.46	male	780	15		n.g.					
	2.46	female	780	66		n.g.	6600				
	6.55	male	547	25		n.g.					
	6.55	female	547	52		n.g.					
	6.55	male	780	66		n.g.					
	6.55	female	780	97		n.q.	9700				
	additional	increase c severity so incidences N=86, 71,	of incidences of br cores >= 365d for s and severity sco 71, f N=91, 95, 8	onchiolar-alvo rats died or e res; n of cont 7 (tab.5,6)	eolar metapla euthanized < o rol, LD, HD: <	sia, dose- and time d 547 or > d 547, f i 547d, m N=32, 44,	-dependent increase of more sensitive with higher 44, f N=23, 21, 27 ; <780				
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient						
metaplasia		male & female	2.46	1.5744							
%	dose	sex	timepoint	level	score	significance	%				
	0	male & f	365	0		n.a.	100				
	0	male & f	547	0		n.a.	100				
	0	male & f	700	0		n.a.	100				
	0	male & f	772	3		na	100				
	2 46	male & f	365	0		na					
	2 46	male & f	547	50		na					
	2.46	male & f	700	83		n a					
	2.46	male & f	700	94		n.g.	3133 3				
	6 55	male & f	365	33		n.g.	0100.0				
	6.55	male & f	547	100		n.g.					
	6.55		700	100		n.g.					
	0.55		700	100		n.g.	0000 0				
	additional	dose- and from d 36 grading; s (Mauderle	I time-dependent in 5 at HD % d 547 a erial sacrifices: N= ey: Tab.F1, F3, F5	ncrease of ind at LD, not rev =3/sex and gi , F7, F8, F9)	cidences of t ersible, for gr roup; termina	oronchiolar-alveolar ading see bronchiol I sacrifice control, L	metaplasia (% affected ra lar-alveolar metaplasia: D, HD: N=34, 18, 12				
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient						
alveolar clearance		male & female	2.46	1.5744							
%	dose	sex	timepoint	level	score	significance	%				
	0	male & f	217	79		n.g.	100				
	0	male & f	673	69		n.g.	100				
	2.46	male & f	217	41		n.a.	51.89				
	2.46	male & f	673	18		n.a.	26.08				
	6 55	male & f	217	24		n a	30.37				
	6 55	male & f	673	14		g.	20.28				
	0.00					1					

%retained, calculated from Tab.11)

			Carpor	I BIACH	(
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
clearance		male & female	2.46	1.5744			
n.a.	dose	sex	timepoint	level	score	significance	%
	0	male & f	91		no change	n.a.	
	0	male & f	182		no change	n.a.	
	0	male & f	365		no change	n.a.	
	0	male & f	547		no change	n.a.	
	0	male & f	772		no change	n.a.	
	2.46	male & f	91			n.a.	
	2.46	male & f	182			n.a.	
	2.46	male & f	365			n.a.	
	2.46	male & f	547			n.a.	
	2.46	male & f	772			n.a.	
	6.55	male & f	91			n.a.	
	6.55	male & f	182			n.a.	
	6.55	male & f	365			n.a.	
	6.55	male & f	547			n.a.	
	6.55	male & f	772			n.a.	
	additional	particle-la damage o	den macrophages f macrophages	seen at all t	os, however, at	later tps free part	icles increased due to
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
macrophage damage		male & female	2.46	1.5744			
n.a.	dose	sex	timepoint	level	score	significance	%
	0	male & f	547		no change	n.a.	
	0	male & f	772		no change	n.a.	
	2.46	male & f	547			n.a.	
	2.46	male & f	772			n.a.	
	6.55	male & f	547			n.a.	
	6.55	male & f	772			n.a.	
	additional	increase	of cellular debris f	rom macroph	ages at >= 547	d	
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
macrophages interstitia	al	male &	2.46	1.5744			
n.a.	dose	sex	timepoint	level	score	significance	%
	0	male & f	91		no change	n.a.	
	0	male & f	182		no change	n.a.	
	0	male & f	365		no change	n.a.	
	0	male & f	547		no change	n.a.	
	0	male & f	772		no change	n.a.	
	2.46	male & f	365			n.a.	
	2.46	male & f	547			n.a.	
	2.46	male & f	772			n.a.	
	<u>e ee</u>	male & f	91			n.a.	
	0.55	····					
	6.55 6.55	male & f	182			n.a.	
	6.55 6.55	male & f male & f	182 365			n.a. n.a.	
	6.55 6.55 6.55 6.55	male & f male & f male & f	182 365 547			n.a. n.a. n.a.	
	6.55 6.55 6.55 6.55	male & f male & f male & f male & f	182 365 547 772			n.a. n.a. n.a. n.a.	

			Carbor	n Black	<		
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
foci		male & female	2.46	1.5744			
n.a.	dose	sex	timepoint	level	score	significance	%
	0	male & f	547		no change	n.a.	
	2.46	male & f	547			n.a.	
	6.55	male & f	547			n.a.	
	additional	foci with ir hyperplas	creased amount of the transmission of transmission of the transmission of transmission of transmission of the transmission of transmis	of epithelial h nultilayering c	nyperplasia inclu of hyperplastic e	uding some foci w pithelial cells at d	ith papillary projections o I 547
effect		sex	LOEL	LOEL	tran-		
			study unit	mg/kg	sient		
PAH-derived DNA add	ucts	male & female	6.55	4.192			
adducts/10E9 bas	dose	sex	timepoint	level	score	significance	%
	0	male & f	91	6.1		n.g.	100
	6.55	male & f	91	20.1		<0.05	329.5
	additional	sign. incre other tp)	ase of PAH-derive	ed DNA addu	ucts in alveolar	type II cells at HD	at d 91 (no data for LD c
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
squamous cysts		male & female	2.46	1.5744			
%	dose	sex	timepoint	level	score	significance	%
	0	male & f	700	0		n.g.	100
	0	male & f	772	0		n.g.	100
	2.46	male & f	700	0		n.g.	
	2.46	male & f	772	28		n.g.	
	6.55	male & f	700	33		n.g.	
	6.55	male & f	772	42		n.g.	
	additional	increase c reversible (Mauderle	f incidences of sq serial sacrifices: y: Tab.F1, F3, F5	uamous cyst N=3/sex and , F7, F8, F9)	ts (% affected ra group; termina	ats) from d 700 at I sacrifice control,	HD & at d 772 at LD, no LD, HD: N=34, 18, 12
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
squamous metaplasia		male & female	2.46	1.5744			
grading	dose	sex	timepoint	level	score	significance	%
	0	male & f	772	0		n.g.	100
	2.46	male & f	772	0.11		n.g.	
	6.55	male & f	772	0.75		n.g.	
	additional	increase o squamous (>50%); s (Mauderle	f grading (% affec metaplasia: %), g erial sacrifices: N= y: Tab.F1, F3, F5	ted lung) of a grading scale =3/sex and gr , F7, F8, F9)	alveolar squam e (% of affected roup; terminal s	ous metaplasia at lung): 1 (<10%), acrifice control, L	d 772 (for incidences se 2 (10-25%), 3 (25-50%), D, HD: N=34, 18, 12

effect		sex	LOEL study unit	LOEL mg/kg	tran- sient					
macrophage infiltration		male & female	2.46	1.5744						
grading	dose	sex	timepoint	level	score	significance	%			
	0	male & f	91	0		n.g.	100			
	0	male & f	182	0		n.g.	100			
	0	male & f	365	0		n.g.	100			
	0	male & f	547	0		n.g.	100			
	0	male & f	700	0		n.g.	100			
	0	male & f	772	0.06		n.g.	100			
	2.46	male & f	91	1		n.g.				
	2.46	male & f	182	1.33		n.g.				
	2.46	male & f	365	2		n.g.				
	2.46	male & f	547	2.33		n.g.				
	2.46	male & f	700	3		n.g.				
	2.46	male & f	772	2.69		n.g.	4483.3			
	6.55	male & f	91	2		n.g.				
	6.55	male & f	182	2.17		n.g.				
	6.55	male & f	365	3		n.g.				
	6.55	male & f	547	3		n.g.				
	6.55	male & f	700	3.5		n.g.				
	6.55	male & f	772	3.42		n.g.	5700			
	additional	dose- and hyperplas terminal s	l time-dependent i ia), for incidences acrifice control, Ll	ncrease of g see macrop D, HD: N=34	ading of enla hage infiltratio 18, 12 (Mau	rged alveolar macro on: %; serial sacrific derley: Tab.F1, F3,	pphages (alveolar macro es: N=3/sex and group; F5, F7, F8, F9)			
effect		sex	LOEL	LOEL	tran-	· · ·	,			
			study unit	mg/kg	sient					
metaplasia		male & female	2.46	1.5744						
grading	dose	sex	timepoint	level	score	significance	%			
	0	male & f	365	0		n.g.	100			
	0	male & f	547	0		n.g.	100			
	0	male & f	700	0		n.g.	100			
	0	male & f	772	0.06		n.g.	100			
	2.46	male & f	365	0		n.g.				
	2.46	male & f	547	1		n.g.				
	2.46	male & f	700	1.33		n.g.				
	2.46	male & f	772	2		n.g.	3333.3			
	6.55	male & f	365	0.5		n.g.				
	6.55	male & f	547	1.83		n.g.				
	6.55	male & f	700	2.5		n.g.				
	6.55	male & f	772	3.08		n.a.	5133.3			
	additional	dose- and d 365 at H grading so N=3/sex a F9)	I time-dependent i ID & d 547 at LD, cale (% of affected and group; termina	ncrease of gi not reversibl d lung): 1 (<1 al sacrifice co	rading (% affe e (for incidend 0%), 2 (10-25 ntrol, LD, HD	ected lung) of broncl ces see: bronchiolar %), 3 (25-50%), 4 (: N=34, 18, 12 (Mat	hiolar-alveolar metaplasi r-alveolar metaplasia: % >50%); serial sacrifices: uderley: Tab.F1, F3, F5,			

sex male & female sex	LOEL study unit 2.46	LOEL mg/kg	tran- sient		
male & female sex	2.46	1.5744			
sex					
	timepoint	level	score	significance	%
male & f	91	0		n.g.	100
male & f	182	0		n.g.	100
male & f	365	0		n.g.	100
male & f	547	0		n.g.	100
male & f	700	0		n.g.	100
male & f	772	0.18		n.g.	100
male & f	182	1.33		n.g.	
male & f	365	2		n.g.	
male & f	547	2.17		n.g.	
male & f	700	3		n.g.	
male & f	772	3.06		n.g.	1700
male & f	91	2		n.g.	
male & f	182	2		n.g.	
male & f	365	2.83		n.g.	
male & f	547	2.83		n.g.	
male & f	700	3.17		n.g.	
male & f	772	3.67		n.g.	2038.9
l dose- and reversible (<10%), 2 control, L	l time-dependent i during 42 d p-e (f (10-25%), 3 (25-5 D, HD: N=34, 18,	ncrease of gr or incidences 50%), 4 (>50% 12 (Mauderle	ading (% affe see: hyperpl %); serial sacr y: Tab.F1, F3	cted lung) of alveola asia: %), grading sc ifices: N=3/sex and , F5, F7, F8, F9)	ar epithelial hyperplasia; no cale (% of affected lung): 1 group; terminal sacrifice
sex	LOEL	LOEL	tran-		
	sex male & f male & f we write the the the the the the the the the t	remaie timepoint male & f 91 male & f 91 male & f 182 male & f 365 male & f 547 male & f 700 male & f 772 male & f 772 male & f 365 male & f 782 male & f 91 male & f 700 male & f 772 male & f 91 male & f 772 male & f 91 male & f 91 male & f 700 male & f 772 I dose- and time-dependent i reversible during 42 d p-e (f (<10%), 2 (10-25%), 3 (25-4	remaie timepoint level sex timepoint level male & f 91 0 male & f 182 0 male & f 365 0 male & f 547 0 male & f 700 0 male & f 772 0.18 male & f 182 1.33 male & f 365 2 male & f 772 3.06 male & f 772 3.06 male & f 91 2 male & f 91 2 male & f 91 2 male & f 182 2.83 male & f 547 2.83 male & f 700 3.17 male & f 772 3.67 I dose- and time-dependent increase of gr reversible during 42 d p-e (for incidences (<10%), 2 (10-25%), 3 (25-50%), 4 (>50%) control, LD, HD: N=34, 18, 12 (Mauderle	remaie timepoint level score male & f 91 0 male & f 182 0 male & f 365 0 male & f 547 0 male & f 700 0 male & f 772 0.18 male & f 182 1.33 male & f 365 2 male & f 772 0.18 male & f 772 3.17 male & f 772 3.06 male & f 91 2 male & f 182 2 male & f 772 3.06 male & f 772 3.06 male & f 700 3 male & f 700 3.17 male & f 772 3.67 I dose- and time-dependent increase of grading (% affererversible during 42 d p-e (for incidences see: hyperplactor), 3 (25-50%), 4 (>50%); serial sacr control, LD, HD: N=34, 18, 12 (Mauderley: Tab.F1, F3 sex LOEL LOEL tran- <td>remaie sex timepoint level score significance male & f 91 0 n.g. male & f 182 0 n.g. male & f 365 0 n.g. male & f 547 0 n.g. male & f 547 0 n.g. male & f 700 0 n.g. male & f 772 0.18 n.g. male & f 182 1.33 n.g. male & f 365 2 n.g. male & f 547 2.17 n.g. male & f 547 2.17 n.g. male & f 700 3 n.g. male & f 712 3.06 n.g. male & f 91 2 n.g. male & f 365 2.83 n.g. male & f 700 3.17 n.g. male & f 772 3.67 n.g. male & f</td>	remaie sex timepoint level score significance male & f 91 0 n.g. male & f 182 0 n.g. male & f 365 0 n.g. male & f 547 0 n.g. male & f 547 0 n.g. male & f 700 0 n.g. male & f 772 0.18 n.g. male & f 182 1.33 n.g. male & f 365 2 n.g. male & f 547 2.17 n.g. male & f 547 2.17 n.g. male & f 700 3 n.g. male & f 712 3.06 n.g. male & f 91 2 n.g. male & f 365 2.83 n.g. male & f 700 3.17 n.g. male & f 772 3.67 n.g. male & f

			study unit	mg/kg	sient		
alveolar proteinosis		male & female	2.46	1.5744			
grading	dose	sex	timepoint	level	score	significance	%
	0	male & f	365	0		n.g.	100
	0	male & f	547	0		n.g.	100
	0	male & f	700	0		n.g.	100
	0	male & f	772	0		n.g.	100
	2.46	male & f	365	0.17		n.g.	
	2.46	male & f	547	0.33		n.g.	
	2.46	male & f	700	0.33		n.g.	
	2.46	male & f	772	0.78		n.g.	
	6.55	male & f	365	1.33		n.g.	
	6.55	male & f	547	1.33		n.g.	
	6.55	male & f	700	1.83		n.g.	
	6.55	male & f	772	3.5		n.g.	
	additional	dose- and reversible (10-25%), N=34, 18,	time-dependent i (for incidences se 3 (25-50%), 4 (> 12 (Mauderley: T	increase of gr ee: alveolar pr 50%); serial s fab.F1, F3, F5	ading (% affe roteinosis: % acrifices: N= 5, F7, F8, F9)	ected lung) of alveol), grading scale (% o 3/sex and group; ter	ar proteinosis from d 365, of affected lung): 1 (<10%) minal sacrifice control, LD

			Carbor	n Black	¢		
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
alveolar proteinosis		male & female	2.46	1.5744			
%	dose	sex	timepoint	level	score	significance	%
	0	male & f	365	0		n.g.	100
	0	male & f	547	0		n.g.	100
	0	male & f	700	0		n.g.	100
	0	male & f	772	0		n.g.	100
	2.46	male & f	365	17		n.g.	
	2.46	male & f	547	33		n.g.	
	2.46	male & f	700	33		n.g.	
	2.46	male & f	772	56		n.g.	
	6.55	male & f	365	100		n.g.	
	6.55	male & f	547	67		n.g.	
	6.55	male & f	700	67		n.g.	
	6.55	male & f	772	100		n.g.	
	additional	dose- and not revers terminal s	time-dependent i ible, for grading s acrifice control, L	ncrease of in ee alveolar p D, HD: N=34,	cidences of a roteinosis: gra 18, 12 (Maud	lveolar proteinosis (ading; serial sacrific derley: Tab.F1, F3,	% affected rats) from d 3 es: N=3/sex and group; F5, F7, F8, F9)
effect		sex	LOEL	LOEL	tran-		
			study unit	mg/kg	sient		
fibrosis		male & female	2.46	1.5744			
grading	dose	sex	timepoint	level	score	significance	%
	0	male & f	700	0		n.g.	100
	0	male & f	772	0		n.g.	100
	2.46	male & f	700	0		n.g.	
	2.46	male & f	772	0.5		n.g.	
	6.55	male & f	700	1.33		n.g.	
	6.55	male & f	772	0.75		n.g.	
	additional	increase o at HD (for 50%), 4 (> (Mauderle	of grading (% affect incidences see: f >50%); serial sacr ev: Tab.F1, F3, F5	cted lung) of f ibrosis: %), g ifices: N=3/se i, F7, F8, F9)	ocal fibrosis f rading scale (ax and group;	rom d 700 at HD & % of affected lung) terminal sacrifice c	at d 772 at LD, partly rev : 1 (<10%), 2 (10-25%), 3 ontrol, LD, HD: N=34, 18

			Carbor	n Black	‹		
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
fibrosis		male & female	2.46	1.5744			
grading	dose	sex	timepoint	level	score	significance	%
	0	male & f	182	0		n.g.	100
	0	male & f	365	0		n.g.	100
	0	male & f	547	0		n.g.	100
	0	male & f	700	0		n.g.	100
	0	male & f	772	0.03		n.g.	100
	2.46	male & f	182	0		n.g.	
	2.46	male & f	365	0.33		n.g.	
	2.46	male & f	547	2		n.g.	
	2.46	male & f	700	2.83		n.g.	
	2.46	male & f	772	2.67		n.g.	8900
	6.55	male & f	182	0.33		n.g.	
	6.55	male & f	365	1.17		n.g.	
	6.55	male & f	547	2.5		n.g.	
	6.55	male & f	700	3		n.g.	
	6.55	male & f	772	3		n.g.	10000
	additional	dose- and	l time-dependent i	ncrease of ar	ading (% affe	cted lung) of alveol	ar septal fibrosis: from d 1

I dose- and time-dependent increase of grading (% affected lung) of alveolar septal fibrosis; from d 18 HD & d 365 at LD, not reversible (for incidences see: fibrosis: %), grading scale (% of affected lung) (<10%), 2 (10-25%), 3 (25-50%), 4 (>50%); serial sacrifices: N=3/sex and group; terminal sacrifice control, LD, HD: N=34, 18, 12 (Mauderley: Tab.F1, F3, F5, F7, F8, F9)

	Carbon Black									
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient					
weight		male & female	2.46	1.5744						
gram	dose	sex	timepoint	level	score	significance	%			
	0	male	91	1.32		n.g.	100			
	0	female	91	0.94		n.g.	100			
	0	male	182	1.4		n.g.	100			
	0	female	182	1.03		n.g.	100			
	0	male	365	1.58		n.g.	100			
	0	female	365	1.09		n.g.	100			
	0	male	547	1.77		n.g.	100			
	0	female	547	1.45		n.g.	100			
	0	male	700	1.99		n.g.	100			
	0	female	700	1.25		n.g.	100			
	2.46	male	91	1.35		none	102.27			
	2.46	female	91	1.06		none	112.76			
	2.46	male	182	1.71		none	122.14			
	2.46	female	182	1.17		<0.05	113.59			
	2.46	male	365	2.17		<0.05	137.34			
	2.46	female	365	1.59		<0.05	145.87			
	2.46	male	547	2.69		none	151.97			
	2.46	female	547	2.01		none	138.62			
	2.46	male	700	3.12		none	156.78			
	2.46	female	700	2.42		<0.05	193.6			
	6.55	male	91	1.56		none	118.18			
	6.55	female	91	1.21		<0.05	128.72			
	6.55	male	182	2.12		none	151.42			
	6.55	female	182	1.68		<0.05	163.1			
	6.55	male	365	3.31		<0.05	209.49			
	6.55	female	365	2.56		<0.05	234.86			
	6.55	male	547	3.5		<0.05	197.74			
	6.55	female	547	3.71		<0.05	255.86			
	6.55	male	700	4.48		none	225.12			
	6.55	female	700	4.95		<0.05	396			
	additional	dose- & ti and at mo	ime-dependent inc ore tp at LD (tab.4)	rease of lung	wt, sign. in f	HD, f more sensitiv	e: sign. effect seen earlier			

			Carbor	n Black	<		
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
macrophage infiltrat	tion	male & female	2.46	1.5744			
%	dose	sex	timepoint	level	score	significance	%
	0	male & f	91	0		n.g.	100
	0	male & f	182	0		n.g.	100
	0	male & f	365	0		n.g.	100
	0	male & f	547	0		n.g.	100
	0	male & f	700	0		n.g.	100
	0	male & f	772	6		n.g.	100
	2.46	male & f	91	100		n.g.	
	2.46	male & f	182	100		n.g.	
	2.46	male & f	365	100		n.g.	
	2.46	male & f	547	100		n.g.	
	2.46	male & f	700	100		n.g.	
	2.46	male & f	772	100		n.g.	1666.7
	6.55	male & f	91	100		n.g.	
	6.55	male & f	182	100		n.g.	
	6.55	male & f	365	100		n.g.	
	6.55	male & f	547	100		n.g.	
	6.55	male & f	700	100		n.g.	
	6.55	male & f	772	100		n.g.	1666.7
	additional	increase of affected f group; ter	of incidences of e rom d 91-772; for minal sacrifice co	nlarged alveo grading see ntrol, LD, HD	olar macropha macrophage i : N=34, 18, 12	ages (alveolar maci infiltration: grading; 2 (Mauderley: Tab.F	rophage hyperplasia), all ra serial sacrifices: N=3/sex a F1, F3, F5, F7, F8, F9)
effect		sex	LOEL	LOEL	tran-		
			study unit	mg/kg	sient		
fibrosis		male & female	2.46	1.5744			
%	dose	sex	timepoint	level	score	significance	%
	0	male & f	182	0		n.g.	100
	0	male & f	365	0		n.g.	100
	0	male & f	547	0		n.g.	100
	0	male & f	700	0		n.g.	100
	0	male & f	772	3		n.g.	100
	2.46	male & f	182	0		n.g.	
	2.46	male & f	365	33		n.g.	
	2.46	male & f	547	100		n.g.	
	2.46	male & f	700	100		n.g.	
	2.46	male & f	772	100		n.a.	3333.3

6.55

6.55

6.55

6.55

6.55

additional

male & f

182

365

547

700

772

33

67

100

100

100

n.g.

n.g.

n.g.

n.g.

n.g.

increase of incidences of alveolar septal fibrosis (% affected rats), from d 182 at HD & d 365 at LD, rats affected at >= d 547, not reversible, for grading see fibrosis: grading; serial sacrifices: N=3/sex group; terminal sacrifice control, LD, HD: N=34, 18, 12 (Mauderley: Tab.F1, F3, F5, F7, F8, F9)

3333.3

			Carbor	n Black	<		
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
inflammation		male & female	2.46	1.5744			
grading	dose	sex	timepoint	level	score	significance	%
	0	male & f	182	0		n.g.	100
	0	male & f	365	0		n.g.	100
	0	male & f	547	0		n.g.	100
	0	male & f	700	0		n.g.	100
	0	male & f	772	0.09		n.g.	100
	2.46	male & f	182	0.17		n.g.	
	2.46	male & f	365	0.17		n.g.	
	2.46	male & f	547	1.17		n.g.	
	2.46	male & f	700	0.67		n.g.	
	2.46	male & f	772	1		n.g.	1111.1
	6.55	male & f	182	0		n.g.	
	6.55	male & f	365	0.17		n.g.	
	6.55	male & f	547	2		n.g.	
	6.55	male & f	700	1.83		n.g.	
	6.55	male & f	772	1.75		n.g.	1944.4
	additional	dose- and	time-dependent i	ncrease of or	ading (% affe	cted luna) of chroni	c active inflammation. r

dose- and time-dependent increase of grading (% affected lung) of chronic active inflammation; max d 547, partially reversible thereafter (for incidences see: inflammation: %), grading scale (% of affec lung): 1 (<10%), 2 (10-25%), 3 (25-50%), 4 (>50%); serial sacrifices: N=3/sex and group; terminal sacrifice control, LD, HD: N=34, 18, 12 (Mauderley: Tab.F1, F3, F5, F7, F8, F9)

effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
inflammation		male & female	2.46	1.5744			
%	dose	sex	timepoint	level	score	significance	%
	0	male & f	182	0		n.g.	100
	0	male & f	365	0		n.g.	100
	0	male & f	547	0		n.g.	100
	0	male & f	700	0		n.g.	100
	0	male & f	772	9		n.g.	100
	2.46	male & f	182	17		n.g.	
	2.46	male & f	365	17		n.g.	
	2.46	male & f	547	100		n.g.	
	2.46	male & f	700	100		n.g.	
	2.46	male & f	772	72		n.g.	800
	6.55	male & f	182	0		n.g.	
	6.55	male & f	365	17		n.g.	
	6.55	male & f	547	100		n.g.	
	6.55	male & f	700	100		n.g.	
	6.55	male & f	772	100		n.g.	1111.1
	additional	increase c	of incidences of ch	ronic active i	nflammation (% affected rats), sir	ngle rats on d 182 & 365, a

nal increase of incidences of chronic active inflammation (% affected rats), single rats on d 182 & 365, a rats affected at >= d 547, partially reversible at LD after 42 d p-e, for grading see inflammation: grad serial sacrifices: N=3/sex and group; terminal sacrifice control, LD, HD: N=34, 18, 12 (Mauderley: Tab.F1, F3, F5, F7, F8, F9)

Carbon Black									
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient				
squamous metaplasia		male & female	2.46	1.5744					
%	dose	sex	timepoint	level	score	significance	%		
	0	male & f	772	0		n.g.	100		
	2.46	male & f	772	6		n.g.			
	6.55	male & f	772	33		n.g.			

additional increase of incidences of alveolar squamous metaplasia (% affected rats) at d 772, for grading see squamous metaplasia: grading; serial sacrifices: N=3/sex and group; terminal sacrifice control, LD, H N=34, 18, 12 (Mauderley: Tab.F1, F3, F5, F7, F8, F9)

lymph node

effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
burden		male & female	2.46	1.5744			
mg/organ	dose	sex	timepoint	level	score	significance	%
	0	male	91	0		n.g.	100
	0	female	91	0		n.g.	100
	0	male	182	0		n.g.	100
	0	female	182	0		n.g.	100
	0	male	365	0		n.g.	100
	0	female	365	0		n.g.	100
	0	male	547	0		n.g.	100
	0	female	547	0		n.g.	100
	0	male	700	0		n.g.	100
	0	female	700	0		n.g.	100
	2.46	male	91	0.026		n.g.	
	2.46	female	91	0.004		n.g.	
	2.46	male	182	0.37		n.g.	
	2.46	female	182	0.233		n.g.	
	2.46	male	365	0.949		n.g.	
	2.46	female	365	0.763		n.g.	
	2.46	male	547	2.461		n.g.	
	2.46	female	547	1.478		n.g.	
	2.46	male	700	3.124		n.g.	
	2.46	female	700	1.782		n.g.	
	6.55	male	91	0.188		n.g.	
	6.55	female	91	0.173		n.g.	
	6.55	male	182	0.978		n.g.	
	6.55	female	182	0.766		n.g.	
	6.55	male	365	2.934		n.g.	
	6.55	female	365	1.471		n.g.	
	6.55	male	547	4.318		n.g.	
	6.55	female	547	1.997		n.g.	
	6.55	male	700	4.448		n.g.	
	6.55	female	700	2.076		n.g.	
	additional	time-relat	ted increase of LAI	_N burden, m	> f, control v	alues assumed (Ma	uderly: Tab.D1-D5)

Titanium dioxide

molecular weight 79.9 g/mol

study pk 4099

Study Data

Specification by Producer / Supplier

Primary particle

object

synonym TiO2 P25

size	diameter in nm	inner diameter in nm	outer diameter in nm	length in nm
mean	21			
SD				
min	15			
max	40			

medium		determ. method	
distribution type	no data	surface property	hydrophilic
cristal structure	Anatase	shape	
specific surface in m²/g solubility in mg/l		specific volume in m³/g at in °C	
particle density in g/cm ³	3.8		
additional	hydrophil pyrogen		
reference	MSDS Aug.2011, Degussa A.G.,	Frankfurt am Main, Germ	nany
producer	Degussa A.G., Frankfurt am Main	, Germany	

Specification by Authors

object Primary particle

_			innen diemeten		outon diomoton in mm	low with in more			
size	diame	eter in nm	inner diameter	in nm	outer diameter in nm	length in hm			
mean									
SD									
min									
max									
medium				dete	rm. method				
distribution	type	no data		surface property					
cristal struc	cture	~80 % anata rutile	ase and ~20 %	shape					
specific sur	face in	48		spe	cific volume in				
m²/g				m³/g	l				
solubility in	mg/l			at in	°C				
particle den g/cm ³	nsity in								
additional		Titanium dic	xide P25, Degussa,	German	; coarse particles removed	by a cyclone (shift of MMAI			

Hydrodynamic diameter

median	800 nm	distibution type	no data
GSD	1.8	bulk density	mg/ml

from 1500 nm to 800 nm)

Heinrich et al. (1995)

reference

Titanium dioxide										
min	nm	isoelectric point		in						
max	nm	zeta potential	mV	in						
medium		peak SPR	nm	in						
determ. method	10-stage Berner impactor	conductivity	µS/cm	in						
sample treatment		solubility	mg/L	in	at	°C				
applic. medium										
dispersant										
additional										

Study Design

species	rat	strain	Wistar (Crl:(WI) BR)
sex	female	animal/group	100
route	whole-body	age of animal	7 w
purity			
exposure in h/d	18	exposure in d/w	5
study dur. in d	730	postexp. dur. in d	180
no. of instillation		frequency	
exposure (additional) dose / concentration	whole-body in 6 or 12 m3 horizont as time-weighted average of 7,2 r mg/m ³ for 5,5 months cumulative exposure 88,1 g/m ³ x h	al flow type chambers; ng/m³ for 4 months + 1 n	nominal concentration of 10 mg/m3 4,8 mg/m ³ for 9,5 months + 9,4
	0 10	1 dose study 🗹	
Unit mg/m ³		confidential	
additional	interim sacrifices at d 91, 182, 365 number of animals (control/expose carcinogenicity: 220/100, additiona histology (serial sacrifice): 80/80 DNA-adducts: 14/14 lung burden: 66/66 lung clearance: 28/28, measured a µm) Ti burden via AAS after ashing of	5, 547, 670, 730 and 9 [,] ed): ally as clearance of radiola tissue	10 d beled Fe2O3 tracer particles (MMAD 0,35

Reference						
author	Heinrich U, and Fuhst, R	source	Abschlussbericht: Vergleichend Untersuchungen zur Frage der tumorinduzierenden Wirkung von Dieselmotorabgasen in der Rattenlunge. Final Report in German			
volume	07VAG06	year	1992	page	1-56 plus Append	
institution	Fraunhofer ITEM					
author	Muhle H, et al.	source	In: Mohr U, et al. (Ed.) Toxic and carcinogenic effects of solid particles in the respiratory tract			
volume		year	1994	page	29-41	
institution	Fraunhofer ITEM					
author	Creutzenberg O, et al.	source	J Aerosol Science			
volume	21 Suppl 1	year	1990	page	S455-S458	
institution	Fraunhofer ITEM					

		-	Titaniu	m dio	xide		
author	Heinrich U, et al.		source	Inha	lation Toxico	logy	
volume	7		year	199	5	page	533-556
institution	Fraunhofer ITEM						
Scope							
- organ	animal/grou	up necr	opsy org	gan weight	histopatho	ology	
guideline							
luna	10				✓		
additional	total lung l	ourden (n	o lavage) ;	alveolar lu	ng clearang	e of radiolabe	led tracer
	particles; h	nistopatho	: H&E stair		ing clearance		
trachea	10				✓		
		_	_	_	_		
larynx	10	L					
	40	Г	_				
nose	10	L			V		
additional	nasal and	paranasal	cavities				
body weight	100	L					
BALE	10	Г	7				
Ivmr	nocytes	L	 aranulocyte	 s		alveolar macrop	hades
hvdi	roxyproline		total protein			ß-alucuronidase	lages
lacta	ate dehydrogenase (LD	DH)				P 9	
additional	both lobes	. 5x4ml					
mortality	100	[
-							
lymph node	10						
additional	burden in l	LALN					
Effect data	l						
BALF							
effect		sex	LOEL	LOEL	tran-		
			study unit	mg/kg	g sient		
alveolar macro	phages total	female	10	7.2			
x10E6	dose	sex	timepoi	nt leve	l score	significance	e %
	0	female	670	0.29	1	n.g.	100
	0	female	730	0.95	i	n.g.	100
	10	female	670	1.52		n.g.	524.13
	10	female	730	1.02		n.g.	107.36
	additional	increase o 6 mo p-e (of number of Al addtional BAL	V at 22 and 2 F data in Stu	24 mo of expos dy Number 400	ure, effect slightly 02)	lower than after 18 mo exp
effect		sex	LOEL	LOEL	tran-		
			study unit	mg/kg	g sient		
hydroxyproline		female	10	7.2			
%	dose	sex	timepoi	nt leve	l score	significance	%
	0	female	730	100		n.g.	100
	10	female	730	260		<0.01	260
	additional	sign. incre exposure ·	ase of free hyd + 6 mo p-e (ad	droxyproline a	at termination c data in Study	of 24 mo exposure, Number 4002)	effect higher than after 18

offoct		607			tran		
effect		sex	Study unit	mg/kg	sient		
total protein		female	10	7.2			
	dose	sex	timepoint	level	score	significance	%
	0	female	730	100		n.g.	100
	10	female	730	890		<0.01	890
	additional	sign. incr 6 mo p-e	ease of total protein (addtional BALF da	n at terminati ata in Study I	ion of 24 mo Number 4002	exposure, effect low	er than after 18 mo exp
effect		sex	LOEL	LOEL	tran-		
			study unit	mg/kg	sient		
β-glucuronidase		female	10	7.2			
%	dose	sex	timepoint	level	score	significance	%
	0	female	730	100		n.g.	100
	10	female	730	6750		<0.01	6750
	additional	sign. incr exposure	ease of β-glucuroni + 6 mo p-e (addtio	idase activity mal BALF da	at terminatio ta in Study N	n of 24 mo exposure umber 4002)	e, effect lower than afte
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
lactate dehydrogenas	e (LDH)	female	10	7.2			
%	dose	sex	timepoint	level	score	significance	%
	0	female	730	100		n.g.	100
	10	female	730	1300		<0.01	1300
	additional	sign. incr 6 mo p-e	ease of LDH activit (addtional BALF da	y at terminat ata in Study I	ion of 24 mo Number 4002	exposure, effect low	ver than after 18 mo ex
effect		sex	LOEL	LOEL	tran-	,	
			study unit	mg/kg	sient		
granulocytes		female	10	7.2			
x10E6	dose	sex	timepoint	level	score	significance	%
	0	female	670	0		n.a.	100
	0	female	730	0		n.a.	100
	10	female	670	1.42		n.a.	
	10	female	730	2.67		n.a.	
	additional	increase mo expo	of number of granu sure + 6 mo p-e (ad	locytes (10E	6/ml) at 22 ar data in Stud	nd 24 mo of exposu ly Number 4002)	re, effect higher than a
ody weiaht							
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
weight decreased		female	10	7.2			
gram	dose	sex	timepoint	level	score	significance	%
-	0	female	730	417		- n.a	100
	10	female	730	365		y. ∠0.05	87 52
	10		100	000		NO.00	01.02

	Titanium dioxide									
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient					
mortality		female	10	7.2						
%	dose	sex	timepoint	level	score	significance	%			
	0	female	730	42		n.g.	100			
	0	female	910	85		n.g.	100			
	10	female	730	60		<0.05	142.85			
	10	female	910	90		<0.05	105.88			
	additional	sign. dec	ease of mean lifetir	me; mortality	increased at	termination of expo	sure an after 6 m	по р-е		

lung LOEL effect LOEL transex mg/kg study unit sient 7.2 weight female 10 gram dose sex timepoint level score significance % 0 female 91 1.28 n.g. 100 0 female 182 1.55 n.g. 100 365 100 0 female 1.33 n.g. 0 female 547 1.54 n.g. 100 0 female 670 1.34 n.g. 100 0 female 730 1.44 100 n.g. 10 91 1.93 <0.001 150.78 female 10 female 182 2.96 <0.001 190.96 365 <0.001 336.84 10 female 4.48 400 10 female 547 6.16 < 0.001 10 female 670 5.72 < 0.001 426.86 10 female 730 5.29 <0.001 367.36

additional sign. increase of lung burden from 3 mo throughout 24 mo of exposure, maximum level at 18 mo exposure, partly reversible up to 24 mo exposure (no data for p-e)

effect		sex	LOEL study unit	LOEL mg/kg	tran- sient			
burden		female	10	7.2				
mg/organ	dose	sex	timepoint	level	score	significance	%	
	0	female	91	0		n.g.	100	
	0	female	182	0		n.g.	100	
	0	female	365	0		n.g.	100	
	0	female	547	0		n.g.	100	
	0	female	670	0		n.g.	100	
	0	female	730	0		n.g.	100	
	10	female	91	5.2		n.g.		
	10	female	182	23.2		n.g.		
	10	female	365	34.8		n.g.		
	10	female	547	40		n.g.		
	10	female	670	37.7		n.g.		
	10	female	730	39.3		n.g.		
	additional	increase mo expos d: further	of total lung burder sure, practically not data for 18 mo ext	n (no lavage) reversible up posure + p-e	from 3 mo th p to 24 mo ex in Study Nurr	roughout 24 mo exp posure (no data for ber 4002	oosure, maximu p-e); clearance	ım level at 1 e half-time

effect		sex	LOEL study unit	LOEL mg/kg	tran- sient				
alveolar clearance		female	10	7.2					
days	dose	sex	timepoint	level	score	significance	%		
	0	female	91	61		n.g.	100		
	0	female	365	72		n.g.	100		
	0	female	547	96		n.g.	100		
	10	female	91	208		<0.01	340.98		
	10	female	365	403		<0.01	559.72		
	10	female	547	357		<0.01	371.87		
	additional	sign. incr exposure	ease of alveolar cle (no data for p-e); f	earance half- urther data fo	time of radiola or 18 mo expo	abeled tracer partic sure + p-e in Study	les, maximum at 12 m / Number 4002		
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient				
hyperplasia bronchiol	o-alveolar	female	10	7.2					
%	dose	sex	timepoint	level	score	significance	%		
	0	female	182	0		n.g.	100		
	0	female	910	0		n.g.	100		
	10	female	182	100	medium	n.g.			
	10	female	910	99	severe	n.g.			
	additional	increased at 24 mo	d incidences of bror exposure + 6 mo p	nchiolo-alveo -e with increa	lar hyperplasia ase in severity	a in all rats of interi	m sacrifices, and in 99		
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient				
fibrosis		female	10	7.2					
%	dose	sex	timepoint	level	score	significance	%		
	0	female	182	0		n.g.	100		
	0	female	265	10	minimal	n.g.			
	0	female	547	5.6	minimal	n.g.			
	Ũ		=	0		n.g.	100		
	0	female	730	0					
	0	female female	730 910	4.1	minimal	n.g.			
	0 0 0	female female female	730 910 910	4.1 4.1	minimal minimal	n.g. n.g.			
	0 0 0 10	female female female female	730 910 910 182	4.1 4.1 100	minimal minimal minimal	n.g. n.g. n.g.			
	0 0 0 10 10	female female female female female	730 910 910 182 365	4.1 4.1 100 15	minimal minimal minimal medium	n.g. n.g. n.g. n.g.			
	0 0 0 10 10 10	female female female female female female	730 910 910 182 365 365	4.1 4.1 100 15 75	minimal minimal minimal medium mild	n.g. n.g. n.g. n.g. n.g.			
	0 0 10 10 10 10	female female female female female female female	730 910 910 182 365 365 547	4.1 4.1 100 15 75 15	minimal minimal minimal medium mild severe	n.g. n.g. n.g. n.g. n.g. n.g.			
	0 0 10 10 10 10 10 10	female female female female female female female female	730 910 910 182 365 365 547 547	4.1 4.1 100 15 75 15 75	minimal minimal medium mild severe medium	n.g. n.g. n.g. n.g. n.g. n.g. n.g.			
	0 0 10 10 10 10 10 10 10	female female female female female female female female	730 910 910 182 365 365 547 547 547	4.1 4.1 100 15 75 15 75 10	minimal minimal medium mild severe medium mild	n.g. n.g. n.g. n.g. n.g. n.g. n.g. n.g.			
	0 0 10 10 10 10 10 10 10 10	female female female female female female female female female female	730 910 910 182 365 365 547 547 547 547 730	4.1 4.1 100 15 75 15 75 10 100	minimal minimal medium mild severe medium mild medium	n.g. n.g. n.g. n.g. n.g. n.g. n.g. n.g.			
	0 0 10 10 10 10 10 10 10 10 10	female female female female female female female female female female female	730 910 910 182 365 365 547 547 547 547 730 910	4.1 4.1 100 15 75 15 75 10 100 60	minimal minimal medium mild severe medium mild medium medium	n.g. n.g. n.g. n.g. n.g. n.g. n.g. n.g.			
	0 0 10 10 10 10 10 10 10 10 10 10	female female female female female female female female female female female female	730 910 910 182 365 365 547 547 547 730 910 910	4.1 4.1 100 15 75 15 75 10 100 60 36	minimal minimal medium mild severe medium mild medium medium mild	n.g. n.g. n.g. n.g. n.g. n.g. n.g. n.g.			
	0 0 10 10 10 10 10 10 10 10 10 10 30 dditional	female female female female female female female female female female sign. incr mo p-e, e	730 910 910 182 365 365 547 547 547 547 730 910 910 ease of incidences iffect partly reversit	4.1 4.1 100 15 75 15 75 10 100 60 36 and severity ole during p-e	minimal minimal medium mild severe medium mild medium medium mild of interstitial f	n.g. n.g. n.g. n.g. n.g. n.g. n.g. n.g.	hroughout 24 mo expc		
əffect	0 0 10 10 10 10 10 10 10 10 10 20 additional	female female female female female female female female female female female sign. incr mo p-e, e	730 910 910 182 365 365 547 547 547 730 910 910 ease of incidences effect partly reversit LOEL study unit	4.1 4.1 100 15 75 15 75 10 100 60 36 and severity obe during p-e LOEL mg/kg	minimal minimal medium mild severe medium mild medium mild of interstitial f	n.g. n.g. n.g. n.g. n.g. n.g. n.g. n.g.	hroughout 24 mo expc		
effect bronchiolo-alveolar ad	0 0 10 10 10 10 10 10 10 10 10 additional	female female female female female female female female female female female sign. incr mo p-e, e	730 910 910 182 365 365 547 547 547 730 910 910 ease of incidences iffect partly reversite LOEL study unit 10	4.1 4.1 100 15 75 15 75 10 100 60 36 and severity ble during p-e LOEL mg/kg	minimal minimal medium mild severe medium mild medium mild of interstitial f	n.g. n.g. n.g. n.g. n.g. n.g. n.g. n.g.	hroughout 24 mo expc		
effect bronchiolo-alveolar ac	0 0 10 10 10 10 10 10 10 10 10 additional denoma dose	female female female female female female female female female female sign. incr mo p-e, e sex	730 910 910 182 365 365 547 547 547 547 730 910 910 910 ease of incidences iffect partly reversit LOEL study unit 10 timepoint	4.1 4.1 100 15 75 15 75 10 100 60 36 and severity ble during p-e LOEL mg/kg 7.2 level	minimal minimal medium mild severe medium mild medium mild of interstitial f sient sient	n.g. n.g. n.g. n.g. n.g. n.g. n.g. n.g.	hroughout 24 mo expo		
ə ffect pronchiolo-alveolar ac	0 0 10 10 10 10 10 10 10 10 10 10 additional denoma dose 0	female female female female female female female female female female female sign. incr mo p-e, e sex female	730 910 910 182 365 365 547 547 547 730 910 910 ease of incidences iffect partly reversite LOEL study unit 10 timepoint 910	4.1 4.1 100 15 75 15 75 10 100 60 36 and severity ble during p-e LOEL mg/kg 7.2 level 0	minimal minimal medium mild severe medium mild medium mild of interstitial f	n.g. n.g. n.g. n.g. n.g. n.g. n.g. n.g.	hroughout 24 mo expo % 100		

Titanium dioxide								
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient			
bronchiolo-alveolar adenocarcinoma		female	10	7.2				
%	dose	sex	timepoint	level	score	significance	%	
	0	female	547	0		n.g.	100	
	0	female	730	0		n.g.	100	
	0	female	910	0.46		n.g.	100	
	10	female	547	10		none		
	10	female	730	11		none		
	10	female	910	13		<0.05	2826.1	
	additional	increased 1/9) throu	d incidences of bron Ighout 6 mo p-e (13	nchiolo-alveo 3/100), sign.	lar adenocarcir at termination o	noma at 18 mo an of study	d 24 of exposure (2/20	
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient			
macrophage infiltration	1	female	10	7.2				
n.a.	dose	sex	timepoint	level	score	significance	%	
	0	female	91		no change	n.a.		
	0	female	182		no change	n.a.		
	0	female	365		no change	n.a.		
	0	female	547		no change	n.a.		
	0	female	670		no change	n.a.		
	0	female	730		no change	n.a.		
	10	female	91			n.a.		
	10	female	182			n.a.		
	10	female	365			n.a.		
	10	female	547			n.a.		
	10	female	670			n.a.		
	10	female	730			n.a.		
	additional	accumula	ation of particle-lade	en macropha	ges			
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient			
squamous cell carcino	ma	female	10	7.2				
%	dose	sex	timepoint	level	score	significance	%	
	0	female	547	0		n.g.	100	
	0	female	730	0		n.g.	100	
	0	female	910	0		n.g.	100	
	10	female	547	15		none		
	10	female	730	22		none		
	10	female	910	3		none		
	additional	increased incidence	d incidences of squ at 6 mo p-e (3/100	amous cell ca))	arcinoma at 18	mo and 24 of exp	osure (3/20 and 2/9), I	

			Titanium	i dioxi	de		
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
benign cystic keratii squamous-cell tumo	nizing or	female	10	7.2			
%	dose	sex	timepoint	level	score	significance	%
	0	female	547	0		n.g.	100
	0	female	730	0		n.g.	100
	0	female	910	0		n.g.	100
	10	female	547	10		none	
	10	female	730	22		none	
	10	female	910	20		<0.05	
	additional	increase (2/20 and	d incidences of ben 12/9) throughout 6 r	ign cystic ker no p-e (20/1	atinizing squa	amous-cell tumours ermination of study	at 18 mo and 24 of ex
/mph node							
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
burden		female	10	7.2			
mg/organ	dose	sex	timepoint	level	score	significance	%
	0	female	670	0		n.g.	100
	10	female	670	5.75		n.g.	
	additional	burden ir	LALN				
ose							
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
atrophy		female	10	7.2			
%	dose	sex	timepoint	level	score	significance	%
	0	female	730	0		n.g.	100
	10	female	730	22.2		n.g.	
	additional	increase	d incidence of atrop	hv of respira	tory epitheliu	m	
	aduntional						
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
effect squamous cell meta	aplasia	sex female	LOEL study unit	LOEL mg/kg 7.2	tran- sient		
effect squamous cell meta %	aplasia dose	sex female sex	LOEL study unit 10 timepoint	LOEL mg/kg 7.2 level	tran- sient	significance	%
effect squamous cell meta %	aplasia dose 0	sex female sex female	LOEL study unit 10 timepoint 365	LOEL mg/kg 7.2 level 0	tran- sient	significance	% 100
effect squamous cell meta %	aplasia dose 0 0	sex female sex female female	LOEL study unit 10 timepoint 365 547	LOEL mg/kg 7.2 level 0 0	tran- sient	significance n.g. n.g.	% 100 100
effect squamous cell meta %	aplasia dose 0 0 0	sex female sex female female female	LOEL study unit 10 timepoint 365 547 730	LOEL mg/kg 7.2 level 0 0 0	tran- sient	significance n.g. n.g. n.g.	% 100 100 100
effect squamous cell meta %	aplasia dose 0 0 0 0	sex female sex female female female female	LOEL study unit 10 timepoint 365 547 730 910	LOEL mg/kg 7.2 level 0 0 0 0 7.7	tran- sient	significance n.g. n.g. n.g. n.g. n.g.	% 100 100 100 100
effect squamous cell meta %	aplasia dose 0 0 0 0 0 10	sex female sex female female female female female	LOEL study unit 10 timepoint 365 547 730 910 365	LOEL mg/kg 7.2 level 0 0 0 7.7 5	tran- sient	significance n.g. n.g. n.g. n.g. n.g. n.g.	% 100 100 100 100
effect squamous cell meta %	aplasia dose 0 0 0 0 10 10	sex female female female female female female female	LOEL study unit 10 timepoint 365 547 730 910 365 547	LOEL mg/kg 7.2 level 0 0 0 7.7 5 35	tran- sient	significance n.g. n.g. n.g. n.g. n.g. n.g. n.g.	% 100 100 100 100
effect squamous cell meta %	aplasia dose 0 0 0 0 10 10 10	sex female female female female female female female female	LOEL study unit 10 timepoint 365 547 730 910 365 547 365 547 730	LOEL mg/kg 7.2 level 0 0 0 7.7 5 35 77.8	tran- sient	significance n.g. n.g. n.g. n.g. n.g. n.g. n.g. n.g	% 100 100 100 100
effect squamous cell meta %	aplasia dose 0 0 0 0 10 10 10 10 10	sex female female female female female female female female female	LOEL study unit 10 timepoint 365 547 730 910 365 547 730 910 910	LOEL mg/kg 7.2 level 0 0 0 0 7.7 5 35 77.8 56	tran- sient	significance n.g. n.g. n.g. n.g. n.g. n.g. n.g. n.g	% 100 100 100 100 727.27

			Titanium	n dioxi	de		
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
inflammation		female	10	7.2			
%	dose	sex	timepoint	level	score	significance	%
	0	female	365	4.8		n.g.	100
	0	female	547	0		n.g.	100
	0	female	730	10		n.g.	100
	0	female	910	5.9		n.g.	100
	10	female	365	10		n.g.	208.33
	10	female	547	35		n.g.	
	10	female	730	44.4		n.g.	444
	10	female	910	30		n.g.	508.47
	additional	sign. incr paranasa	ease of incidences	of inflammat mo exposure	ive changes i , effect partly	n mucus membrane reversible after 24	es of nasal cavity and mo exposure and 6 mo p
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
degeneration		female	10	7.2			
%	dose	sex	timepoint	level	score	significance	%
	0	female	182	0		n.g.	100
	0	female	365	9.5		n.g.	100
	0	female	547	33.3		n.g.	100
	0	female	730	0		n.g.	100
	0	female	910	34.4		n.g.	100
	10	female	182	30		n.g.	
	10	female	365	85		n.g.	894.73
	10	female	547	95		n.g.	285.28
	40	6	700	100			

10female91059n.g.171.51additionalsign. increase of incidences of degenerative changes in mucus membranes of nasal cavity and
paranasal sinuses at >= 6 mo exposure, effect partly reversible after 24 mo exposure and 6 mo p-e

Titanium dioxide

molecular weight 79.9 g/mol

study pk 4116

Study Data

Specification by Producer / Supplier

object Primary particle

synonym TiO2 particle grade

		iength in nm
mean		
SD		
min		
max		

medium		determ. method	
distribution type	no data	surface property	
cristal structure	rutile	shape	spherical
specific surface in m²/g solubility in mg/l		specific volume in m³/g at in °C	
particle density in g/cm ³			
additional	Titanium dioxide particle grade		
reference	Lee et al., 1985, 1986		
producer	du Pont Co., Inc.		

Specification by Authors

object Primary particle

size	diameter in nm	inner diameter in nm	outer diameter in nm	length in nm
mean	250			
SD				
min				
max				
medium		dete	erm. method assu	imed
distributior	n type no data	sur	ace property	
cristal strue	cture	sha	pe sphe	erical
specific su m²/g	rface in	spe m³/s	cific volume in 3	
solubility in	n mg/l	at ii	ו °C	
particle der g/cm ³	nsity in			
additional	refer to pign	nent-TiO2> usually 200-300) nm	
reference				

Hydrodynamic diameter

median	1600 nm	distibution type no da	ata
GSD		bulk density	mg/ml
min	nm	isoelectric point	in

		Titanium dioxide	e			
max	nm	zeta potential	mV	in		
medium		peak SPR	nm	in		
determ. method	no data	conductivity	μS/cm	in		
sample treatment		solubility	mg/L	in	at	°C
applic. medium						
dispersant						
additional	Ranges of MMAD 1500 13000 nm MMAD) of 78	, 1700 and 1600 nm at LD, MD a 3, 89 and 84%, respectively	and HD with res	pirable f	fractions (<	
Study Desig	n					
species	rat	strain	CD			
sex	male & female	animal/group	71-79			
route	whole-body	age of animal	5 w			
purity	= 0.99					
exposure in h/d	6	exposure in d/w	5			
study dur. in d	730	postexp. dur. in d	0			
no. of instillation		frequency				

whole-body exposure chamber 3,85 qm, nominal conc. 0, 10, 50, and 250 mg/m3; analytical conc. 10,6+- 2,1; 50,3+-8,8; 250,1+- 24,7 mg/m3

(additional)	conc. 10,6+- 2,1; 50	3+-8,8; 250,1+- 24,7 mg/m3	
dose / concentration	0 10.6	1 dose study	D
Unit mg/m³	50.3 250.1	confidential	

additional additional groups for interim sacrifices after 91 & 182 d (5/sex and group) and 365 d (10/sex and group) corresponding to timepoints of 91, 182, 365, 730 d Ti burden in lung by ICPS after digestion of tissue; burden in other tissues as particle deposition by microscopy

Reference						
author	Lee KP, et al.	source	e Envir	on Research		
volume	41	year	1986		page	144-167
institution	Du Pont Company, Ha	skell Laboratory T	oxicology & In	dustrial Medicin	e	
author	Lee KP, et al.	source	e Exp M	Iol Pathol		
volume	42	vear	1985		page	331-343
institution	Du Pont Company, Ha	skell Laboratory T	Toxicology & In	dustrial Medicin	e	
author	Lee KP, et al.	source	e Toxic	ol Appl Pharma	col	
volume	79	year	1985		page	179-192
institution	Du Pont Company, Ha	askell Laboratory 7	Foxicology & In	dustrial Medicin	е	
Scope						
organ	animal/group	necropsy o	organ weight	histopatholog	У	
guideline						
lung	75		✓	✓		
additional	total lung (no microscopy, T	lavage); histop EM and SEM; Ti	atho: H&E st i burden by I	ain, PAS, trich CPS	nrome and	silver stain; light
trachea	75			\checkmark		

exposure

Titanium dioxide							
nose	75	L			✓		
body weight	100						
lymph node	75				✓		
additional	burden: du and in mes	st deposi enteric Iv	tion in trached	obronchia	l lymph noc	les, cervical lyr	mph nodes,
liver	75	[
additional	burden: du	st deposi	tion by light n	nicroscop	v		
spleen	75				, 		
additional	burden: du	st deposi	tion by light n	nicroscop	v		
Effect data			, , ,		,		
body weight							
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
weight		male & female					
	additional	no effect					
liver							
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
burden		male & female	10.6	2.544			
%	dose	sex	timepoint	level	score	significance	%
	0	male & f	730	0		n.g.	100
	10.6	male & f	730	5.3		n.g.	
	50.3	male & f	730	20.4		n.g.	
	250.1	male & f	730	56.3		n.g.	
	additional	increased macropha	incidences of part ges (no tissue res	ticle depositi ponse or da	on (microspcop mage of hepate	oy) with particle acc ocytes)	umulation in Kupffer cells
lung							
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
inflammation		male & female	10.6	2.544			
%	dose	sex	timepoint	level	score	significance	%
	0	male	730	1.3		n.g.	100
	0	female	730	1.3		n.g.	100
	10.6	male	730	10		n.g.	769.23
	10.6	female	730	15		n.g.	1153.8
	50.3	male	730	11		n.g.	846.15
	50.3	female	730	14		n.g.	1076.9
	250.1	male	730	9.1		n.g.	700
	250.1	female	730	7		n.g.	538.46
	additional	increased	incidences (%) of	broncho/bro	onchiolar pneur	nonia	

Titanium dioxide							
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
weight		male & female	50.3	12.072			
gram	dose	sex	timepoint	level	score	significance	%
	0	male	91	2.4		n.g.	100
	0	female	91	1.9		n.g.	100
	0	male	182	2.5		n.g.	100
	0	female	182	1.8		n.g.	100
	0	male	365	2.6		n.g.	100
	0	female	365	2.2		n.g.	100
	0	male	730	3.25		n.g.	100
	0	female	730	2.35		n.g.	100
	10.6	male	91	2.3		none	95.83
	10.6	female	91	1.7		none	89.47
	10.6	male	182	2.5		none	100
	10.6	female	182	2.2		none	122.22
	10.6	male	365	2.7		none	103.84
	10.6	female	365	2.2		none	100
	10.6	male	730	3.56		none	109.53
	10.6	female	730	2.76		none	117.44
	50.3	male	91	2.4		none	100
	50.3	female	91	2		none	105.26
	50.3	male	182	3		<0.05	120
	50.3	female	182	2.6		<0.05	144.44
	50.3	male	365	3.5		<0.05	134.61
	50.3	female	365	3.3		<0.05	150
	50.3	male	730	4.47		<0.05	137.53
	50.3	female	730	3.1		<0.05	131.91
	250.1	male	91	3.6		n.q.	150
	250.1	female	91	2.8		n.g.	147.36
	250.1	male	182	4.4		<0.05	176
	250.1	female	182	4.3		<0.05	238.88
	250.1	male	365	6.3		< 0.05	242.3
	250.1	female	365	5.7		< 0.05	259.09
	250.1	male	730	7.84		<0.05	241.23
	250.1	female	730	7 21		<0.05	306.8
	additional	sign. dos marked ir	e and time-depend ncrease at 3 mo, si	dent increase ign. from 6-2	es of abs. and r 4 mo	el. wt.: at MD fron	n 6-24 mo of exposure, at H
effect		sex	LOEL study unit	LOEL	tran-		
maaraphagas faam		mole °		10.070			
macrophages toamy		female	50.3	12.072			
%	dose	sex	timepoint	level	score	significance	%
	0	male	730	18		n.g.	100
	0	female	730	10		n.g.	100
	10.6	male	730	27		n.g.	150
	10.6	female	730	20		n.g.	200
	50.3	male	730	71		n.g.	394.44
	50.3	female	730	95		n.g.	950
	250.1	male	730	99		n.g.	550
	250.1	female	730	100		n.q.	1000
	additional	increased	d incidences (%) of	aggregates	of foamy alved	lar macrophages	with densely packed mvelin
		figures af	ter >= 12 mo at M	D and after >	= 6 mo at HD	indicating particle	overload (Tab.3)

Titanium dioxide							
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
hyperplasia alve	eolar type II cells	female	10.6	2.544			
%	dose	sex	timepoint	level	score	significance	%
	0	male	730	0		n.g.	100
	0	female	730	0		n.g.	100
	10.6	male	730	94		n.g.	
	10.6	female	730	96		n.g.	
	50.3	male	730	100		n.g.	
	50.3	female	730	100		n.g.	
	250.1	male	730	100		n.g.	
	250.1	female	730	100		n.g.	
	additional	increase of expos	d incidences (%) of ure at >= LD	alveolar type	e II cell hyperp	olasia, minimal effec	ct also seen after 6 and
effect		sex	LOEL study unit	LOEL ma/ka	tran- sient		
alveolar bronchi	olization	male &	50.3	12.072			
%	dose	temale sex	timenoint	level	score	significance	%
/0	uose	307	700	4.0	30010	Significance	100
	0	male	730	1.3		n.g.	100
	0	remaie	730	1.3		n.g.	100
	10.6	male	730	0		none	0
	10.6	remale	730	4		n.g.	307.69
	50.3	male	730	32		n.g.	2461.5
	50.3	remale	730	//		n.g.	5923.1
	250.1	male	730	82		n.g.	6307.7
	250.1	female	730	99		n.g.	7615.4
	additional	increase	d incidences (%) of	alveolar broi	nchiolization		
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
deposits		male & female	50.3	12.072			
%	dose	sex	timepoint	level	score	significance	%
	0	male	730	9		n.g.	100
	0	female	730	2.6		n.g.	100
	10.6	male	730	13		n.g.	144.44
	10.6	female	730	8		n.a.	307.69
	50.3	male	730	75		n.a.	833.33
	50.3	female	730	72		n.a.	2769.2
	250 1	male	730			n a	1077.8
	250.1	female	730	96		n a	3692.3
	additional	incrosec	d incidences of cho	lesterol grap	uloma and inc	reased incidences	of denosite of cholostor
	autional	granular	or fibronous materi	als, cellular c	lebris		

			Titanium	n dioxi	de		
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
fibrosis		male & female	50.3	12.072			
%	dose	sex	timepoint	level	score	significance	%
	0	male	730	14		n.g.	100
	0	female	730	3.9		n.g.	100
	1.6	female	730	5		none	128.2
	10.6	male	730	10		none	71.42
	50.3	male	730	65		n.g.	464.28
	50.3	female	730	55		n.g.	1410.3
	250.1	male	730	99		n.g.	707.14
	250.1	female	730	99		n.g.	2538.5
	additional	increased HD after :	l incidences (%) of >= 3 mo exposure	collagenized	l fibrosis, effect	also seen at MD	after 12 mo exposure, ar
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
macrophage damage		male & female	50.3	12.072			
n.a.	dose	sex	timepoint	level	score	significance	%
	0	male & f	730		no change	n.a.	
	50.3	male & f	730			n.a.	
	250.1	male & f	730			n.a.	
	additional	degenera	tive and disintegra	ted foamy ma	acrophages		
effect		sex	LOEL	LOEL	tran-		
			study unit	mg/kg	sient		
alveolar proteinosis		male & female	50.3	12.072			
%	dose	sex	timepoint	level	score	significance	%
	0	male	730	0		n.g.	100
	0	female	730	0		n.g.	100
	10.6	male	730	0		none	
	10.6	female	730	0		none	
	50.3	male	730	51		n.g.	
	50.3	female	730	61		n.g.	
	250.1	male	730	97		n.g.	
	250.1	female	730	96		n.g.	
	additional	increased HD after :	l incidences (%) of >= 3 mo exposure	alveolar prot	einosis, effect a	also seen at MD a	fter 12 mo exposure, and
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
changes in organ struc	ture	male & female	250.1	60.024			
n.a.	dose	sex	timepoint	level	score	significance	%
	0	male & f	730		no change	n.a.	
	0 250.1	male & f male & f	730 730		no change	n.a. n.a.	

effect		sex	LOEL	LOFI	tran-		
		567	study unit	mg/kg	sient		
bronchiolo-alvec	lar adenoma	male & female	250.1	60.024			
%	dose	sex	timepoint	level	score	significance	%
	0	male	730	2.5		n.g.	100
	0	female	730	0		n.g.	100
	10.6	male	730	1.4		none	56
	10.6	female	730	0		n.g.	
	50.3	male	730	1.4		none	56
	50.3	female	730	0		n.g.	
	250.1	male	730	15.6		n.g.	624
	250.1	female	730	17.6		n.g.	
	additional	increased	l incidence (%) at l	HD			
effect		sex	LOEL study unit	LOEL ma/ka	tran- sient		
clearance		male &	10.6	2.544			
n.a.	dose	sex	timepoint	level	score	significance	%
	0	male & f	91		no change	n.a.	
	0	male & f	182		no change	n.a.	
	0	male & f	365		no change	n.a.	
	0	male & f	730		no change	n.a.	
	10.6	male & f	91		5	na	
	10.6	male & f	182			n.a.	
	10.6	male & f	365			n.a.	
	10.6	male & f	730			n.a.	
	50.3	male & f	91			n.a.	
	50.3	male & f	182			n.a.	
	50.3	male & f	365			n.a.	
	50.3	male & f	730			n.a.	
	250.1	male & f	91			n.a.	
	250.1	male & f	182			n.a.	
	250.1	male & f	365			n.a.	
	250.1	male & f	730			na	
	additional	particle-la time-resp	iden macrophages onse-relationship	in alveoli se	en at all doses	after 3 mo of expo	osure, effect with dose- an
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
collagen		male & female	50.3	12.072			
n.a.	dose	sex	timepoint	level	score	significance	%
	0	male & f	730		no change	n.a.	
	50.3	male & f	730		-	n.a.	
	250.1	male & f	730			n.a.	
	additional	minute co cholester	llagen fiber depos ol granulomas at F	ition in alveo ID at termina	lar walls at MD tion of study; ef	and HD, sign. coll fect not seen at L	agen fiber deposition in D

			manium		ue		
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
burden		male & female	10.6	2.544			
mg/organ	dose	sex	timepoint	level	score	significance	%
	0	male	91	0.001		n.g.	100
	0	female	91	0.001		n.g.	100
	0	male	182	0.001		n.g.	100
	0	female	182	0.001		n.g.	100
	0	male	365	0.001		n.g.	100
	0	female	365	0.001		n.g.	100
	0	male	730	0.001		n.g.	100
	0	female	730	0.001		n.g.	100
	10.1	female	365	8.7		n.g.	870000
	10.6	male	91	2.5		n.g.	250000
	10.6	female	91	2.8		n.g.	280000
	10.6	male	182	4.8		n.a.	480000
	10.6	female	182	4.4		n.g.	440000
	10.6	male	365	10.1		n.g.	1E+06
	10.6	male	730	20.7		na	2E+06
	10.6	female	730	32.3		n.g.	3E+06
	50.3	male	91	21.7		n.g.	2E+06
	50.3	female	91	16.6		n.g.	2E+06
	50.3	male	182	57.3		n.g.	6E+06
	50.3	female	182	54		n.g.	5E+06
	50.3	male	365	75.6		n.g.	8E+06
	50.3	fomalo	365	73.0 50.7		n.g.	6E+06
	50.3	molo	730	110.2		n.g.	15,07
	50.3	famala	730	110.3		n.g.	1E+07
	50.3	temale	730	130		n.g.	1E+07
	150.1	remale	365	381.5		n.g.	4E+07
	250.1	male	91	180.8		n.g.	2E+07
	250.1	remale	91	136.8		n.g.	1E+07
	250.1	male	182	275.3		n.g.	3E+07
	250.1	female	182	238.6		n.g.	2E+07
	250.1	male	365	361.7		n.g.	4E+07
	250.1	male	730	784.8		n.g.	8E+07
	250.1	female	730	545.8		n.g.	5E+07
	additional	dose- an particle o	d time-dependent in verload at HD base	ncrease of lur ed on impaire	ng burden (m d lung cleara	g/lung, detection lin nce after >= 12 mo	nit < 0,002 mg/g dry lun exposure
effect		sex	LOEL	LOEL	tran-		
			study unit	mg/kg	sient		
tumor							
%							

i itanium dioxide							
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
squamous cell ca	rcinoma	male & female	250.1	60.024			
%	dose	sex	timepoint	level	score	significance	%
	0	male	730	0		n.g.	100
	0	female	730	0		n.g.	100
	10.6	male	730	0		n.g.	
	10.6	female	730	1.3		n.g.	
	50.3	male	730	0		n.g.	
	50.3	female	730	0		n.g.	
	250.1	male	730	1.3		n.g.	
	250.1	female	730	17.6		n.g.	
	additional	increased	incidence (%) in H	ID f (13/74),	single cases	in HD m (1/75) and	LD f (1/75)
mph node							
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
burden		male & female	50.3	12.072			
%	dose	sex	timepoint	level	score	significance	%
	0	male & f	730	0		n.g.	100
	10.6	male & f	730	0		none	
	50.3	male & f	730	4.5		n.g.	
	250.1	male & f	730	61.2		n.g.	
	additional	Increased cell accum	incidenceof partic nulation: slight inci	le deposition ease at MD a	(microspcop and distinct e	y) in mesenteric lym ffect at HD	ph nodes with particle-
effect		sex	LOEL	LOEL	tran-		
			study unit	mg/kg	sient		
burden		male & female	10	2.4			
%	dose	sex	timepoint	level	score	significance	%
	0	male & f	730	0		n.g.	100
	10.6	male & f	730	31.5		n.g.	
				70		n.a.	
	50.3	male & f	730	78			
	50.3 250.1	male & f male & f	730 730	78 93.3		n.a.	
	50.3 250.1 additional	male & f male & f Increased accumulat	730 730 incidence of parti ion	78 93.3 cle depositior	n (microspcor	n.g. by) in cervical lymph	nodes with particle-lac
effect	50.3 250.1 additional	male & f male & f Increased accumulat	730 730 incidence of parti ion LOEL study unit	93.3 cle depositior LOEL mg/kg	n (microspcop tran- sient	n.g. by) in cervical lymph	nodes with particle-la
effect burden	50.3 250.1 additional	male & f male & f Increased accumulat sex male & female	730 730 incidence of parti- ion LOEL study unit 10.6	93.3 Cle deposition LOEL mg/kg 2.544	tran- sient	n.g. by) in cervical lymph	nodes with particle-la
effect burden %	50.3 250.1 additional	male & f male & f Increased accumulat sex male & female sex	730 730 incidence of parti- ion LOEL study unit 10.6 timepoint	78 93.3 cle deposition LOEL mg/kg 2.544 level	tran- sient	n.g. by) in cervical lymph	nodes with particle-la
effect burden %	50.3 250.1 additional dose 0	male & f male & f Increased accumulat Sex male & female sex male & f	730 730 incidence of parti- ion LOEL study unit 10.6 timepoint 730	93.3 cle deposition LOEL mg/kg 2.544 level 0	tran- sient	n.g. by) in cervical lymph significance n.g.	nodes with particle-la % 100
effect burden %	50.3 250.1 additional dose 0 10.6	male & f male & f Increased accumulat sex male & female sex male & f male & f	730 730 incidence of parti- ion LOEL study unit 10.6 timepoint 730 730	78 93.3 cle depositior LOEL mg/kg 2.544 level 0 87.2	tran- sient score	n.g. by) in cervical lymph significance n.g. n.g.	nodes with particle-la
effect burden %	50.3 250.1 additional dose 0 10.6 50.3	male & f male & f Increased accumulat sex male & female sex male & f male & f male & f	730 730 incidence of parti- ion LOEL study unit 10.6 timepoint 730 730 730	78 93.3 Cle deposition LOEL mg/kg 2.544 level 0 87.2 96.6	tran- sient score	n.g. by) in cervical lymph significance n.g. n.g. n.g.	nodes with particle-la
effect burden %	50.3 250.1 additional dose 0 10.6 50.3 250.1	male & f male & f Increased accumulat sex male & female sex male & f male & f male & f male & f	730 730 incidence of parti- ion LOEL study unit 10.6 timepoint 730 730 730 730 730	78 93.3 cle deposition LOEL mg/kg 2.544 level 0 87.2 96.6 100	tran- sient	n.g. by) in cervical lymph significance n.g. n.g. n.g. n.g. n.g.	nodes with particle-la
Titanium dioxide							
------------------	------------	-----------------------	---	-----------------------------------	---------------------------------	---------------------------	------------------------------
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
metaplasia		male & female	10.6	2.544			
%	dose	sex	timepoint	level	score	significance	%
	0	male	730	10		n.g.	100
	0	female	730	9		n.g.	100
	10.6	male	730	37		n.g.	370
	10.6	female	730	19		n.g.	211.11
	50.3	male	730	27		n.g.	270
	50.3	female	730	28		n.g.	311.11
	250.1	male	730	58		n.g.	580
	250.1	female	730	55		n.g.	611.11
	additional	increased metaplas	d incidences of ante	erior squamo	us metaplasia	a (%); no increase c	f posterior squamous
effect		sex	LOEL	LOEL	tran-		
			study unit	mg/kg	sient		
rhinitis		male & female	10.6	2.544			
%	dose	sex	timepoint	level	score	significance	%
	0	male	730	32		n.g.	100
	0	female	730	24		n.g.	100
	10.6	male	730	80		n.g.	250
	10.6	female	730	49		n.g.	204.16
	50.3	male	730	66		n.g.	206.25
	50.3	female	730	46		n.g.	191.66
	250.1	male	730	92		n.g.	287.5
	250.1	female	730	86		n.g.	358.33
	additional	increased were not	d incidences of ante increased in m, inc	erior rhinitis (reases in f o	%), no clear o nly at LD and	dose-response; inci HD	dences of posterior rhinitis
pleura							
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		

effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
inflammation		male & female	10.6	2.544			
%	dose	sex	timepoint	level	score	significance	%
	0	male	730	5.1		n.g.	100
	0	female	730	2.6		n.g.	100
	10.6	male	730	10		n.g.	196.07
	10.6	female	730	9		n.g.	346.15
	50.3	male	730	37		n.g.	725.49
	50.3	female	730	35		n.g.	1346.2
	89	female	730	89		n.g.	3423.1
	250.1	male	730	71		n.g.	1392.2
	additional	increased	d incidences of plea	uritis			

spleen

Titanium dioxide									
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient				
burden		male & female	10.6	2.544					
%	dose	sex	timepoint	level	score	significance	%		
	0	male & f	730	0		n.g.	100		
	10.6	male & f	730	10.6		n.g.			
	50.3	male & f	730	19.3		n.g.			
	250.1	male & f	730	67.8		n.g.			
	additional	increased	increased particle deposition (microspcopy) with particle accumulation mostly in white pulp with						

increased particle deposition (microspcopy) with particle accumulation mostly in white pulp with occasional aggregates of foamy macrophages (no cellular changes in spleen)

trachea

effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
tracheitis		male & female	10.6	2.544			
%	dose	sex	timepoint	level	score	significance	%
	0	male	730	3		n.g.	100
	0	female	730	1.3		n.g.	100
	10.6	male	730	76		n.g.	2533.3
	10.6	female	730	46		n.g.	3538.5
	50.3	male	730	72		n.g.	2400
	50.3	female	730	50		n.g.	3846.2
	250.1	male	730	79		n.g.	2633.3
	250.1	female	730	43		n.g.	3307.7
	additional	sign. incre incidence	ease of incidences s) than f	(%) to simila	r levels in all	dosed m or f, m mo	re sensitive (higher

Silver

molecular weight 107.9 g/mol

study pk 4114

Study Data

Specification by Producer / Supplier

object Primary particle

synonym Silver nanoparticles (self-made)

size	diameter in nm	inner diameter in nm	outer diameter in nm	length in nm
mean	18.48			
SD	1.45			
min	6			
max	55			

medium		determ. method	TEM (count median diameter)
distribution type	no data	surface property	
cristal structure		shape	spherical
specific surface in m²/g solubility in mg/l		specific volume in m³/g at in °C	
particle density in g/cm ³			
additional	Self made: freshly prepared nanop ceramic heater; no-aggregated pa	particles by means of evanticles (same technique a	poration/condensation with as for 28 d study of Ji et al., 2007)
reference	Sung et al., 2008, 2009		
producer	Self made: Korea Environment & N	Merchandise Testing Inst	itute, Korea

Specification by Authors

object

Primary particle

size	diameter in nm	inner diameter in nm	outer diameter in nm	length in nm
mean				
SD				
min				
max				
medium		dete	erm. method	
distribution	type no data	sur	face property	
cristal struc	cture	sha	ре	
specific su m²/g	rface in	spe m³/s	cific volume in 9	
solubility in	n mg/l	at ii	n °C	
particle der	nsity in			

additional reference

. g/cm³

Hydrodynamic diameter

median	nm	distibution type me	onodispers
GSD		bulk density	mg/ml
min	nm	isoelectric point	in

		Silver				
max	nm	zeta potential	mV	in		
medium		peak SPR	nm	in		
determ. method	differential mobility analyzer and ultrafine condensation particle counter	conductivity	μS/cm	in		
sample treatment		solubility	mg/L	in	at	°C
applic. medium						
dispersant						
additional	geometric mean diameter ar nm; 18,93 +- 1,59 nm	d GSD in aerosol (LD; MD;	HD): 18,12 +-1	,31 nm;	; 18,33 +- 1	,12

Study Design

species	rat	strain	Sprague-Dawley
sex	male & female	animal/group	10
route	whole-body	age of animal	8 w
purity			
exposure in h/d	6	exposure in d/w	5
study dur. in d	91	postexp. dur. in d	0
no. of instillation		frequency	
exposure (additional) dose /	whole-body 1,3 qm exposure char 3,74 $\mu g/m^3;$ particle conc.: 66400; 6,61 x109 nm²/cm³; bw m 253 g, f	nber; analytical conc.: 4 1430000; 2850000 pai 162 g	48,94+-0,47; 133,19+-1,05; 514,78+- ticles/cm³; surface area: 1,08; 2,37;
concentratio ι Unit mg/m ³	0 0.048 0.133 0.515	1 dose studyImage: Confidential1 dose studyImage: Confidential	
additional	Lung function weekly by whole-bo	dy plethysmography 40) min after termination of daily exposure;

other endpoints on d 90; Study according to OECD guideline 413 (1995) Ag burden by AAS after tissue digestion

Kim	JS, et al.	sou	rce S	afe Health Work	x	
2		year	• 2	011	page	34-38
Toxic	cological Research	Center, Hose	o University,	Korea		
Sung	g J, et al.	sou	rce T	oxicological Scie	ences	
108		vear	• 2	009	page	452-461
Kore	a Environment & N	lerchandise To	esting Institut	e, Korea		
Sung	g J, et al.	sou	rce li	halation Toxicol	logy	
20		year	. 2	008	page	567-574
Kore	a Environment & N	/erchandise T	esting Institut	e, Korea		
	animal/group	necropsy	organ weig	ght histopatho	ology	
	4	✓				
total protei	n	alveola	ar macrophage	6	PMN	
albumin		lactate	e dehydrogena:	se (LDH)	lymphocytes	
onal	14x3 ml PBS, t	otal lung				
	Kim 2 Toxid Sung 108 Kore Sung 20 Kore total protei albumin onal	Kim JS, et al. 2 Toxicological Research Sung J, et al. 108 Korea Environment & M Sung J, et al. 20 Korea Environment & M animal/group 4 total protein albumin 20 14x3 ml PBS, t	Kim JS, et al. sou 2 year Toxicological Research Center, Hose Sung J, et al. sou 108 vear Korea Environment & Merchandise T Sung J, et al. sou 20 year Korea Environment & Merchandise T korea Environment & Merchandise T animal/group necropsy 4 ✓ total protein alveola albumin lactate 14x3 ml PBS, total lung 14x3 ml PBS, total lung	Kim JS, et al. source S 2 year 2 Toxicological Research Center, Hoseo University, I Sung J, et al. source T 108 vear 2 Korea Environment & Merchandise Testing Institute Sung J, et al. source Ir 20 year 2 Korea Environment & Merchandise Testing Institute Ir 20 year 2 Korea Environment & Merchandise Testing Institute Ir 20 year 2 Korea Environment & Merchandise Testing Institute Ir 20 year 2 Korea Environment & Merchandise Testing Institute Ir 4 ✓ Ir 20 year 2 Korea Environment & Merchandise Testing Institute Ir 4 ✓ Ir 4 ✓ Ir 102 1 Ir 103 14x3 ml PBS, total lung	Kim JS, et al. source Safe Health Work 2 year 2011 Toxicological Research Center, Hoseo University, Korea Sung J, et al. source Toxicological Science 108 vear 2009 Korea Environment & Merchandise Testing Institute, Korea Sung J, et al. source Inhalation Toxicol 20 year 2008 Korea Environment & Merchandise Testing Institute, Korea Merchandise Testing Institute, Korea animal/group necropsy organ weight 4 ✓ □ 4 ✓ □ alueolar macrophages alueolar macrophages albumin lactate dehydrogenase (LDH) onal 14x3 ml PBS, total lung	Kim JS, et al. source Safe Health Work page 2 year 2011 page Toxicological Research Center, Hoseo University, Korea Invicological Sciences page 108 year 2009 page 108 year 2009 page Korea Environment & Merchandise Testing Institute, Korea Inhalation Toxicology page 20 year 2008 page Korea Environment & Merchandise Testing Institute, Korea page Korea Environment & Merchandise Testing Institute, Korea page korea Environment & Merchandise Testing Institute, Korea page page page korea Environment & Merchandise Testing Institute, Korea page page page korea Environment & Merchandise Testing Institute, Korea page page page korea Environment & Merchandise Testing Institute, Korea PMN page page alveolar macrophage PMN page page page total protein alveolar macrophage PMN page page albumin lactate dehydrogenage (LDH) lymphocytes total

			Silver		
clinical symptoms	10				
additional body weight	including food 10	consumption	and signs of irrita	ancy	
lung	6			✓	
additional	organ weight for no lavage, N=4 minute volume inspiration and	or left and right (-5); Histopa , respiratory expiration f	ght lung lobe, no l atho: H&E stain; lu r frequency, inspir low	lavage (ung func ation an	N=6); lung burden (total lung, tion parameters: tidal and d expiration time, peak
testes	10		✓	✓	
additional kidney	organ weight fo 10	or left and ri	ght testis ✔	✓	
additional	weight of left a	nd right kidr	ney; organ burder	n (N=4-5	5
spleen	10				
liver	10		✓	✓	
additional	organ burden (N=3-5)	_	_	
adrenal gland	10		\checkmark	✓	
additional	organ weight fo	or left and ri	ght adrenal		
heart	10			✓	
thymus	10			✓	
brain	10		✓	✓	
additional nose	organ burden (10	2-5 m and 4	-5 f per dose) ✔	✓	
additional ovary	weight and bur 10	den of olfact	tory bulb (N=3-5)	✓	
additional	organ weight fo	or left and ri	ght ovary	_	
haematology	10				
hematocrit		haemo	oglobin		erythrocyte count
erythrocyte	aggregation	partial	thromboplastin time		Prothrombin time
Monocytes	5	basop	hils		eosinophils
Lymphocyt	ies	Red C	ell distribution width		Neutrophils
Mean corp	ies uscular baemodobin	conc Mean			Mean corpuscular baemoglobin
Platelet vo	lume	differe	ntial leukocyte count		Mean corpuscular nachrogiobhr
clinical chemistry	10				
thyroid gland	10			✓	
bladder	10			✓	
uterus	10			✓	
epididymis	10			✓	
seminal vesicle	10			✓	
trachea	10			✓	

			Sil	ver			
oesophagus	10	L			✓		
		F	_				
tongue	10	L			✓		
prostate	10	[✓		
F							
pancreas	10				✓		
urine analysis	5	Г					
Total proteir	1		 ß-NAG				
bone marrow							
additional	femurs: in	vivo micr	onucleus test	(OECD GL	474)		
Effect data					,		
adrenal gland							
		SOY			tran-		
chect		307	study unit	mg/kg	sient		
histopathology		male &					
niotopathology		female					
	additional	<i>.</i> .					
	additional	no effect					
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
weight		male &					
		female					
	additional	no effect					
BALE							
effect		sex	LOEL	LOEL	tran-		
			study unit	mg/kg	sient		
albumin		female	0.515	0.11705			
µg/ml	dose	sex	timepoint	level	score	significance	%
	0	male	91	8.3		n.g.	100
	0	female	91	9.3		n.g.	100
	0.048	male	91	16.5		none	198.79
	0.048	female	91	11.3		none	121.5
	0.133	male	91	11.8		none	142.16
	0.133	female	91	11.8		none	126.88
	0.515	male	91	1.8		none	21.68
	0.515	female	91	37.75		<0.05	405.91
	additional	sign. incre	ease in HD f (mea	in with high S	D: 37,75 +- 20),1), however, in HI) m a decrease was seer
effect		sex			tran-		
			study unit	mg/kg	sient		
lymphocytes total		male &					
×10E6		female					
AIUED	additional	no effecti	number of home -				
	auuuuonal	no errect:	number of tymph	ocytes			

			Sil	ver			
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
PMN total		male & female					
x10E6							
	additiona	I no effect	number of PMN				
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
alveolar macroph	ages total	male & female					
x10E6		Torridio					
	additiona	I no effect	number of AM				
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
total cells		male &					
x10E6		Ternale					
	additiona	I no effect	total cells				
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
total protein		female	0.515	0.11705			
μg/ml	dose	sex	timepoint	level	score	significance	%
	0	male	91	13.3		n.g.	100
	0	female	91	13.9		n.a.	100
	0.048	male	91	16.5		none	124.06
	0.048	female	91	10.4		none	74.82
	0 133	male	91	15.1		none	113 53
	0.133	female	91	10.1		none	78.41
	0.100	malo	01	12.9		none	102 75
	0.515	famala	91	10.0		-0.05	140.05
	additiona	Iemale	91 ease in HD f:noi	20.33 Acrease in r	n	<0.05	140.25
offeet							
enect		Sex	study unit	mg/kg	sient		
lactate dehydroge	enase (LDH)	female	0.515	0.11705			
its/liter (U/I)	dose	sex	timepoint	level	score		
	0	male	91	55.3			
	0	female	91	57.3			
	0.048	male	91	73.4			
	0.048	female	91	41.8			
	0.133	male	91	69.1			
	0.133	female	91	41.8			
	0.515	male	91	73			
	0.010		51	.0			
	0 515	female	01	116 7			

bladder

Silver										
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient					
histopathology		male & female								
	additional	no effect								
body weight										
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient					
weight		male & female								
	additional	no effect								
bone										
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient					
histopathology		male & female								
	additional	no effect								
bone marrow										
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient					
micronuclei		male & female								
	additional	no effect:	no increased freq	uencies of mic	cronucleated	polychromatic eryth	nrocytes			
brain										
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient					
burden		male & female	0.133	0.03023						
µg/g wet organ	dose	sex	timepoint	level	score	significance	%			
	0	male	91	0.00112		n.g.	100			
	0	female	91	0.00066		n.g.	100			
	0 0.048	female male	91 91	0.00066 0.00345		n.g. none	100 308.03			
	0 0.048 0.048	female male female	91 91 91	0.00066 0.00345 0.00409		n.g. none none	100 308.03 619.69			
	0 0.048 0.048 0.133	female male female male	91 91 91 91	0.00066 0.00345 0.00409 0.00789		n.g. none none <0.01	100 308.03 619.69 704.46			
	0 0.048 0.048 0.133 0.133	female male female male female	91 91 91 91 91	0.00066 0.00345 0.00409 0.00789 0.0102		n.g. none <0.01 <0.01	100 308.03 619.69 704.46 1545.5			
	0 0.048 0.048 0.133 0.133 0.515	female male female male female male	91 91 91 91 91 91	0.00066 0.00345 0.00409 0.00789 0.0102 0.0186		n.g. none <0.01 <0.01 <0.01	100 308.03 619.69 704.46 1545.5 1660.7			
	0 0.048 0.048 0.133 0.133 0.515 0.515	female male female male female male female	91 91 91 91 91 91 91	0.00066 0.00345 0.00409 0.00789 0.0102 0.0186 0.02		n.g. none <0.01 <0.01 <0.01 <0.01	100 308.03 619.69 704.46 1545.5 1660.7 3030.3			
	0 0.048 0.133 0.133 0.515 0.515 additional	female male female female male female sign. incre	91 91 91 91 91 91 91 ease of brain burd	0.00066 0.00345 0.00409 0.00789 0.0102 0.0186 0.02 en (Tab.7, 8)		n.g. none <0.01 <0.01 <0.01 <0.01	100 308.03 619.69 704.46 1545.5 1660.7 3030.3			
effect	0 0.048 0.048 0.133 0.133 0.515 0.515 additional	female male female female male female sign. incre sex	91 91 91 91 91 91 91 ease of brain burd LOEL study unit	0.00066 0.00345 0.00409 0.00789 0.0102 0.0186 0.02 en (Tab.7, 8) LOEL mg/kg	tran- sient	n.g. none <0.01 <0.01 <0.01 <0.01	100 308.03 619.69 704.46 1545.5 1660.7 3030.3			
effect histopathology	0 0.048 0.133 0.133 0.515 0.515 additional	female male female female female sign. incre sex male & female	91 91 91 91 91 91 ease of brain burd LOEL study unit	0.00066 0.00345 0.00409 0.00789 0.0102 0.0186 0.02 en (Tab.7, 8) LOEL mg/kg	tran- sient	n.g. none <0.01 <0.01 <0.01 <0.01	100 308.03 619.69 704.46 1545.5 1660.7 3030.3			
effect histopathology	0 0.048 0.133 0.133 0.515 0.515 additional	female male female male female sign. incre sex male & female	91 91 91 91 91 91 ease of brain burd LOEL study unit	0.00066 0.00345 0.00409 0.00789 0.0102 0.0186 0.02 en (Tab.7, 8) LOEL mg/kg	tran- sient	n.g. none <0.01 <0.01 <0.01 <0.01	100 308.03 619.69 704.46 1545.5 1660.7 3030.3			

			Sil	ver				
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient			
weight		male & female						
	additional	no effect						
clinical chemistry								
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient			
parameters acc. to pick	list	male & female						
	additional	no effect						
clinical symptoms								
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient			
food consumption		male & female						
	additional	no effect:	including food co	nsumption				
epididymis								
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient			
histopathology		male						
	additional	no effect						
haematology								
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient			
erythrocyte aggregatior	ı	female	0.515	0.11705				
%	dose	sex	timepoint	level	score	significance	%	
	0	female	91	8		n.g.	100	
	0.048	female	91	4		none	50	
	0.133	female	91	19		none	237.5	
	0.515	female	91	28		<0.01	350	
	additional	sign. incre	ease of % aggreg	ated erythrocy	/tes in HD f			
heart								
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient			
weight		male & female						

			Sil	ver			
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
histopathology		male & female					
	additional	no effect					
kidney							
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
histopathology		male & female					
	additional	no effect					
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
burden		male & female	0.133	0.03023			
µg/g wet organ	dose	sex	timepoint	level	score	significance	%
	0	male	91	0.00085		n.g.	100
	0	female	91	0.00094		n.g.	100
	0.048	male	91	0.00163		none	191.76
	0.048	female	91	0.00261		none	277.65
	0.133	male	91	0.00358		<0.01	421.17
	0.133	female	91	0.0118		none	1255.3
	0.515	male	91	0.00949		<0.01	1116.5
	0.515	female	91	0.0377		<0.01	4010.6
	additional	m more so kidney bu	ensitive, sign. incl rdens of f were 3-	rease of kidne 4 fold higher ti	y burden in f han in m (Tal	at HD only; howeve b.7, 8)	r, at MD and HD absolute
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
weight		male & female					
	additional	no effect					
liver							
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
burden		male & female	0.515	0.11705			
µg/g wet organ	dose	sex	timepoint	level	score	significance	%
	0	male	91	0.0007		n.a.	100
	0 0	female	91	0.0009		n.a.	100
	0.048	male	91	0.00352		none	502.85
	0.048	female	91	0.00455		none	505.55
		male	91	0.0138		none	1971.4
	0.133	maio	÷ ·				
	0.133 0.133	female	91	0.0121		none	1344.4
	0.133 0.133 0.515	female	91 91	0.0121 0.133		none <0.01	1344.4 19000
	0.133 0.133 0.515 0.515	female male female	91 91 91	0.0121 0.133 0.071		none <0.01 <0.01	1344.4 19000 7888.9

			SI	ver			
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
hyperplasia		male & female	0.515	0.11705			
%	dose	sex	timepoint	level	score	significance	%
	0	male	91	0	minimal	n.g.	100
	0	female	91	30	minimal	n.g.	100
	0.048	male	91	0	minimal	none	0
	0.048	female	91	20	minimal	none	66.66
	0.133	male	91	10	minimal	none	33.33
	0.133	female	91	40	minimal	none	133.33
	0.515	male	91	44.4	minimal	<0.05	148
	0.515	female	91	10	medium	<0.05	33.33
	0.515	female	91	80	minimal	<0.05	266.66
	additional	sign. incr	ease of incidence	of minimal bil	e-duct hyperp	lasia at HD	
effect		Sex		LOFI	tran-		
		JUX	study unit	mg/kg	sient		
necrosis		female	0.515	0.11705			
%	dose	sex	timepoint	level	score	significance	%
	0	female	91	0		n.g.	100
	0.048	female	91	0		none	
	0.133	female	91	0		none	
	0.515	female	91	30		<0.05	
effect		hyperpla HD f, effe	sia of minimal grad ect not seen in oth LOEL	le seen in HD er groups LOEL	m (11.1%) ar tran-	nd control f (20%) a	nd of moderate grade ir
			study unit	mg/kg	sient		
fibrosis		female	0.515	0.11705			
%	dose	sex	timepoint	level	score	significance	%
	0	female	91	0		n.g.	100
	0.515	female	91	10	medium	none	
	additional	single HI single-ce	D f with moderate of Il hepatocyte necro	centrilobular fi osis, mild pigr	ibrosis togethe nent accumula	er with moderate bil ation and moderat r	e-duct hyperplasia, mini multifocal necrosis
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
pigmentation		female	0.515	0.11705			
%	dose	sex	timepoint	level	score	significance	%
	0	female	91	0		n.g.	100
	0.515	female	91	10	medium	none	
	additional	single HI	D f with mild pigme	nt accumulati	ion together w	ith moderate bile-d	uct hyperplasia, minimal ultifocal necrosis
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
vacuolization		male	0.515	0.11705			
	dose	sex	timepoint	level	score	significance	%
%		mala	91	0		n.g.	100
%	0	male	01				
%	0 0	female	91	0		n.g.	100
%	0 0 0.048	female female	91 91	0 10	minimal	n.g. none	100
%	0 0 0.048 0.515	female female male	91 91 91 91	0 10 11.1	minimal minimal	n.g. none none	100

			Sil	ver			
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
mineralization		male	0.515	0.11705			
%	dose	sex	timepoint	level	score	significance	%
	0	male	91	0		n.g.	100
	0.515	male	91	11.1	minimal	none	
	additional	single HD	m with minimal p	ortal minerali	zation together	with minimal bile-	duct hyperplasia
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
granuloma		male & female					
%	dose	sex	timepoint	level	score	significance	%
	0	female	91	0		n.g.	100
	0.048	female	91	20	minimal	none	
	additional	no effect: to be sub:	2 LD f with minim stance-dependen	al multifocal t	granuloma, effe	ct not seen at hig	her doses and not conside
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
weight		male & female					
gram							
	additional	no effect					
lung							
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
thickening		male & female	0.515	0.11705			
%	dose	sex	timepoint	level	score	significance	%
	0	male & f	91		no change	n.a.	
	0.515	male & f	91			n.a.	
	additional	sign. incre	eased incidence o	f alveolar wa	ll thickening (Ta	b.9, 10; see inflar	nmation)
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
weight		male & female					
gram							
	additional	no effect:	total wt. (no lava	ge)			

			511	ver			
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
inflammation		male & female	0.515	0.11705			
%	dose	sex	timepoint	level	score	significance	%
	0	male	91	20	minimal	n.g.	100
	0	female	91	30	minimal	n.g.	100
	0.048	male	91	30	minimal	n.g.	150
	0.048	female	91	20	minimal	n.g.	66.66
	0.133	male	91	20	minimal	n.g.	100
	0.133	female	91	0	minimal	n.g.	0
	0.515	male	91	89	minimal	n.g.	350
	0.515	female	91	80	minimal	n.a.	266.66
	additional	increase lesions, a	ed incidence of min and alveolar wall th	imal chronic a hickening (Tab	alveolar inflam b.9, 10)	mation including al	veolitis, granulomatous
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
infiltration		male & female	0.133	0.03023			
%	dose	sex	timepoint	level	score	significance	%
	0	male	91	30	minimal	n.g.	100
	0	female	91	0	minimal	n.a.	100
	0.048	male	91	40	minimal	n.a.	133.33
	0.048	female	91	0	minimal	n.a.	
	0.133	male	91	60	minimal	n.a.	200
	0.133	female	91	10	minimal	n.a.	
	0.515	male	91	78	minimal	n a	266 66
	0.515	female	91	70	minimal	n.g.	200.00
	additional	Minimal r	perivascular infiltra	tion of mixed	cells: m more	sensitive LOFL in	f at 0 515 mg/m3 (Tab
effect		sex	LOEL	LOEL	tran-		
tidal volume		male &	0.048	0.01091			
ml	dose	remaie	timenoint	امريما	score	significance	%
	0	malo	21	0.265	00010	n a	<i>,</i> ,
	0	formela	21	0.200		n.g.	100
	0	mala	70	0.24		n.g.	100
	0.049	male	91	0.305		11.g.	0.07
	0.048	formals	21	0.225		<0.01	0.97
	0.048	remale	70	0.22			91.00
	0.048	male	91	0.275		<0.01	90.10
	0.133	formals	21	0.21		<0.01	0.91
	0.133	remale	70	0.21		<0.01	C. 10
	0.133	male	91	0.265		<0.01	0.04
		maio		0.195		<0.01	0.84
	0.515	formele	21	0.405		0.01	81.05
	0.515	female	70	0.195		<0.01	81.25

Silver										
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient					
burden		male & female	0.133	0.03023						
µg/g wet organ	dose	sex	timepoint	level	score	significance	%			
	0	male	91	0.00077		n.g.	100			
	0	female	91	0.00101		n.g.	100			
	0.048	male	91	0.614		none	79740			
	0.048	female	91	0.296		none	29307			
	0.133	male	91	5.45		<0.01	707792			
	0.133	female	91	4.241		<0.01	419901			
	0.515	male	91	14.65		<0.01	2E+06			
	0.515	female	91	20.59		<0.01	2E+06			
	additional	sign. dos (Tab.7,8)	e-dependent incre	ase of total lu	ng burden (no	lavage): effect at l	LD not statistically si			
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient					
peak inspiration flow		male & female	0.048	0.01091						
ml/s	dose	sex	timepoint	level	score	significance	%			
	0	male	14	1.25		n.g.	100			
	0	female	14		no change	n.a.				
	0.048	male	14	0.9	Ū	<0.01	72			
	0.048	female	14			n.a.				
	0.133	male	14	1.08		<0.01	86.4			
	0.133	female	14			n.a.				
	0.515	male	14	0.8		<0.01	64			
	0.515	female	14			n.a.				
	additional	dose-dep shown)	endent decrease o	of peak inspira	ation flows in m	& f of all groups	(partly sign.) (Fig.3C			
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient					
minute volume		male & female	0.048	0.01091						
ml/min	dose	sex	timepoint	level	score	significance	%			
	0	male	14	27.5		n.g.	100			
	0	female	28	23		n.g.	100			
	0	male	49	28		n.g.	100			
	0.048	male	14	18.5		<0.05	67.27			
	0.048	female	28	18.5		<0.01	80.43			
	0.048	male	49	24		<0.01	85.71			
	0.133	male	14	24		<0.05	87.27			
	0.133	female	28	18		<0.01	78.26			
	0.133	male	49	23		<0.01	82.14			
	0.515	male	14	18		<0.05	65.45			
	0.515	female	28	15.7		<0.01	68.26			
	0.515	male	49	20		<0.01	71.42			
			. 🗸				-			

			Sil	ver			
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
granuloma		male & female	0.515	0.11705			
%	dose	sex	timepoint	level	score	significance	%
	0	male & f	91		no change	n.a.	
	0.048	male & f	91		no change	n.a.	
	0.133	male & f	91		no change	n.a.	
	0.515	male & f	91			n.a.	
	additional	sign. incre	eased incidence o	f granulomato	ous lesions (Tal	o.9, 10; see inflan	nmation)
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
macrophage infiltration		male	0.515	0.11705			
%	dose	sex	timepoint	level	score	significance	%
	0	male	91	30	minimal	n.g.	100
	0	female	91	70	minimal	n.g.	100
	0.048	male	91	50	minimal	n.g.	166.66
	0.048	female	91	40	minimal	n.g.	57.14
	0.113	male	91	50	minimal	n.g.	166.66
	0.133	female	91	40	minimal	n.g.	57.14
	0.515	male	91	89	minimal	n.g.	266.66
	0.515	female	91	60	minimal	n.g.	85.71
	additional	minimal a	ccumulation of all	/eolar macrop (Tab 9, 10)	hages: increas	ed incidence in H	D m; no increase in f due t
		Tigh back	ground incluence	(140.3, 10)			
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
burden		male & female	0.515	0.11705			
µg/g wet organ	dose	sex	timepoint	level	score	significance	%
	0	male	91	0.00051		n.g.	100
	0	female	91	0.00226		n.g.	100
	0.048	male	91	0.00644		none	1262.7
	0.048	female	91	0.00743		none	328.76
	0.133	male	91	0.0171		none	3352.9
	0.133	female	91	0.0138		none	610.61
	0.515	male	91	0.0305		<0.01	5980.4
	0.515	female	91	0.00328		<0.01	145.13
	additional	sign. dose	e-dependent incre	ase in olfactor	ry bulb (Tab.7,	8)	
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
weight		male & female					
	additional	no effect:	wt. of olfactory bu	lp			
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
histopathology		male & female					
	additional	no effect					

			Sil	ver		
oesophagus						
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient	
histopathology		male & female				
	additional	no effect				
ovary						
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient	
weight		female				
	additional	no effect				
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient	
histopathology		female				
	additional	no effect				
pancreas						
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient	
histopathology		male & female				
	additional	no effect				
prostate						
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient	
histopathology		male				
	additional	no effect				
seminal vesicle						
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient	
histopathology		male				
	additional	no effect				
testes						
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient	
weight		male				
	additional	no effect				

			Sil	ver			
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
histopathology		male					
	additional	no effect					
thymus							
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
histopathology		male & female					
	additional	no effect					
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
weight		male & female					
	additional	no effect					
thyroid gland							
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
histopathology		male & female					
	additional	no effect					
trachea							
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
histopathology		male & female					
	additional	no effect					
urine analysis							
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient		
protein		male	0.515	0.11705			
g/g creatinine	dose	sex	timepoint	level	score	significance	%
	0	male	91	1.89		n.g.	100
	0	female	91	3.88		n.g.	100
	0.048	male	91	1.58		none	83.59
	0.048	female	91	0.9		none	23.19
	0.133	male	91	2.39		none	126.45
	0.133	female	91	2.93		none	75.51
	0 545	male	91	2.57		< 0.05	135.97
	0.515	maio					
	0.515 0.515 additional	female	91 ease of protein in	2.26 urine in HD m	n, effect not se	none een in f due to high	58.24 mean control value wit

uterus

Silver						
effect		sex	LOEL study unit	LOEL mg/kg	tran- sient	
histopathology		female				
	additional	no effect				