TEXTE

49/2014

Monitoring von Klärschlammmonoverbrennungsaschen hinsichtlich ihrer Zusammensetzung zur Ermittlung ihrer Rohstoffrückgewinnungspotentiale und zur Erstellung von Referenzmaterial für die Überwachungsanalytik

TEXTE 49/2014

Umweltforschungsplan des Bundesministeriums für Umwelt, Naturschutz, Bau und Reaktorsicherheit

Forschungskennzahl 37 11 33 321 UBA-FB 001951

Monitoring von
Klärschlammmonoverbrennungsaschen
hinsichtlich ihrer Zusammensetzung zur
Ermittlung ihrer
Rohstoffrückgewinnungspotentiale und zur
Erstellung von Referenzmaterial für die
Überwachungsanalytik

von

Dr. Oliver Krüger, Dr.-Ing. Christian Adam BAM Bundesanstalt für Materialforschung und -prüfung, Berlin

Im Auftrag des Umweltbundesamtes

Impressum

Herausgeber: Umweltbundesamt Wörlitzer Platz 1 06844 Dessau-Roßlau

Tel: +49 340-2103-0 Fax: +49 340-2103-2285 info@umweltbundesamt.de

Internet: www.umweltbundesamt.de

f /umweltbundesamt.de
 /umweltbundesamt

Durchführung der Studie: BAM Bundesanstalt für Materialforschung und -prüfung Unter den Eichen 87 12205 Berlin

Abschlussdatum: Februar 2014

Redaktion:

Fachgebiet III 2.5 Überwachungsverfahren, Abwasserentsorgung Andrea Roskosch

Publikationen als pdf:

http://www.umweltbundesamt.de/publikationen/monitoring-von-klaerschlammmonover-brennungsaschen

ISSN 1862-4804

Dessau-Roßlau, Juli 2014

Das diesem Bericht zu Grunde liegende Vorhaben wurde mit Mitteln des Bundesministeriums für Umwelt, Naturschutz, Bau und Reaktorsicherheit unter dem Förderkennzeichen 37 11 33 321 gefördert. Die Verantwortung für den Inhalt dieser Veröffentlichung liegt bei den Autorinnen und Autoren.

Kurzbeschreibung

In Deutschland fallen jedes Jahr knapp 2 Million Tonnen Klärschlamm (Trockenmasse) an. Knapp die Hälfte davon wird aktuell als Dünger in der Landwirtschaft bzw. zum Landschaftsbau eingesetzt, der Rest wird thermisch entsorgt. Klärschlämme stellen die Schadstoffsenke der Abwasserreinigung dar und können neben Schwermetallen auch organische Schadstoffe enthalten. Aufgrund von zunehmender Besorgnis über mögliche Gesundheits- und Umweltgefahren durch den direkten Einsatz der Klärschlämme in der Landwirtschaft ist heute davon auszugehen, dass dieser Verwertungsweg zugunsten der Verbrennung in Zukunft weiter an Bedeutung verlieren wird. Derzeit werden die Aschen fast ausschließlich entsorgt. Damit werden sämtliche in der Klärschlammasche enthaltenen Wertstoffe dem Wirtschaftskreislauf dauerhaft entzogen. Das gilt neben Technologiemetallen insbesondere für Phosphor (P). Der jährliche Phosphorbedarf in der Landwirtschaft beläuft sich in Deutschland auf über 500.000 t P, knapp 150.000 t davon werden in Form mineralischer Dünger aufgebracht. Dieser wird aus bergmännisch gewonnen Rohphosphaten hergestellt, für die in der EU eine nahezu vollständige Importabhängigkeit besteht und die teilweise stark mit Schwermetallen wie Uran und Cadmium belastet sind. Aus diesen Gründen wird die Suche nach alternativen Sekundärrohstoffquellen verstärkt.

Um das Rückgewinnungspotential von Phosphor und Technologiemetallen aus Klärschlammaschen bewerten zu können, wurden über 97 % der in Deutschland anfallenden Klärschlammaschen aus der Monoverbrennung repräsentativ beprobt und vollständig charakterisiert. Für Phosphor ergibt sich ein Rückgewinnungspotential von knapp 19.000 t/a, was über 12 % der in Form konventioneller mineralischer Dünger eingesetzten Menge an Phosphor entspricht. Eine direkte Rückgewinnung von Technologiemetallen aus der Asche scheint aufgrund geringer Gehalte nicht sinnvoll, kann aber im Verbund mit einer Phosphorrückgewinnung durch Nutzen von Synergien wirtschaftlich werden.

Abstract

Whereas roughly half of the 2 million tons of sewage sludge that arise in Germany every year is actually used as fertilizer or for landscaping purposes, the rest is being incinerated. The latter use is expected to increase in the future due to growing concerns of possible adverse effects of sewage sludge contaminated with heavy metals and organic pollutants. Since at present most of the sewage sludge ash is landfilled or used for construction purposes, all raw materials contained therein are removed from the economic cycle entirely. Aside from technology metals, this is especially important for phosphorous. The annual need for phosphorous in German farming and husbandry is more than 500,000 t. Approximately 150,000 t of this is applied as mineral fertilizer, that is produced from mined rock phosphate. These rock phosphates are often contaminated with large amounts of heavy metals like uranium and cadmium. Furthermore, the EU depends almost completely on imports and is thus prone to supply risks and volatile world market prices. Thus, alternative sources for phosphorous and if possible for technology metals are in order.

Thus we sampled over 97 % of all sewage sludge ashes from mono-incineration facilities that arise in Germany representatively. We characterized their chemical composition to determine the recovery potential for phosphorous and technology metals. The ashes contain about 19,000 t of phosphorous, which equals more than 12 % of the annually consumed mineral phosphate fertilizers. Due to low amounts, direct recovery of technology metal is probably only economic if synergies with phosphorous recovery are exploited.

Inhaltsverzeichnis

Ab	bildur	ngsverzeichnis	9
Ta	beller	nverzeichnis	12
Ab	kürzu	ngen	19
1	Zus	ammenfassung	20
	1.1	Hintergrund	20
	1.2	Projektziele und Teilnehmer	21
	1.3	Methodenentwicklung und Qualitätssicherung	24
	1.4	Konsequenzen für die direkte Verwertung von Klärschlammaschen gemäß Düngemittelverordnung	25
	1.5	Rückgewinnungspotential	26
	1.6	Weitere Ergebnisse	29
2	Sun	nmary	30
	2.1	Background	30
	2.2	Project aims and participants	30
	2.3	Method development and quality assurance	33
	2.4	Consequences for the direct use of sewage sludge ashes as fertilizer	35
	2.5	Recovery potential	36
	2.6	Further results	38
3	Hin	tergrund	40
4	Pro	jektziele	43
5	Tei	Inehmer und Probenaquise	44
6	Klä	rschlammaschemengen und Verbleib	47
7	Ana	alytik und Methodenentwicklung	49
	7.1	Probenvorbereitung, Geräte und Methoden	49
	7.2	Methodenentwicklung	50
8	Qua	alitätssicherung	55
	8.1	Bestimmungsgrenzen	55
	8.2	Blindwerte	55
	8.3	Vergleich mit Referenzmaterialien und Röntgenfluoreszenzanalyse	55
	8.4	Wiederholbarkeit	57
9	Erg	ebnisse und Diskussion	60
	9.1	Zusammenfassung aller Elementgehalte	60
	9.2	Vergleich Königswasserauszug und Perchlorsäureaufschluss - Konsequenzen für die Bewertung gemäß Düngemittelverordnung	62

	9.3	Elementgehalte einzelner Anlagen im Vergleich
	9.4	Thermische Analytik
	9.5	Einzelergebnisse
	9.6	Wertstoffpotentiale
	9.7	Massenströme ausgewählter Anlagen
	9.8	Phosphorverfügbarkeit
	9.9	Monatliche Verläufe
		Organische Schadstoffe
		Referenzmaterial95
10		ammenfassung - Ausblick
11		änge
		Analyseparameter
		Vergleich Königswasserauszug - Perchlorsäureaufschluss
		Einzelergebnisse nach Anlagen
	11.	3.1 Anlage 1
	11.	3.2 Anlage 2
	11.	3.3 Anlage 3
	11.	3.4 Anlage 4
	11.	3.5 Anlage 5
	11.	3.6 Anlage 6
	11.	3.7 Anlage 7
	11.	3.8 Anlage 8
	11.	3.9 Anlage 9
	11.	3.10 Anlage 11
	11.	3.11 Anlage 12
	11.	3.12 Anlage 13
	11.	3.13 Anlage 14
	11.	3.14 Anlage 15
	11.	3.15 Anlage 16
	11.	3.16 Anlage 17
	11.	3.17 Anlage 18
	11.	3.18 Anlage 19
	11.	3.19 Anlage 20
	11.	3.20 Anlage 21
	11	3 21 Δnlage 22 152

	11.3.22	Anlage 23	153
	11.3.23	Anlage 25	156
	11.3.24	Anlage 26	158
	11.4 Therr	nische Analytik	160
	11.5 Masse	enströme ausgewählter Anlagen	173
	11.5.1 Ar	ılage 2	173
	11.5.2 Ar	ılage 14	175
	11.5.3 Ar	ılage 17	177
12	Ouellenve	erzeichnis	178

Abbildungsverzeichnis

Abbildung 1:	Entwicklung der Klärschlammentsorgung in Deutschland (Destatis)	40
Abbildung 2:	Phosphorquellen für die Landwirtschaft (Angaben in t/a; Zahlen nach (Gethke-Albinus, 2012))	41
Abbildung 3:	Kritische Rohstoffe (nach (EUCommission, 2010))	42
Abbildung 4:	Monoverbrennungsanlagen für Klärschlamm in Deutschland	44
Abbildung 5:	Klärschlammasche nach Herkunft des Klärschlamms	48
Abbildung 6:	Verbleib der Klärschlammasche	48
Abbildung 7:	Vergleich der Aufschlussmethoden KW, TA, Per (ICP-OES; Al, Ca, Fe, K)	50
Abbildung 8:	Vergleich der Aufschlussmethoden KW, TA, Per (ICP-OES; Mg, Na, P, S)	51
Abbildung 9:	Vergleich der Aufschlussmethoden KW, TA, Per (ICP-OES; Si, Ti, V, Cr)	51
Abbildung 10:	Vergleich der Aufschlussmethoden KW, TA, Per (ICP-OES; Mn, Ni, Cu, Zn)	52
Abbildung 11:	Vergleich der Aufschlussmethoden KW, TA, Per (ICP-OES; Ga, Sr, Mo, Ba)	52
Abbildung 12:	Vergleich der Aufschlussmethoden KW, TA, Per (ICP-OES; W, Pb)	53
Abbildung 13:	Vergleich der Aufschlussmethoden KW, TA, Per und Schmelzaufschluss (ICP-MS) für Probe 3-6	53
Abbildung 14: Ver	rgleich von Königswasserauszug (KW) und Perchlorsäureaufschluss (Per) für Al, Fe, Ca, P	62
Abbildung 15:	Vergleich von Königswasserauszug (KW) und Perchlorsäureaufschluss (Per) für Si, Ti, As, Cu	63
Abbildung 16:	Vergleich von Königswasserauszug (KW) und Perchlorsäureaufschluss (Per) für Cr, Ni, Pb, Zn	63
Abbildung 17:	Mittlere Elementgehalte aller Anlagen im Vergleich (Ca, Si, Fe)	67
Abbildung 18:	Mittlere Elementgehalte aller Anlagen im Vergleich (P, Al, S)	67
Abbildung 19:	Mittlere Elementgehalte aller Anlagen im Vergleich (Mg, K, Na)	68
Abbildung 20:	Mittlere Elementgehalte aller Anlagen im Vergleich (Ti, Ba, Mn)	68
Abbildung 21:	Mittlere Elementgehalte aller Anlagen im Vergleich (Zn, Cu, Sn)	69
Abbildung 22:	Mittlere Elementgehalte aller Anlagen im Vergleich (Sr, V, Cr), zusätzlich eingezeichnet der Wert zur Kennzeichnungspflicht für Cr nach Düngemittelverordnung	69
Abbildung 23:	Mittlere Elementgehalte aller Anlagen im Vergleich (Zr, Ni, Pb), zusätzlich eingezeichnet die Grenzwerte für Ni und Pb nach Düngemittelverordnung	70
Abbildung 24:	Mittlere Elementgehalte aller Anlagen im Vergleich (Nb, Sb, Mo)	70

Abbildung 25:	Mittlere Elementgehalte aller Anlagen im Vergleich (Co, As, Ag), zusätzlich eingezeichnet der Grenzwert für As nach Düngemittelverordnung	71
Abbildung 26:	Mittlere Elementgehalte aller Anlagen im Vergleich (W, La, Ce)	71
Abbildung 27:	Mittlere Elementgehalte aller Anlagen im Vergleich (Nd, Y, Sc)	72
Abbildung 28:	Mittlere Elementgehalte aller Anlagen im Vergleich (Ta, Th, U)	72
Abbildung 29:	Mittlere Elementgehalte aller Anlagen im Vergleich (Ga, Ge, Hf)	73
Abbildung 30:	Mittlere Elementgehalte aller Anlagen im Vergleich (Pr, Sm, Gd)	73
Abbildung 31:	Mittlere Elementgehalte aller Anlagen im Vergleich (Dy, Er, Yb)	74
Abbildung 32:	Mittlere Elementgehalte aller Anlagen im Vergleich (Cd, Se, Au), zusätzlich eingezeichnet der Grenzwert für Cd bei 12 $\%$ P_2O_5 nach Düngemittelverordnung	74
Abbildung 33:	Mittlere Elementgehalte aller Anlagen im Vergleich (Hg, Eu, Tb)	
Abbildung 34:	Mittlere Elementgehalte aller Anlagen im Vergleich (Ho, Tm, Lu)	75
Abbildung 35:	Verteilung der Seltenen Erden in Klärschlammaschen im Vergleich zum geogenen Hintergrund (PAAS, Post archean Australian shale, Vergleichswerte nach (Bau et al., 1996); KSA, Klärschlammasche, Mittelwerte aller gemessen Proben)	76
Abbildung 36:	Differenz-Thermoanalyse (DTA) von Probe 7-1	
Abbildung 37:	Differenz-Thermoanalyse (DTA) von Probe 3-2	
Abbildung 38:	Differenz-Thermoanalyse (DTA) von Probe 20-1	
Abbildung 39:	Ascheaufkommen der KS-Monoverbrennungsanlagen sortiert nach anfallender Aschemenge [t/a]	83
Abbildung 40:	Phosphorgehalt in Aschen der KS-Monoverbrennungsanlagen [%]	83
Abbildung 41:	Phosphormenge pro KS-Monoverbrennungsanlagen [t/a]	83
Abbildung 42:	Phosphorgehalte im monatlichen Verlauf (Anlagen 2, 4, 8, 13, 25, 26)	88
Abbildung 43:	Phosphorgehalte im monatlichen Verlauf (Anlagen 11, 15,17)	88
Abbildung 44:	Phosphorgehalte im monatlichen Verlauf (Anlagen 9, 14, 16)	89
Abbildung 45:	Phosphorgehalte im monatlichen Verlauf (Anlagen 1, 3, 5, 6, 7, 12,19, 22)	89
Abbildung 46:	Gehalte an Matrixelementen im monatlichen Verlauf (Anlagen 1, 2, 3, 4)	90
Abbildung 47:	Gehalte an Matrixelementen im monatlichen Verlauf (Anlagen 5, 6, 7, 8)	90
Abbildung 48:	Gehalte an Matrixelementen im monatlichen Verlauf (Anlagen 9, 11, 12, 13)	
Abbildung 49:	Gehalte an Matrixelementen im monatlichen Verlauf (Anlagen 14,	91

Abbildung 50:	Gehalte an Matrixelementen im monatlichen Verlauf (Anlagen 19, 22, 25, 26)	92
Abbildung 51:	Nickelgehalte im monatlichen Verlauf inklusive des Grenzwertes der Düngemittelverordnung	93
Abbildung 52:	Bleigehalte im monatlichen Verlauf inklusive des Grenzwertes der Düngemittelverordnung	93
Abbildung 53:	Quecksilbergehalte im monatlichen Verlauf inklusive des Grenzwertes der Düngemittelverordnung	94
Abbildung 54:	Differenz-Thermoanalyse (DTA) von Probe 3-1	166
Abbildung 55:	Differenz-Thermoanalyse (DTA) von Probe 3-2	167
Abbildung 56:	Differenz-Thermoanalyse (DTA) von Probe 3-3	167
Abbildung 57:	Differenz-Thermoanalyse (DTA) von Probe 3-4	168
Abbildung 58:	Differenz-Thermoanalyse (DTA) von Probe 3-5	168
Abbildung 59:	Differenz-Thermoanalyse (DTA) von Probe 3-6	169
Abbildung 60:	Differenz-Thermoanalyse (DTA) von Probe 7-1	169
Abbildung 61:	Differenz-Thermoanalyse (DTA) von Probe 7-2	170
Abbildung 62:	Differenz-Thermoanalyse (DTA) von Probe 7-3	170
Abbildung 63:	Differenz-Thermoanalyse (DTA) von Probe 11-1	171
Abbildung 64:	Differenz-Thermoanalyse (DTA) von Probe 16-1	171
Abbildung 65:	Differenz-Thermoanalyse (DTA) von Probe 20-1	172
Abbildung 66:	Differenz-Thermoanalyse (DTA) von Probe 20-1 (Wiederholung)	172
Abbildung 67:	Differenz-Thermoanalyse (DTA) von Probe 20-2	173

Tabellenverzeichnis

Tabelle 1:	Monoverbrennungsanlagen, Probenanzahl und Probenahmezeitraum	45
Tabelle 2:	Monoverbrennungsanlagen, Kapazitäten und Auslastung 2011	47
Tabelle 3:	Bestimmungsgrenzen der mit ICP-OES und ICP-MS analysierten Elemente [mg/kg]	55
Tabelle 4:	Messung des Referenzmaterials CTA/FFA-1 (Gehalte in % bzw. mg/kg)	56
Tabelle 5:	Vergleich ICP-RFA für die Klärschlammasche SNBA 13	56
Tabelle 6:	Vergleich ICP-RFA für die Klärschlammasche SINDL 52	57
Tabelle 7:	Wiederholbarkeit von Aufschlüssen für die ICP-OES anhand Probe 2-1	57
Tabelle 8:	Wiederholbarkeit von Aufschlüssen für die ICP-MS anhand Probe 1-	58
Tabelle 9:	Wiederholbarkeit von Einzelmessungen an der ICP anhand Probe 1-	58
Tabelle 10:	Zusammenfassung der Hauptelementgehalte aller Proben [Massen-%]	60
Tabelle 11:	Zusammenfassung der Spurenelementgehalte aller Proben [mg/kg]	60
Tabelle 12:	Platingruppenelementgehalte ausgewählter Proben [µg/kg]	61
Tabelle 13:	Quecksilber-Gehalte ausgewählter Proben, bestimmt per Königswasserauszug (KW) und Perchlorsäreaufschluss (Per)	64
Tabelle 14:	Klärschlammaschen mit Schwermetallgehalten oberhalb der Grenzwerte der Düngemittelverordnung	65
Tabelle 15:	Konzentrationen an seltenen Erden in Klärschlammaschen	76
Tabelle 16:	Glühverlust und Gesamt organischer Kohlenstoff (TOC) von Aschen aus Wirbelschichtanlagen (183 Proben aus 18 Anlagen)	78
Tabelle 17:	Glühverlust und gesamt organischer Kohlenstoff (TOC) von Aschen aus Etagenfeuerungsanlagen (24 Proben aus 2 Anlagen)	79
Tabelle 18:	Glühverlust und gesamt organischer Kohlenstoff (TOC) von Aschen aus Wirbelschichtvergasungsanlagen (7 Proben aus 2 Anlagen)	79
Tabelle 19:	Glühverlust und gesamt organischer Kohlenstoff (TOC) von Aschen aus Rostfeuerungsanlagen (30 Proben aus 2 Anlagen)	79
Tabelle 20:	Jährliche Rückgewinnungspotentiale aus deutschen Klärschlammaschen	79
Tabelle 21:	Wertstoffpotential für kritische Rohstoffe im Vergleich mit Importen	81
Tabelle 22:	Herkunftsabhängige Phosphorgehalte in Klärschlammaschen	82

Tabelle 23:	Herkunftsabhängiges Phosphorrückgewinnungspotential aus Klärschlammaschen	82
Tabelle 24:	Prozentualer Anteil ausgewählter Elemente in Outputströmen der Anlage 2	84
Tabelle 25:	Prozentualer Anteil ausgewählter Elemente in Outputströmen der Anlage 14	84
Tabelle 26:	Prozentualer Anteil ausgewählter Elemente in Outputströmen der Anlage 17	85
Tabelle 27:	Neutralammoncitratlöslichkeit von Phosphor aus Klärschlammaschen	85
Tabelle 28:	Polycyclische aromatische Kohlenwasserstoffe (Summe 16 EPA-PAK) in Klärschlammaschen in mg/kg	94
Tabelle 29:	Messparameter für die Elementanalytik per ICP-OES und ICP-MS	98
Tabelle 30:	Hauptelementkonzentrationen im Vergleich Königswasserauszug und Perchlorsäureaufschluss	99
Tabelle 31:	Spurenelementkonzentrationen 1 im Vergleich Königswasserauszug und Perchlorsäureaufschluss	100
Tabelle 32:	Spurenelementkonzentrationen 2 im Vergleich Königswasserauszug und Perchlorsäureaufschluss	102
Tabelle 33:	Hauptelemente [%], Wassergehalt (RF) [%], Glühverlust (GV) [%] der Anlage 1	104
Tabelle 34:	Spurenelemente 1 [mg/kg] der Anlage 1	104
Tabelle 35:	Spurenelemente 2 [mg/kg] der Anlage 1	105
Tabelle 36:	Spurenelemente 3 [mg/kg] der Anlage 1	105
Tabelle 37:	Spurenelemente 4 [mg/kg] der Anlage 1	105
Tabelle 38:	Platingruppenelemente [µg/kg] der Anlage 1	105
Tabelle 39:	Hauptelemente [%], Wassergehalt (RF) [%], Glühverlust (GV) [%] der Anlage 2	106
Tabelle 40:	Spurenelemente 1 [mg/kg] der Anlage 2	106
Tabelle 41:	Spurenelemente 2 [mg/kg] der Anlage 2	107
Tabelle 42:	Spurenelemente 3 [mg/kg] der Anlage 2	107
Tabelle 43:	Spurenelemente 4 [mg/kg] der Anlage 2	108
Tabelle 44:	Platingruppenelemente [µg/kg] der Anlage 2	109
Tabelle 45:	Hauptelemente [%], Wassergehalt (RF) [%], Glühverlust (GV) [%] der Anlage 3	109
Tabelle 46:	Spurenelemente 1 [mg/kg] der Anlage 3	110
Tabelle 47:	Spurenelemente 2 [mg/kg] der Anlage 3	111
Tabelle 48	Spurenelemente 3 [mg/kg] der Anlage 3.	111

Tabelle 49:	Spurenelemente 4 [mg/kg] der Anlage 3	112
Tabelle 50:	Hauptelemente [%], Wassergehalt (RF) [%], Glühverlust (GV) [%] der Anlage 4	113
Tabelle 51:	Spurenelemente 1 [mg/kg] der Anlage 4	114
Tabelle 52:	Spurenelemente 2 [mg/kg] der Anlage 4	114
Tabelle 53:	Spurenelemente 3 [mg/kg] der Anlage 4	115
Tabelle 54:	Spurenelemente 4 [mg/kg] der Anlage 4	115
Tabelle 55:	Hauptelemente [%], Wassergehalt (RF) [%], Glühverlust (GV) [%] der Anlage 5	116
Tabelle 56:	Spurenelemente 1 [mg/kg] der Anlage 5	116
Tabelle 57:	Spurenelemente 2 [mg/kg] der Anlage 5	117
Tabelle 58:	Spurenelemente 3 [mg/kg] der Anlage 5	117
Tabelle 59:	Spurenelemente 4 [mg/kg] der Anlage 5	118
Tabelle 60:	Platingruppenelemente [µg/kg] der Anlage 5	118
Tabelle 61:	Hauptelemente [%], Wassergehalt (RF) [%], Glühverlust (GV) [%] der Anlage 6	118
Tabelle 62:	Spurenelemente 1 [mg/kg] der Anlage 6	119
Tabelle 63:	Spurenelemente 2 [mg/kg] der Anlage 6	119
Tabelle 64:	Spurenelemente 3 [mg/kg] der Anlage 6	119
Tabelle 65:	Spurenelemente 4 [mg/kg] der Anlage 6	120
Tabelle 66:	Platingruppenelemente [µg/kg] der Anlage 6	120
Tabelle 67:	Hauptelemente [%], Wassergehalt (RF) [%], Glühverlust (GV) [%] der Anlage 7	120
Tabelle 68:	Spurenelemente 1 [mg/kg] der Anlage 7	121
Tabelle 69:	Spurenelemente 2 [mg/kg] der Anlage 7	122
Tabelle 70:	Spurenelemente 3 [mg/kg] der Anlage 7	122
Tabelle 71:	Spurenelemente 4 [mg/kg] der Anlage 7	123
Tabelle 72:	Platingruppenelemente [µg/kg] der Anlage 7	124
Tabelle 73:	Hauptelemente [%], Wassergehalt (RF) [%], Glühverlust (GV) [%] der Anlage 8	124
Tabelle 74:	Spurenelemente 1 [mg/kg] der Anlage 8	124
Tabelle 75:	Spurenelemente 2 [mg/kg] der Anlage 8	125
Tabelle 76:	Spurenelemente 3 [mg/kg] der Anlage 8	125
Tabelle 77:	Spurenelemente 4 [mg/kg] der Anlage 8	126
Tabelle 78:	Platingruppenelemente [µg/kg] der Anlage 8	126
Tabelle 79:	Hauptelemente [%], Wassergehalt (RF) [%], Glühverlust (GV) [%]	126

Tabelle 80:	Spurenelemente 1 [mg/kg] der Anlage 9	127
Tabelle 81:	Spurenelemente 2 [mg/kg] der Anlage 9	127
Tabelle 82:	Spurenelemente 3 [mg/kg] der Anlage 9	127
Tabelle 83:	Spurenelemente 4 [mg/kg] der Anlage 9	128
Tabelle 84:	Platingruppenelemente [µg/kg] der Anlage 9	128
Tabelle 85:	Hauptelemente [%], Wassergehalt (RF) [%], Glühverlust (GV) [%] der Anlage 11	128
Tabelle 86:	Spurenelemente 1 [mg/kg] der Anlage 11	129
Tabelle 87:	Spurenelemente 2 [mg/kg] der Anlage 11	129
Tabelle 88:	Spurenelemente 3 [mg/kg] der Anlage 11	130
Tabelle 89:	Spurenelemente 4 [mg/kg] der Anlage 11	130
Tabelle 90:	Platingruppenelemente [µg/kg] der Anlage 11	131
Tabelle 91:	Hauptelemente [%], Wassergehalt (RF) [%], Glühverlust (GV) [%] der Anlage 12	131
Tabelle 92:	Spurenelemente 1 [mg/kg] der Anlage 12	131
Tabelle 93:	Spurenelemente 2 [mg/kg] der Anlage 12	132
Tabelle 94:	Spurenelemente 3 [mg/kg] der Anlage 12	132
Tabelle 95:	Spurenelemente 4 [mg/kg] der Anlage 12	133
Tabelle 96:	Platingruppenelemente [µg/kg] der Anlage 12	133
Tabelle 97:	Hauptelemente [%], Wassergehalt (RF) [%], Glühverlust (GV) [%] der Anlage 13	133
Tabelle 98:	Spurenelemente 1 [mg/kg] der Anlage 13	134
Tabelle 99:	Spurenelemente 2 [mg/kg] der Anlage 13	134
Tabelle 100:	Spurenelemente 3 [mg/kg] der Anlage 13	135
Tabelle 101:	Spurenelemente 4 [mg/kg] der Anlage 13	135
Tabelle 102:	Platingruppenelemente [µg/kg] der Anlage 13	136
Tabelle 103:	Hauptelemente [%], Wassergehalt (RF) [%], Glühverlust (GV) [%] der Anlage 14	136
Tabelle 104:	Spurenelemente 1 [mg/kg] der Anlage 14	136
Tabelle 105:	Spurenelemente 2 [mg/kg] der Anlage 14	137
Tabelle 106:	Spurenelemente 3 [mg/kg] der Anlage 14	137
Tabelle 107:	Spurenelemente 4 [mg/kg] der Anlage 14	138
Tabelle 108:	Platingruppenelemente [µg/kg] der Anlage 14	138
Tabelle 109:	Hauptelemente [%], Wassergehalt (RF) [%], Glühverlust (GV) [%] der Anlage 15	138
Tabelle 110:	Spurenelemente 1 [mg/kg] der Anlage 14	139

Tabelle 111:	Spurenelemente 2 [mg/kg] der Anlage 15	139
Tabelle 112:	Spurenelemente 3 [mg/kg] der Anlage 15	140
Tabelle 113:	Spurenelemente 4 [mg/kg] der Anlage 15	140
Tabelle 114:	Platingruppenelemente [µg/kg] der Anlage 15	140
Tabelle 115:	Hauptelemente [%], Wassergehalt (RF) [%], Glühverlust (GV) [%] der Anlage 16	141
Tabelle 116:	Spurenelemente 1 [mg/kg] der Anlage 16	141
Tabelle 117:	Spurenelemente 2 [mg/kg] der Anlage 16	142
Tabelle 118:	Spurenelemente 3 [mg/kg] der Anlage 16	142
Tabelle 119:	Spurenelemente 4 [mg/kg] der Anlage 16	142
Tabelle 120:	Platingruppenelemente [µg/kg] der Anlage 16	143
Tabelle 121:	Hauptelemente [%], Wassergehalt (RF) [%], Glühverlust (GV) [%] der Anlage 17	143
Tabelle 122:	Spurenelemente 1 [mg/kg] der Anlage 17	144
Tabelle 123:	Spurenelemente 2 [mg/kg] der Anlage 17	144
Tabelle 124:	Spurenelemente 3 [mg/kg] der Anlage 17	145
Tabelle 125:	Spurenelemente 4 [mg/kg] der Anlage 17	145
Tabelle 126:	Hauptelemente [%], Wassergehalt (RF) [%], Glühverlust (GV) [%] der Anlage 18	146
Tabelle 127:	Spurenelemente 1 [mg/kg] der Anlage 18	146
Tabelle 128:	Spurenelemente 2 [mg/kg] der Anlage 18	146
Tabelle 129:	Spurenelemente 3 [mg/kg] der Anlage 18	146
Tabelle 130:	Spurenelemente 4 [mg/kg] der Anlage 18	147
Tabelle 131:	Platingruppenelemente [µg/kg] der Anlage 18	147
Tabelle 132:	Hauptelemente [%], Wassergehalt (RF) [%], Glühverlust (GV) [%] der Anlage 19	147
Tabelle 133:	Spurenelemente 1 [mg/kg] der Anlage 19	147
Tabelle 134:	Spurenelemente 2 [mg/kg] der Anlage 19	148
Tabelle 135:	Spurenelemente 3 [mg/kg] der Anlage 19	148
Tabelle 136:	Spurenelemente 4 [mg/kg] der Anlage 19	148
Tabelle 137:	Platingruppenelemente [µg/kg] der Anlage 19	149
Tabelle 138:	Hauptelemente [%], Wassergehalt (RF) [%], Glühverlust (GV) [%] der Anlage 20	149
Tabelle 139:	Spurenelemente 1 [mg/kg] der Anlage 20	
Tabelle 140:	Spurenelemente 2 [mg/kg] der Anlage 20	150
Tabelle 141:	Spurenelemente 3 [mg/kg] der Anlage 20	150

Tabelle 142:	Spurenelemente 4 [mg/kg] der Anlage 20	150
Tabelle 143:	Platingruppenelemente [µg/kg] der Anlage 20	151
Tabelle 144:	Hauptelemente [%], Wassergehalt (RF) [%], Glühverlust (GV) [%] der Anlage 21	151
Tabelle 145:	Spurenelemente 1 [mg/kg] der Anlage 21	151
Tabelle 146:	Spurenelemente 2 [mg/kg] der Anlage 21	151
Tabelle 147:	Spurenelemente 3 [mg/kg] der Anlage 21	151
Tabelle 148:	Spurenelemente 4 [mg/kg] der Anlage 21	151
Tabelle 149:	Platingruppenelemente [µg/kg] der Anlage 21	151
Tabelle 150:	Hauptelemente [%], Wassergehalt (RF) [%], Glühverlust (GV) [%] der Anlage 22	152
Tabelle 151:	Spurenelemente 1 [mg/kg] der Anlage 22	152
Tabelle 152:	Spurenelemente 2 [mg/kg] der Anlage 22	152
Tabelle 153:	Spurenelemente 3 [mg/kg] der Anlage 22	153
Tabelle 154:	Spurenelemente 4 [mg/kg] der Anlage 22	153
Tabelle 155:	Platingruppenelemente [µg/kg] der Anlage 22	153
Tabelle 156:	Hauptelemente [%], der Anlage 23	153
Tabelle 157:	Spurenelemente 1 [mg/kg] der Anlage 23	154
Tabelle 158:	Spurenelemente 2 [mg/kg] der Anlage 23	154
Tabelle 159:	Spurenelemente 3 [mg/kg] der Anlage 23	155
Tabelle 160:	Spurenelemente 4 [mg/kg] der Anlage 23	155
Tabelle 161:	Hauptelemente [%], Wassergehalt (RF) [%], Glühverlust (GV) [%] der Anlage 25	156
Tabelle 162:	Spurenelemente 1 [mg/kg] der Anlage 25	156
Tabelle 163:	Spurenelemente 2 [mg/kg] der Anlage 25	156
Tabelle 164:	Spurenelemente 3 [mg/kg] der Anlage 25	157
Tabelle 165:	Spurenelemente 4 [mg/kg] der Anlage 25	157
Tabelle 166:	Hauptelemente [%], Wassergehalt (RF) [%], Glühverlust (GV) [%] der Anlage 26	158
Tabelle 167:	Spurenelemente 1 [mg/kg] der Anlage 26	158
Tabelle 168:	Spurenelemente 2 [mg/kg] der Anlage 26	159
Tabelle 169:	Spurenelemente 3 [mg/kg] der Anlage 26	159
Tabelle 170:	Spurenelemente 4 [mg/kg] der Anlage 26	159
Tabelle 171:	Einzelwerte für Wassergehalt, Glühverlust und Gesamt organischer Kohlenstoff (TOC)	160
Tabelle 172:	Konzentrationen und Frachten verschiedener Massenströme der	173

Tabelle 173:	Konzentrationen und Frachten verschiedener Massenströme der Anlage 2 (Spurenelemente)	174
Tabelle 174:	Konzentrationen und Frachten verschiedener Massenströme der Anlage 14 (Hauptelemente)	175
Tabelle 175:	Konzentrationen und Frachten verschiedener Massenströme der Anlage 14 (Spurenelemente)	175
Tabelle 176:	Konzentrationen und Frachten verschiedener Massenströme der Anlage 17 (Hauptelemente)	177
Tabelle 177:	Konzentrationen und Frachten verschiedener Massenströme der Anlage 17 (Spurenelemente)	177

Abkürzungen

BG Bestimmungsgrenze

CRM Critical raw materials-kritische Rohstoffe

DTA Differenz-Thermoanalyse

EMPOC Emerging Pollutants of Concern-Umweltschadstoffe

EPA Environmental Protection Agency - Umweltschutzbehörde der Vereinigten Staaten

von Amerika

GC-MS Gaschromatographie-Massenspektrometrie-Kopplung

GV Glühverlust

ICP-MS induktiv gekoppeltes Plasma-Massenspektrometrie

ICP-OES induktiv gekoppeltes Plasma-optische Emissionsspektroskopie

KS Klärschlamm

KSA Klärschlammasche
KW Königswasserauszug

MW Mittelwert P Phosphor

PAAS post archean Australian shale

PAK polycyclische aromatische Kohlenwasserstoffe

Per Perchlorsäureaufschluss

Pnac in neutralem Ammoniumcitrat lösliches Phosphat

RF Wassergehalt

RFA Röntgenfluoreszenzanalyse
RSD realtive Standardabweichung

SE Seltene Erden
TA Totalaufschluss

TOC total organic carbon-organischer Gesamtkohlenstoff

USGS United States Geological Survey

WS Wirbelschicht

1 Zusammenfassung

1.1 Hintergrund

In Deutschland fallen jährlich etwa 2 Millionen Tonnen Klärschlamm (Trockenmasse) an. Während in den 1980er Jahren noch über die Hälfte des Schlamms deponiert wurde, ging dieser Anteil bis zum Deponierungsverbot für unbehandelte Abfälle im Jahr 2006 auf null zurück. Stattdessen nahm der Anteil der landwirtschaftlichen Verwertung als Düngemittel und/oder zum Landschaftsbau zu. Nach einem Maximum von etwa 60 % zur Jahrtausendwende ging dieser Anteil zugunsten der Verbrennung zurück. Zurzeit wird etwas mehr als die Hälfte des Klärschlamms verbrannt, der Rest wird weiterhin in Landwirtschaft und Landschaftsbau eingesetzt.

Es ist davon auszugehen, dass der Anteil der Verbrennung in Zukunft weiter steigen wird. Ein wesentlicher Grund dafür ist die zunehmende Besorgnis über Schadstoffe im Klärschlamm, die Mensch und Umwelt schädigen können. Klärschlämme stellen die Schadstoffsenke der Abwasserreinigung dar. Dabei handelt es sich sowohl um organische und anorganische Schadstoffe. Ein Hauptaugenmerk liegt dabei auf Emerging Pollutants of Concern (EMPOC) wie Rückständen und Metaboliten von Kosmetika und Antibiotika. Darüber hinaus hat die Bundesregierung im Koalitionsvertrag Ende 2013 beschlossen, die landwirtschaftliche Verwertung des Klärschlamms vollständig einzustellen.

Thermisch zu verwertender Klärschlamm wird entweder in Monoverbrennungsanlagen umgesetzt oder in Kraftwerken, Hausmüllverbrennungsanlagen oder Zementwerken mit verbrannt. Die Monoverbrennung ist damit im Hinblick auf eine mögliche Rückgewinnung von Ressourcen interessanter. Zum Einen werden die Wertstoffe bei der Mitverbrennung mit anderen Materialien verdünnt und die Aschen gemeinsam deponiert. Zum Anderen können durch die Zusatzbrennstoffe weitere Schadstoffe eingetragen werden. Diese Punkte erschweren eine Rückgewinnung von Wertstoffen aus Mitverbrennungsasche oder machen sie ganz unmöglich.

Zurzeit werden in Deutschland fast 800.000 t Klärschlamm pro Jahr in Monoverbrennungsanlagen entsorgt. Dabei entstehen etwa 300.000 t Klärschlammasche. Diese wird zurzeit fast ausschließlich deponiert oder als Bergversatz oder im Straßenbau eingesetzt. Damit werden sämtliche in der Asche enthaltenen Rohstoffe wie Phosphor und Technologiemetalle dem Wirtschaftskreislauf dauerhaft entzogen.

Phosphor ist für alle Spezies auf der Erde lebensnotwendig. Dieser Phosphor wird durch die Nahrung aufgenommen und somit über die landwirtschaftliche Pflanzenproduktion letztlich dem Boden entzogen. Der Phosphor muss dem Boden wieder zugeführt werden, damit dieser weiter landwirtschaftlich genutzt werden kann. Für Deutschland ergibt sich ein Jahresbedarf von über 500.000 t. Problematisch ist dabei besonders der Stoffstrom mineralischer Dünger, der knapp 150.000 t/a ausmacht. Der Phosphor hierfür wird ausschließlich bergmännisch als Rohphosphat abgebaut. Obwohl die Lagerstätten eine statische Reichweite von ca. 370 Jahren aufweisen, ist die Produktion in Ländern konzentriert, die entweder einen hohen Eigenbedarf haben (China, USA) oder in politisch instabilen Regionen liegen (Marokko). Da die Europäische Union über keine nennenswerten Lagerstätten verfügt, besteht eine vollständige Importabhängigkeit für Rohphosphat. Darüber hinaus sind Rohphosphate oftmals stark mit Schwermetallen belastet, die auf die Felder gelangen und damit Boden und Grundwasser gefährden können. Dies betrifft insbesondere Cadmium (um 30 mg/kg) und Uran (um 100 mg/kg).

Die Importabhängigkeit und damit auch Abhängigkeit von volatilen Weltmarktpreisen sowie die möglichen Umweltgefahren durch Rohphosphate zeigen den Bedarf an alternativen Phosphorquellen.

Entsprechende Überlegungen gelten auch für Technologiemetalle. Die Europäische Kommission hat 41 industriell wichtige Rohstoffe im Hinblick auf ihre wirtschaftliche Bedeutung und das jeweilige Versorgungsrisiko bewertet. Danach wurden 14 Rohstoffe als kritisch eingestuft. Auch für diese Rohstoffe lohnt es sich, nach alternativen Quellen zu suchen, um die Importabhängigkeit und die Abhängigkeit von schwankenden Weltmarktpreisen zu reduzieren.

1.2 Projektziele und Teilnehmer

Ziel des Projekts war, alle in Deutschland anfallenden Klärschlammaschen aus Monoverbrennungsanlagen auf ihre chemische Zusammensetzung zu analysieren. Bestimmt wurden neben der Elementzusammensetzung auch Restgehalte an Kohlenstoff und organischem Material sowie mögliche organische Schadstoffe sowie die Pflanzenverfügbarkeit des in den Aschen vorliegenden Phosphats. Soweit möglich wurden saisonale und regionale Unterschiede in der Zusammensetzung der Asche bestimmt.

An ausgewählten Anlagen wurde der Einfluss unterschiedlicher Verbrennungstechnik (Wirbelschichtfeuerung und Rostfeuerung) auf die Elementzusammensetzung der Aschen untersucht. Dazu wurden Proben aus verschiedenen Phasen des Betriebsablaufs genommen, um die jeweiligen Massenströme und Verteilung der Elemente bestimmen zu können.

Das sich aus der Elementzusammensetzung und den jeweiligen Aschemengen ergebende Rückgewinnungspotential an Wertstoffen wurde ermittelt.

Die Klärschlammaschen wurden geprüft, inwieweit daraus Referenzmaterialien für die entsprechende Analytik hergestellt werden können, da bisher keine entsprechenden Referenzmaterialien verfügbar sind.

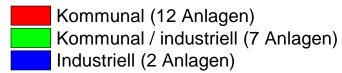
In Deutschland gibt es 26 Monoverbrennungsanlagen für Klärschlamm. Traditionell befinden sich die Anlagen in Ballungsräumen, in denen es aufgrund fehlender Flächen keine Möglichkeit zur landwirtschaftlichen Verwertung von Klärschlamm gibt. Darüber hinaus sind in den letzten Jahren neue Anlagen in Ländern entstanden, in denen die Verbrennung des Klärschlamms zunehmend favorisiert wird.

Die Resonanz der Anlagenbetreiber auf die Anfrage nach Proben der Klärschlammasche war sehr positiv. Mit zwei Ausnahmen haben alle Betreiber an dem Projekt teilgenommen. In einem Fall handelt es sich dabei um eine Anlage, die nicht nur Klärschlamm, sondern auch weitere, sehr uneinheitliche Brennstoffe einsetzt und auch nur einen geringen Durchsatz hat. Bei einer Industrieanlage verhinderten konzerninterne Richtlinien eine Teilnahme. Da beide Anlagen jedoch nur einen geringen Anteil der gesamten Aschemenge liefern, werden mit den 24 teilnehmenden Anlagen mehr als 97% der jährlich anfallenden Asche erfasst.

Je nach Ascheaufkommen, Betriebszustand und dem jeweiligen Probenahmeplan wurden pro Anlage 1 bis 18 Proben von jeweils 1 kg zur Verfügung gestellt. Die Proben stammen größtenteils aus dem laufenden Betrieb, sind zum Teil aber auch Rückstellproben. Daher sind die Probenahmezeiträume unterschiedlich. In den meisten Fällen wird ein Zeitraum von Anfang 2012 bis Anfang/Mitte 2013 mit 12 Proben abgedeckt, so dass für diese Anlagen mögliche saisonale Schwankungen untersucht werden konnten. Insgesamt beläuft sich die Zahl der Einzelproben auf 252. 15 Anlagen verbrennen ausschließlich kommunalen Klärschlamm, 3 rein industrielle Schlämme und 8 verwerten Schlamm aus beiden Quellen.

Darüber hinaus wurden von drei Anlagen Proben des Klärschlamms, der Asche sowie aus der Rauchgasreinigung genommen, um Massenströme und Elementverteilungen bestimmen zu können.

Im Rahmen des Projekts wurden die Anlagenbetreiber nach Kapazität und Auslastung ihrer Anlagen befragt. Darüber hinaus wurden die Herkunft des Klärschlamms sowie der Verbleib der Asche abgefragt. In den Fällen, in denen keine Daten verfügbar waren, wurde auf frühere Umfragen zurückgegriffen. Tabelle 1 zeigt die Kapazitäten und die Auslastung für das Jahr 2011. Nicht aufgeführt sind die nicht teilnehmenden Anlagen 10 und 24, sowie 18, 25, 26, weil diese Anlagen zu der Zeit außer Betrieb beziehungsweise noch im Bau waren. Nach Rücksprache mit den Anlagenbetreibern wird die Aschemenge aus den nicht teilnehmenden Anlagen 10 und 24 auf 7.000 t/a abgeschätzt. Mit der Gesamtmenge von 293.791 t/a ergibt sich eine Erfassungsquote von 97,6%. Werden die Kapazitäten der 2011 noch nicht in Betrieb befindlichen Anlagen 25 (etwa 5.000 t/a) und 26 (1.300 t/a) dazugerechnet, ergibt sich ein Aschemenge von insgesamt 300.091 t/a und eine Quote von 97,7%.


Tabelle 1: Am Projekt teilnehmende Monoverbrennungsanlagen, Kapazitäten und Auslastung 2011

Interne Teilnehme rnummer	Kapazität [t OS/a]	TR [%]	Kapazität [t TM/a]	Durchsatz 2011 [t]	Asche [t TM/a]	Asche- gehalt 2011 [%]	Auslastung 2011 [%]
1	1.500	78	1.200	1.200	600	50	100
2	248.000	26	64.474	50.000	11.280	23	78
3	60.000	26	15.167	9.532	4.506	47	63
4	29.100	22	8.000	7.432	2.708	36	93
5	110.000	40	44.000	41.600	14.205	34	95
6	45.455	40	15.000	6.200	2.000	32	41
7	200.000	30	61.320	57.028	35.000	61	93
8	54.000	98	52.560	35.651	7.500	21	68
9	146.963	41	60.255	60.255	19.972	33	100
11	87.000	23	20.000	10.375	3.661	35	52
12	288.000	42	120.960	106.947	48.000	45	88
13	49.344	97	48.000	20.787	8.000	38	43
14	88.000	25	22.000	18.223	6.000	33	83
15	200.000	43	40.000	24.700	8.000	32	62
16	123.695	26	32.000	27.326	11.000	40	85
17	16.000	35	55.000	50.000	23.000	46	91
19	40.000	25	10.000	9.465	4.859	51	95
20	25.000	18	5.000	3.728	2.000	54	75
21	400.000	40	160.000	140.400	30.000	21	88
22	205.000	60	80.000	60.000	31.500	53	75
23	120.000	27	32.500	30.000	20.000	67	92
Summe bzw. Ø	2.537.057	41	947.436	770.849	293.791	41	79

Abbildung 1 zeigt Aschemengen nach der Herkunft des Klärschlamms. Während die Klärschlammasche aus rein industriellen Quellen mit 8% nur einen geringen Teil ausmacht, steuern die 7 Anlagen, die sowohl kommunalen als auch industriellen Schlamm umsetzen über die Hälfte der Asche bei. Die 12 Anlagen, die ausschließlich kommunale Schlämme verwerten, liefern knapp 40 % der Asche.

In Abbildung 2 sind die derzeitigen Entsorgungswege aufgezeigt. Dabei waren Mehrfachnennungen möglich, so dass auf die 21 Anlagen insgesamt 25 Entsorgungswege kommen. Zu sehen ist, dass mit 5 % bisher nur ein geringer Teil der Aschen direkt als Düngemittel verwertet wird. Der überwiegende Teil wird deponiert, als Bergversatz oder für Deponie- oder Straßenbau verwendet.

Abbildung 1: Klärschlammasche nach Herkunft des Klärschlamms

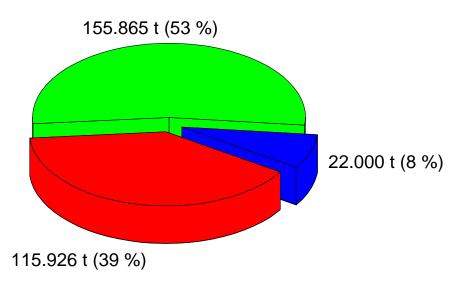
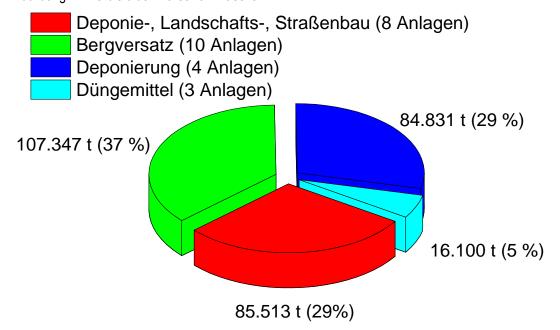



Abbildung 2: Verbleib der Klärschlammasche

1.3 Methodenentwicklung und Qualitätssicherung

Bei der Auswahl der zu messenden Elemente lag das Hauptaugenmerk auf einer möglichst vollständigen Charakterisierung. Diskussionen mit Anlagenbetreibern führten im Verlauf des Projekts zu geringfügigen Anpassungen der Elementauswahl, so dass nicht alle Elemente für alle Proben bestimmt wurden. Das betrifft insbesondere Se und Hg, die für die mögliche direkte Verwertung der Aschen als Düngemittel bedeutsam sind. Da sie jedoch für eine mögliche Ressourcenrückgewinnung nur von untergeordneter Bedeutung sind, standen sie nicht von Projektbeginn an im Analyseplan.

Zu Projektbeginn wurden einzelne Proben mit verschieden Methoden aufgeschlossen (Königswasser (KW), Totalaufschluss (TA) und Perchlorsäureaufschluss (Per)) und mit induktiv gekoppeltem Plasma - optische Emissionsspektroskopie (ICP-OES) bzw.induktiv gekoppeltem Plasma - Massenspektrometrie (ICP-MS) gemessen, um das geeignetste Aufschlussverfahren zu ermitteln.

Die Ergebnisse legen nahe, dass der Perchlorsäureaufschluss die Probenmatrix der Klärschlammaschen am vollständigsten aufschließt. Insbesondere für Si, Ti, V, Cr, Mo und W sind Werte, die den tatsächlichen Gesamtgehalten nahekommen offenbar nur mit diesem Aufschluss zu erreichen.

Da im Projekt eine möglichst vollständige Charakterisierung der Klärschlammaschen angestrebt wurde, wurden alle Proben mit dem Perchlorsäureaufschluss behandelt.

Zum Prüfen der Probenvorbereitung und der instrumentellen Analytik wurde ein Referenzmaterial untersucht (Kohlenflugasche CTA-FFA-1 vom Instiute of Nuclear Chemistry and Technology, Laboratory of Nuclear Analytical Methods, Warsaw, Poland). Eine Klärschlammasche als Referenzmaterial war nicht verfügbar. Für die meisten Elemente ergibt sich eine gute Übereinstimmung, dennoch zeigen sich in einigen Fällen geringere Gehalte, besonders für V, Ni, As, Ba. Dabei ist jedoch zu bedenken, dass es sich bei dem Material um eine Kohlenflugasche und keine Klärschlammasche handelt, die eine andere Matrix und eine andere Zusammensetzung der Hauptelemente aufweist. Darüber hinaus wurde eine andere Aufschlussmethode als beim zertifizierenden Ringversuch für CTA-FFA-1 verwendet.

In Tabelle 2 und 3 sind die Elementgehalte der Haupt- bzw. Nebenbestandteile aller getesteten Aschen aufgeführt. Angegeben sind jeweils Minimal-, Maximal- und Mittelwerte sowie die Mediane und die Anzahl der jeweiligen Einzelproben. Da der Median grundsätzlich robuster gegen Ausreißer ist als der Mittelwert, lässt sich erkennen, in welchen Fällen der Mittelwert durch einzelne Proben mit sehr hohen Gehalten erhöht wird. So z.B. zu sehen für Ca, Ba, Mn, Ta und Pb.

Tabelle 2:	Zusammentassung (der Hauptelement	igehalte aller Pr	oben [Massen-%]
------------	-------------------	------------------	-------------------	-----------------

Element	Min	Max	Mittelwert	Median	Messwerte
Al	0,7	20,2	5,2	4,8	252
Ca	6,1	37,8	13,8	10,5	252
Fe	1,8	20,3	9,9	9,5	252
K	<0,006	1,7	0,9	0,9	227
Mg	0,3	3,9	1,4	1,3	252
Na	0,2	2,6	0,7	0,6	252
Р	1,5	13,1	7,3	7,9	252

Element	Min	Max	Mittelwert	Median	Messwerte
S	0,3	6,9	1,5	1,0	252
Si	2,4	23,7	12,1	12,1	252
Ti	0,1	1,5	0,4	0,4	252

Tabelle 3: Zusammenfassung der Spurenelementgehalte aller Proben [mg/kg]

Ele- ment	Min	Max	Mittel- wert	Me- dian	Mess- werte	Ele- ment	Min	Max	Mittel- wert	Me- dian	Mess- werte
Sc	0,7	48,5	6,1	4,2	252	La	9,8	269	32,0	25,5	252
V	9,3	1206	136	54,0	252	Ce	15,7	169	49,2	42,8	252
Cr	58	1502	267	159,7	252	Pr	1,37	18,4	4,9	4,2	252
Mn	334	6488	1914	1307	252	Nd	4,71	60,9	17,2	15,6	252
Со	7,3	83,5	28,1	20,7	164	Sm	0,9	20,8	3,3	2,9	252
Ni	8,2	501	105,8	74,8	251	Eu	0,18	2,1	0,7	0,6	252
Cu	162	3467	916	785	252	Gd	0,8	59,1	4,6	2,8	252
Zn	552	5515	2535	2534	252	Tb	0,1	1,8	0,5	0,4	252
Ga	3,2	24,7	11,8	11,6	252	Dy	0,5	11,1	2,4	1,9	252
Ge	2,4	12,8	5,9	5,5	252	Но	0,1	1,9	0,5	0,4	252
As	4,2	124,0	17,5	13,6	252	Er	0,3	6,1	1,3	1,0	252
Se	0,8	9,9	2,5	2,0	102	Tm	0,0	0,7	0,2	0,2	252
Sr	67	2340	578	493	252	Yb	0,3	5,7	1,3	1,0	252
Υ	1,1	53,0	11,6	9,2	252	Lu	0,0	0,9	0,2	0,2	252
Zr	23,9	984	167	106	250	Hf	0,8	25,2	4,4	3,2	252
Nb	0,6	293	19,5	11,0	252	Та	<0,15	98,7	4,3	1,2	252
Мо	7,5	112	25,3	20,0	252	W	<6,0	336	52,8	41,1	252
Ag	0,5	133,1	12,5	9,1	248	Au	<0,15	8,4	1,2	0,9	252
Cd	<0,1	80,3	3,3	2,7	252	Hg	0,1	3,6	0,8	0,5	143
Sn	7,3	8706	194	76,6	252	Pb	<3,5	1112	151	117	252
Sb	1,5	454	23,0	12,4	252	Th	1,0	19,3	5,2	4,9	252
Ва	128	13650	2173	1057	229	U	1,58	25,5	5,8	4,9	252

1.4 Konsequenzen für die direkte Verwertung von Klärschlammaschen gemäß Düngemittelverordnung

Im Vergleich mit dem in der Düngemittelverordnung vorgeschriebenen Königswasserauszug wurden die hier dargestellten Ergebnisse mittels Perchlorsäureaufschluss gewonnen. Die Mehrbefunde für einige Elemente bei Letzterem, insbesondere Spurenbestandteile wie As, Cr, Pb oder Hg, sind bedeutsam im Hinblick auf die Frage, ob die Aschen direkt als Düngemittel verwendet werden können. Die Düngemittelverordnung legt für diese Elemente Grenzwerte bzw. Kennzeichnungspflichten fest. Da diese Werte jedoch auf Königswasserauszügen beruhen, sind sie nicht uneingeschränkt mit den hier dargestellten, mittels Perchlorsäureaufschluss gewonnenen Ergebnissen zu vergleichen. Es ist zu vermuten, dass einige Aschen, die nach der hier angewandten Untersuchungsmethode die Grenzwerte der Düngemittelverordnung nicht

einhalten, diese nach Untersuchung mit Königswasserauszug unterschreiten könnten. Da das Hauptaugenmerk dieses Forschungsprojekts auf einer möglichst umfassenden Charakterisierung der Klärschlammaschen lag, wurde der Perchlorsäureaufschluss gewählt, um die Totalgehalte der Elemente bestimmen zu können. Für zukünftige Analytik ist unter Umständen zu diskutieren, welche Untersuchungsmethoden die umfassendste Risikobewertung für Düngemittel ermöglichen. Während Königswasserauszüge schnell und einfach durchzuführen sind, zeigen sie jedoch nur ein unvollständiges und eher willkürliches Bild der im Material vorliegenden Elemente. Die Analytik kann durch unterschiedliche Probenmatrices beeinflusst werden, insbesondere davon, wie groß der Anteil an silikatischen Komponenten ist. Perchlorsäureaufschlüsse erfordern aufgrund des Einsatzes von Flusssäure erhöhte Anforderungen an die Arbeitssicherheit und sind deshalb aufwendiger. Anderseits liefern sie Elementgehalte, die den Totalgehalten sehr nahe kommen, da mit diesem Aufschluss auch silikatische oder andere schwerlösliche Verbindungen aufgeschlossen werden können. Weder der Königswasserauszug noch der Perchlorsäureaufschluss stellen reale Umweltbedingungen dar und können daher nicht simulieren, welche Mengen an Schadstoffen tatsächlich ausgelaugt werden können. Grundsätzlich wäre daher auch der Einsatz von Elutionsversuchen denkbar, die den Wirkungspfad Boden-Grundwasser berücksichtigen. Dabei wird die Probe im Schüttel- oder Säulenversuch mit Wasser versetzt und damit die Auslaugeng von Schadstoffen in der Umwelt simuliert. Auf diese Weise lässt sich genauer ermitteln, wie viele Schadstoffe tatsächlich freigesetzt werden und in die Umwelt gelangen können.

Die Untersuchungen zeigen, dass von den knapp 19.000 t P jährlich, die grundsätzlich zur Rückgewinnung aus Monoverbrennungsaschen zur Verfügung stehen (siehe unten), über 12.000 t nicht direkt zur Verwertung als Düngemittel zur Verfügung stehen. Diese Zahl könnte durch Änderungen im Betriebsablauf verändert werden. Da ein Großteil der Aschen zurzeit deponiert wird, werden häufig Rückstände aus der Rauchgasreinigung oder anderen Prozessschritten mit der Asche vermischt und erhöhen somit unter Umständen deren Schadstoffgehalt. Werden die Abfallströme getrennt, lassen sich die entsprechenden Schwermetallgehalte möglicherweise reduzieren. Darüber hinaus müssen die Aschen zum Einsatz als Düngemittel vermutlich ohnehin behandelt werden, um die Pflanzenverfügbarkeit des Phosphors zu erhöhen. In dem Zuge könnten Schadstoffe durch entsprechende Verfahren entfernt oder deren Konzentration verringert werden.

1.5 Rückgewinnungspotential

Die Rückgewinnungspotentiale wurden aus den Mittelwerten bzw. den Medianen aller Proben der jeweiligen Anlage und dem entsprechenden Ascheaufkommen berechnet. Die Ergebnisse sind in Tabelle 4 angegeben.

Tabelle 4:	Jährliche Rückgewinnungspote	entiale aus deutscher	ı Klärschlammaschen ((Stand 2012/2013)

Element	Rückgewinnungspotential nach MW [t/a]	Rückgewinnungspotential nach Median [t/a]
Asche [t/a]	300.091	300.091
Al	14.999	15.099
Ca	42.669	42.533
Fe	29.049	28.843
K	2.227	2.250
Mg	4.061	4.279
Na	2.416	2.414

Element	Rückgewinnungspotential nach MW [t/a]	Rückgewinnungspotential nach Median [t/a]
Р	18.812	18.669
S	6.028	5.410
Si	38.637	39.120
Ti	1.264	1.296
Sc	2,0	2,0
٧	96,0	89,4
Cr	107,3	102,6
Mn	531,1	529,9
Со	7,2	6,6
Ni	58,0	56,3
Cu	395,3	398,8
Zn	763,0	749,5
Ga	3,6	3,6
Ge	1,9	1,8
As	6,7	6,5
Se	0,5	0,5
Sr	165,8	168,2
Y	3,6	3,6
Zr	58,2	57,6
Nb	8,0	7,4
Мо	10,5	10,3
Ag	3,6	3,6
Cd	1,4	1,2
Sn	87,2	80,2
Sb	12,6	10,8
Ba	748,6	764,2
La	11,9	10,5
Ce	15,3	14,7
Pr	1,6,	1,5
Nd Sm	5,3	5,2
Sm Eu	1,1	1,0
Gd	0,2 2,3	0,2 2,2
Tb	0,2	0,2
Dy	0,7	0,7
Но	0,2	0,7
Er	0,4	0,4
Tm	0,1	0,1
Yb	0,4	0,4
Lu	0,1	0,1
Hf	1,5	1,5
Та	1,1	1,0
W	16,5	15,3
VV	16,5	15,3

Element	Rückgewinnungspotential nach MW [t/a]	Rückgewinnungspotential nach Median [t/a]
Au	0,3	0,2
Hg	0,3	0,2
Pb	62,0	60,7
Th	1,6	1,5
U	1,6	1,5

Das Wertstoffpotential für ausgewählte kritische Rohstoffe ist im Vergleich mit den jährlichen Importen gering. Es ist davon auszugehen, dass eine ausschließliche Rückgewinnung dieser Rohstoffe aus den Klärschlammaschen nicht wirtschaftlich wäre. Möglichicherweise sind jedoch Rückgewinnungsstrategien in Kombination mit der Phosphorrückgewinnung sinnvoll. Denkbar sind auch kombinierte Ansätze zur Wertstoffrückgewinnung und Schadstoffentfrachtung, falls Aschen vor der Verwendung als Düngemittel bearbeitet werden müssen, um die Grenzwerte der Düngemittelverordnung zu erreichen.

Für Phosphor ergibt sich ein jährliches Rückgewinnungspotential von knapp 19.000 t. Das entspricht etwa 12,6 % der jährlich in Deutschland für mineralischen Dünger benötigten Phosphormenge. Tabelle 5 zeigt die Phosphorgehalte in den Klärschlammaschen, aufgeschlüsselt nach der Herkunft des Klärschlamms. Erwartungsgemäß liegen die Konzentrationen in Aschen aus rein kommunalen Klärschlämmen am höchsten und in solchen aus rein industriellen Schlämmen am niedrigsten. Daraus ergibt sich das in Tabelle 6 dargestellte herkunftsabhängige Phosphorrückgewinnungspotential. Obwohl die Aschen aus gemischt kommunalen und industriellen Schlämmen über 50% der Aschemenge ausmachen, tragen sie aufgrund des geringeren Phosphorgehaltes weniger als 40 % zur gesamten Phosphormenge bei. Phosphor aus industriellen Klärschlämmen spielt mit weniger als 600 t/a nur eine untergeordnete Rolle, während die Aschen aus kommunalen Quellen fast 11.000 t/a Phosphor enthalten. Damit sind diese Aschen am attraktivsten für eine mögliche Rückgewinnung. Das gilt insbesondere, weil davon auszugehen ist, dass die Konzentrationen an Schwermetallen in den rein kommunalen Aschen geringer sind und diese somit eher für eine Verwertung als Düngemittel in Frage kommen.

Tabelle 5: Herkunftsabhängige Phosphorgehalte in Klärschlammaschen [Massen-%]

[%]	Min	Max	Mittelwert	Median
Р	1,5	13,1	7,3	7,9
P (komm.)	3,6	13,1	9,0	9,1
P (komm./ind.)	2,8	7,5	4,9	4,8
P (ind.)	1,5	3,8	2,3	2,3

Tabelle 6: Herkunftsabhängiges Phosphorrückgewinnungspotential aus Klärschlammaschen

	Asche [t/a]	P [t/a]
Gesamt	300.091	18.812
komm.	122.226	10.939
komm./ind.	155.865	7.319
ind.	22.000	554

1.6 Weitere Ergebnisse

Bei der thermischen Analyse zeigen die Aschen aus der Wirbelschichtverbrennung nur geringe Restkohlenstoffgehalte von im Mittel weniger als 1%, was auf eine vollständige Verbrennung hindeutet. Aschen aus der Rostfeuerung sowie der Wirbelschichtvergasung zeigen höhere Gehalte von 5-8%. Vermutlich handelt es sich dabei hauptsächlich um Ruß und andere Verbrennungsrückstände. Der Gehalt an PAK und anderen organischen Schadstoffe in den untersuchten Proben gab keinen Hinweis auf erhöhte Belastungen und wird als gering eingeschätzt.

Der in neutralem Ammoniumcitrat lösliche Phosphoranteil wurde in ausgewählten Proben bestimmt. Die Werte liegen im Mittel bei etwa 30 % Phosphorlöslichkeit. Festzuhalten bleibt, dass der Phosphor auch aus unbehandelten Klärschlammaschen eine Löslichkeit aufweist, die allerdings weit unter den Anforderungen an Phosphordüngemittel liegt.

Massenströme konnten im Rahmen dieses Projekts nur grob abgeschätzt werden. Es waren keine großen Unterschiede zwischen Wirbelschicht- und Rostfeuerung hinsichtlich der Anreicherung von Schwermetallen in bestimmten Stoffströmen zu verzeichnen. Bei beiden Verbrennungstypen scheint Hg in der Rauchgasreinigung bzw. der Filterasche angereichert zu sein, im Falle der Rostfeuerung zusätzlich Cd.

Monatliche Schwankungen waren im Wesentlichen beim Phosphorgehalt der Aschen aus kommunalen Klärschlämmen zu beobachten, mit niedrigen Werten in den Sommermonaten und höheren Gehalten im Winter. Korrelationen zu Konzentrationen anderer Matrixelemente traten kaum auf, in einigen Fällen waren negative Korrelationen zum Si-Gehalt zu beobachten.

Die Ergebnisse der Methodenentwicklung legen nahe, dass der Perchlorsäureaufschluss die Probenmatrix der Klärschlammaschen am vollständigsten aufschließt. Da im Projekt eine möglichst vollständige Charakterisierung der Klärschlammaschen angestrebt wurde, wurden alle Proben mit dem Perchlorsäureaufschluss behandelt.

Die Klärschlammaschen wurden im Hinblick auf ihre Eignung als mögliche Referenzmaterialien überprüft. Ausgewählt wurden eine aluminiumreiche sowie eine eisenreiche Klärschlammasche, da diese jeweils eine Asche typischer Zusammensetzung repräsentieren. Diese Aschen wurden in Zusammenarbeit mit der Abteilung 1 der BAM "Analytische Chemie, Referenzmaterialien" charakterisiert. Der Zertifizierungsprozess dieser beiden Aschen läuft und die potentiellen Referenzmaterialien wurden dem Zertifizierungskomitee bereits vorgestellt. Zurzeit kann noch kein endgültiges Datum zum Abschluss des Prozesses gegeben werden.

2 Summary

2.1 Background

Approximately 2 million tons of sewage sludge arises in Germany every year. In 1980, more than 50 % of the sludge was landfilled, but this fraction decreased completely till 2006 due to the landfill ban of untreated waste. Instead, the agricultural utilization as fertilizer and/or for landscaping increased. This utilization reached its maximum of about 60 % around the turn of the millennium and decreased afterwards in favor of incineration. Right now, more than half of the sewage sludge is incinerated; the rest is still used in farming and landscaping.

The fraction of incinerated sludge is expected to increase further in the future due to growing concerns of hazardous substances in sewage sludge that might harm the environment. Sewage sludge is the pollutant sink of wastewater treatment. The main concerns are inorganic pollutants as well as organic ones like emerging pollutants of concern (EMPOC). Furthermore, the German government decided in 2013 to stop the agricultural utilization of sewage sludge.

If utilized thermally, sewage sludge is either used in mono-incineration facilities or co-incinerated power plants, municipal waste incineration plants, or cement mills. Mono-incineration ashes are usually better suited for possible resource recovery. This is because co-incineration leads to dilution of the resources and to possible increase of pollutants due to the added fuels. This hampers resource recovery from co-incineration ashes or renders it impossible.

Right now, almost 800,000 t of sewage sludge are disposed of in German mono-incineration facilities annually, resulting in around 300,000 t sewage sludge ashes. So far, this ash is disposed of almost exclusively, utilized for mine filling, or used for road and landfill construction. Only a tiny fraction is utilized as fertilizer. Thus, almost all the resources present in the ash, like phosphorous and technology metals are removed from the economic cycle entirely.

Phosphorous is essential for all species on Earth. This phosphorous is ingested by food and thus eventually removed from the soil by food and feed farming. It has to be replaced so the soil can be used for farming continuously. The annual phosphorous demand is about 500,000 t in Germany. Of this, the mineral fertilizer, which accounts for roughly 150,000 t phosphorous per year, is particularly problematic. The required phosphorous is mined as rock phosphate. Even though the deposits have a reserves-to-production ratio of approximately 370 a, the production is concentrated in countries of high domestic demand like China and USA. Europe depends completely on phosphorous imports, since it has no significant deposits. Furthermore, rock phosphates are often contaminated with high amounts of heavy metals like cadmium (around 30 mg/kg) or uranium (around 100 mg/kg), which can pollute soil and groundwater.

The import dependency and thus the dependence on volatile world-market prices as well as possible environmental hazards of rock phosphates indicate the need for alternative sources of phosphorous.

Similar considerations apply to technology metals. The European Commission indexed 41 important raw materials in terms of economic importance and supply risk. 14 of those were considered as critical. Alternative sources are in order also for these raw materials, to reduce dependencies on import and volatile market prices.

2.2 Project aims and participants

Aim of the project was to analyze all sewage sludge ashes that arise in Germany regarding their chemical composition. Aside the element content we determined the residual carbon content

and possible organic pollutants as well as the bioavailability of the phosphorous present in the ashes. Where possible, we investigated seasonal and regional differences in the composition of the ashes.

We tested the influence of different incineration techniques like fluidized bed and grate firing on the elemental composition of the ashes. For this purpose, we analyzed samples from various stages of the operating schedule of selected facilities to calculate approximate mass flows.

We calculated the resource recovery potential from sewage sludge ashes based on the respective elemental concentration and ash amount.

We also checked the applicability of sewage sludge ashes for production of reference materials for respective analysis. So far, no such reference material exists.

There are 26 mono-incineration facilities for sewage sludge in Germany. Traditionally, most of them are in metropolitan areas, where there is no possibility of agricultural utilization of sewage sludge due to lack of respective space. Recently, several new facilities emerged in regions that want to increase thermal utilization of sewage sludge.

The facility operator's feedback concerning the request for ash samples was very positive. With two exceptions, all operators took part in the project. In one case, the respective facilityuses not only sewage sludge but a variety of heterogeneous fuels and has a low capacity. In the case of one industrial facility internal regulations did not allow for participation. Since both facilities add only a minor fraction to the overall ash amount, we were able to cover more than 97 % of the ash that arise annually with the 24 participating facilities.

Depending on ash amount, operational state, and the respective sampling plan, we received 1 to 18 samples of 1 kg each per facility. Most of the samples were from running operations, but some were retain samples. Thus, the sampling times a different. In most cases, a period of one year (2012 to 2013) was covered with 12 samples, to detect possible seasonal changes. The overall number of samples was 252. 15 facilities incinerate only municipal sewage sludge, 3 only industrial sludge and 8 a mixture of both.

We took additional samples from several parts of the operating sequence like sludge, ash, and residues from flue gas cleaning of three selected facilities to determine element distributions and mass flows.

In the course of the project we surveyed the capacity, operating grade, origin of the sludge, and fate of the sewage sludge ash. In case no data were available we used information from former inquiries. Table 1 shows the capacities and operating grade of the mono-incineration facilities for 2011. The not participating facilities 10 and 24 are not listed, as well as 18, 25, and 26, since these were still under construction or not operating at that time. The amount of ash of the not participating facilities 10 and 24 was estimated to 7,000 t/a after consulting the operators. This result in a collection rate of 97.6 % referred to a total amount of 293,791 t ash per year. Including the capacities of the facilities not running in 2011 of 5,000 t/a (25) and 1,300 t/a (26), the collection rate is 97.7 % with an ash amount of 300,091 t/a.

Table 1: Participating mono-incineration facilities, capacities and utilization 2011

Internal participan t number	Capacity [t OS/a]	DR [%]	Capacity[t DM/a]	Utilization 2011 [t]	Ash [t DM/a]	Ash content 2011 [%]	Utilization 2011 [%]
1	1,500	78	1,200	1,200	600	50	100
2	248,000	26	64,474	50,000	11,280	23	78
3	60,000	26	15,167	9,532	4,506	47	63
4	29,100	22	8,000	7,432	2,708	36	93
5	110,000	40	44,000	41,600	14,205	34	95
6	45,455	40	15,000	6,200	2,000	32	41
7	200,000	30	61,320	57,028	35,000	61	93
8	54,000	98	52,560	35,651	7,500	21	68
9	146,963	41	60,255	60,255	19,972	33	100
11	87,000	23	20,000	10,375	3,661	35	52
12	288,000	42	120,960	106,947	48,000	45	88
13	49,344	97	48,000	20,787	8,000	38	43
14	88,000	25	22,000	18,223	6,000	33	83
15	200,000	43	40,000	24,700	8,000	32	62
16	123,695	26	32,000	27,326	11,000	40	85
17	16,000	35	55,000	50,000	23,000	46	91
19	40,000	25	10,000	9,465	4,859	51	95
20	25,000	18	5,000	3,728	2,000	54	75
21	400,000	40	160,000	140,400	30,000	21	88
22	205,000	60	80,000	60,000	31,500	53	75
23	120,000	27	32,500	30,000	20,000	67	92
Sum or Ø	2,537,057	41	947,436	770,849	293,791	41	79

Figure 1 shows the amounts of ash referring to the source of the sewage sludge. The sewage sludge ash from industrial sources (2 facilities) accounts for only 8 %, whereas the seven facilities that utilize municipal as well as industrial sludge produce more than 50 % of the ash. The 12 facilities that incinerate only municipal sludge yield just fewer than 40 % of the arising sewage sludge ash.

Figure 2 shows the current disposal ways of sewage sludge ash. Multiple answers were possible, thus the 21 facilities have 25 disposal pathways altogether. Only 5 % of the ash is directly used as fertilizer so far. The majority is landfilled, used for mine filling, or utilized for landfill or road construction.

Figure 1: Sewage sludge ash by origin of sludge

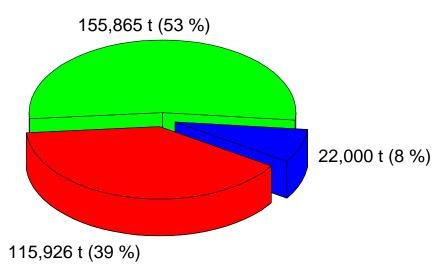
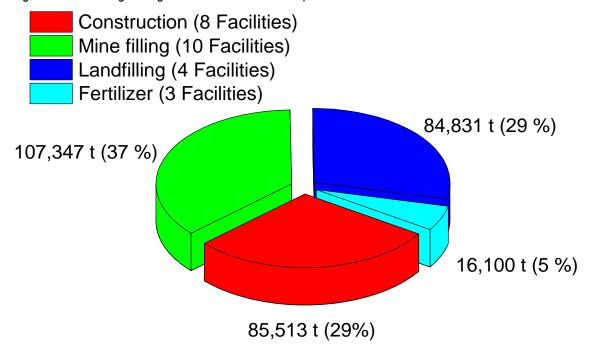



Figure 2: Sewage sludge ash utilization and/or disposal

2.3 Method development and quality assurance

The main purpose of the project was to determine the elemental composition of sewage sludge ashes as completely as possible. Discussions with operators led to a minor adaption of the element selection, thus not all elements were analyzed for all samples. These are in particular Se and Hg that are important in terms of the fertilizer ordinance. Since these elements are of minor importance concerning a possible resource recovery, they were not on the initial analysis plan.

We treated the first samples with several microwave-assisted digestion methods to determine the best suited method. We tested aqua regia (KW), total digestion (TA), and perchlorid acid digestion (Per) and measured the element concentrations with inductively coupled plasma - optical emission spectroscopy (ICP-OES) and inductively coupled plasma - mass spectrometry (ICP-MS), respectively.

The results indicate that the perchlorid acid digestion is best suited to dissolve the sample matrix. Especially for Si, Ti, V, Cr, Mo, and W, values close to the actual content can be achieved only with this method, obviously. Thus we prepared all sample with perchlorid acid digestion. This has to be taken into account when the results presented herein are compared for instance with the threshold values of the fertilizer ordinance. Those values are derived from aqua regia extracts that result in lower values for some elements.

We tested a reference material for quality assurance of the sample preparation and the instrumental analysis. We used coal fly ash (CTA-FFA-1 of the Institute of Nuclear Chemistry and Technology, Laboratory of Nuclear Analytical Methods, Warsaw, Poland), since no adequate sewage sludge ash is available as reference material up to now. The results show good compliance for most of the elements. However, for some elements like V, Ni, As, Ba, we determined concentrations below the certified values. It has to be taken into account, that the tested reference material was a coal fly ash with a matrix that differs significantly from those of sewage sludge ash and has a different composition of main elements. Furthermore, we used a digestion method different from those used for the reference material certification.

Table 2 and 3 show the concentrations of main and minor elements of all the tested sewage sludge ashes. Minimal and maximal values are given as well as mean and median values and the number samples. Since the median is usually more robust toward outliers than the mean value, the difference of both values indicates where the mean value is increased by single samples with extraordinary high values. This can be seen for instance for Ca, Ba, Mn, Ta, and Pb.

Table 2: Summary of main elemen	t content of a	II samples	[mass-%]
---------------------------------	----------------	------------	----------

Element	Min	Max	Mean value	Median	Number of samples
Al	0.7	20.2	5.2	4.8	252
Ca	6.1	37.8	13.8	10.5	252
Fe	1.8	20.3	9.9	9.5	252
K	<0.006	1.7	0.9	0.9	227
Mg	0.3	3.9	1.4	1.3	252
Na	0.2	2.6	0.7	0.6	252
Р	1.5	13.1	7.3	7.9	252
S	0.3	6.9	1.5	1.0	252
Si	2.4	23.7	12.1	12.1	252
Ti	0.1	1.5	0.4	0.4	252

Tabelle 3: Summary of trace element content of all samples [mg/kg]

Ele- ment	Min	Max	Ø	Me- dian	Numb er of sampl es	Ele- ment	Min	Max	Ø	Me- dian	Numb er of sampl es
Sc	0.7	48.5	6.1	4.2	252	La	9.8	269	32.0	25.5	252

Ele- ment	Min	Max	Ø	Me- dian	Numb er of sampl es	Ele- ment	Min	Max	Ø	Me- dian	Numb er of sampl es
V	9.3	1206	136	54.0	252	Се	15.7	169	49.2	42.8	252
Cr	58	1502	267	159.7	252	Pr	1.37	18.4	4.9	4.2	252
Mn	334	6488	1914	1307	252	Nd	4.71	60.9	17.2	15.6	252
Co	7.3	83.5	28.1	20.7	164	Sm	0.9	20.8	3.3	2.9	252
Ni	8.2	501	105.8	74.8	251	Eu	0.18	2.1	0.7	0.6	252
Cu	162	3467	916	785	252	Gd	8.0	59.1	4.6	2.8	252
Zn	552	5515	2535	2534	252	Tb	0.1	1.8	0.5	0.4	252
Ga	3.2	24.7	11.8	11.6	252	Dy	0.5	11.1	2.4	1.9	252
Ge	2.4	12.8	5.9	5.5	252	Но	0.1	1.9	0.5	0.4	252
As	4.2	124.0	17.5	13.6	252	Er	0.3	6.1	1.3	1.0	252
Se	0.8	9.9	2.5	2.0	102	Tm	0.0	0.7	0.2	0.2	252
Sr	67	2340	578	493	252	Yb	0.3	5.7	1.3	1.0	252
Υ	1.1	53.0	11.6	9.2	252	Lu	0.0	0.9	0.2	0.2	252
Zr	23.9	984	167	106	250	Hf	8.0	25.2	4.4	3.2	252
Nb	0.6	293	19.5	11.0	252	Ta	<0.15	98.7	4.3	1.2	252
Мо	7.5	112	25.3	20.0	252	W	<6.0	336	52.8	41.1	252
Ag	0.5	133.1	12.5	9.1	248	Au	<0.15	8.4	1.2	0.9	252
Cd	<0.1	80.3	3.3	2.7	252	Hg	0.1	3.6	8.0	0.5	143
Sn	7.3	8706	194	76.6	252	Pb	<3.5	1112	151	117	252
Sb	1.5	454	23.0	12.4	252	Th	1.0	19.3	5.2	4.9	252
Ва	128	13650	2173	1057	229	U	1.58	25.5	5.8	4.9	252

2.4 Consequences for the direct use of sewage sludge ashes as fertilizer

In contrast to the aqua regia extract stipulated by the fertilizer ordinance, the results presented herein were obtained with perchlorid acid digestion. The excess findings with the latter for some elements, especially the trace components As, Cr, Pb, or Hg, are crucial for the possible direct use of the ashes as fertilizer. The fertilizer ordinance stipulates threshold values for these elements. Since these values refer to aqua regia extraction, they cannot be compared directly to the results of this project. It can be assumed that some perchlorid acid digested ashes that excess the threshold values might fall below them if analyzed with aqua regia extraction. Since the main attention of the project was the complete characterization of the composition of the ashes, we used the perchlorid acid digestion. For future sewage sludge ash analysis it should be discussed, which methods allow the most extensive risk assessment. Whereas agua regia extractions are fast and straightforward to conduct, they usually show an arbitrary impression of the composition of the ash. The analysis can be influenced by different sample matrices, especially depending on the fraction of silica based compounds. Perchlorid acid digestions on the other hand require the use of hydrofluoric acid, which increases the requirements for operational safety and are thus more complex. The great advantage of this method is the almost complete digestion of the sample, resulting in element concentrations that are very close to the actual content, presumably. Neither aqua regia extracts nor perchloroid acid digestions simulate

real environmental conditions and thus cannot determine how much of the pollutants can be leached actually. Thus elution experiments that take into account the soil-groundwater pathway might be feasible. In this process, leachable components are eluted with water in batch or column test, simulating actual field conditions. Thereby the amount of pollutants that is actually set free from the sample and reach the environment can be determined more exactly.

The results show, that 12,000 t of the 19,000 t of phosphorous that are potentially available for recovery per year from sewage sludge ashes (see below), cannot be used as fertilizer directly. This fraction could be reduced by alterations of the operating procedures in the incineration facilities. Since the major part of the ashes currently is being disposed of, residues of flue gas cleaning or other process steps are mixed with the ash and thus possibly increasing its pollutant content. These waste streams might be separated to reduce the amount of harmful substances in the ash. Furthermore, some ashes must be treated anyway to enhance the bioavailability of phosphorous. In doing so, the pollutants could be removed or their concentrations reduced by respective treatments.

2.5 Recovery potential

The resource recovery potential was calculated based on the mean and median values, respectively and the ash output of the particular facility. The single recovery potentials were added up and are shown in table 4.

Table 4: Annual resource recovery potentials from German sewage sludge ashes (as of 2012/2013)

Element	Recovery potential (∅ [t/a])	Recovery potential (Median [t/a])
Asche [t/a]	300,091	300,091
Al	14,999	15,099
Ca	42,669	42,533
Fe	29,049	28,843
К	2,227	2,250
Mg	4,061	4,279
Na	2,416	2,414
Р	18,812	18,669
S	6,028	5,410
Si	38,637	39,120
Ti	1,264	1,296
Sc	2.0	2.0
V	96.0	89.4
Cr	107.3	102.6
Mn	531.1	529.9
Со	7.2	6.6
Ni	58.0	56.3
Cu	395.3	398.8
Zn	763.0	749.5
Ga	3.6	3.6
Ge	1.9	1.8

Element	Recovery potential (∅ [t/a])	Recovery potential (Median [t/a])
As	6.7	6.5
Se	0.5	0.5
Sr	165.8	168.2
Y	3.6	3.6
Zr	58.2	57.6
Nb	8.0	7.4
Мо	10.5	10.3
Ag	3.6	3.6
Cd	1.4	1.2
Sn	87.2	80.2
Sb	12.6	10.8
Ва	748.6	764.2
La	11.9	10.5
Ce	15.3	14.7
Pr	1.6.	1.5
Nd	5.3	5.2
Sm	1.1	1.0
Eu	0.2	0.2
Gd	2.3	2.2
Tb	0.2	0.2
Dy	0.7	0.7
Но	0.2	0.2
Er	0.4	0.4
Tm	0.1	0.1
Yb	0.4	0.4
Lu	0.1	0.1
Hf	1.5	1.5
Та	1.1	1.0
W	16.5	15.3
Au	0.3	0.2
Hg	0.3	0.2
Pb	62.0	60.7
Th	1.6	1.5
U	1.6	1.5

The resource recovery potential for critical raw materials is low compared to the respective annual imports. It can be assumed that recovery from sewage sludge ashes targeted only on these raw materials would not be economic. However, synergies in combination with phosphorous recovery are possible. Furthermore, combined approaches for resource recovery and pollutant elimination might be feasible, if ashes have to be treated to reach the respective thresholds so they can be used as fertilizer.

The annual phosphorous recovery potential is about 19,000 t. This equals approximately 12.6 % of the phosphorous amount needed for German mineral fertilizer requirements. Table 5 shows the phosphorous concentrations in the sewage sludge ashes with regard to the source of the

sludge. As expected, the ashes from pure municipal sludge show the highest and those from industrial sources the lowest values. Table 6 shows the resulting phosphorous recovery potential. Even though the mixed municipal and industrial ashes account for more than 50 % of the ashes, they contribute less than 40 % of the total phosphorous amount, due to their lower respective content. Phosphorous from industrial sludge is with less than 600 t/a of least importance, whereas the ashes from municipal sludge contain up to 11,000 t/a phosphorous. Thus, these ashes are most attractive for a possible phosphorous recovery and utilization as fertilizer, particularly because of their concentrations of heavy metals that are expected to be lower than in industrial ashes.

Table 5:	Source-dependent phosphorous	content of sewage	sludae asl	hes [mass-%]
I abic J.	Source-dependent priospriorous	CONTENT OF SEWAGE	Sidude asi	100 1111000-701

[%]	Min	Max	Mean value	Median
Р	1.5	13.1	7.3	7.9
P (mun.)	3.6	13.1	9.0	9.1
P (mun./ind.)	2.8	7.5	4.9	4.8
P (ind.)	1.5	3.8	2.3	2.3

Table 6: Source-dependent phosphorous recovery potential from sewage sludge ashes

	Ash [t/a]	P [t/a]
Overall	300,091	18,812
mun.	122,226	10,939
mun./ind.	155,865	7,319
ind.	22,000	554

2.6 Further results

The thermal analysis of the sewage sludge ashes with regard to the incineration technique show significant differences for the carbon content. The ashes from fluidized bed firing show generally very low residual carbon content of less than 1 %, indicating an almost complete incineration. Ashes from grate firing and gasification have a significantly higher residual carbon content of 5-8 %. This is presumably carbon black and other inorganic incineration residues. The content of polycyclic aromatic hydrocarbons (PAH) and other organic pollutants in the tested samples showed now elevated amounts and is estimated to be low.

The bioavailability of phosphorous from the ashes, determined as solubility in neutral ammonium citrate, is about 30 %. This is a significant solubility, but considerably lower than required for phosphorous fertilizer.

Mass flow could only be estimated roughly in the course of this project. Significant differences in the enrichments of heavy metals in particular waste streams with regard to the various firing techniques could not be detected. For fluidized bed as well as grate firing, Hg seems to be enriched in the flue gas cleaning or the filter ash, respectively. In the case of grate firing, Cd is also enriched in the filter ash fraction.

Seasonal changes could be detected mainly for phosphorous in municipal ashes, with lower concentration in summer and increasing values in winter. There were very few correlations to concentrations of other matrix elements. In some cases negative correlations with the silica content was observed.

Method development showed that perchlorid acid digestion is best suited for an almost complete decomposition of sewage sludge ash matrix. Since the project aim was an as complete as possible determination of the elemental composition of the ashes, we chose perchlorid acid digestion as sample preparation method.

Sewage sludge ashes were tested in terms of possible use as reference material. One ash rich on aluminum and rich one on iron was selected to represent two typical ash compositions. These ashes were characterized together with BAM Division 1 "Analytical chemistry; reference materials". The certification process of both ashes is in progress and the potential reference materials have been presented to the certification committee. At the moment, a final date for completion of the certification process cannot be given.

3 Hintergrund

In Deutschland fallen jährlich etwa 2 Millionen Tonnen Klärschlamm (Trockenmasse) an (UN-Habitat, 2008). Abbildung 1 zeigt, wie der Klärschlamm in den Jahren von 1983 bis 2010 entsorgt bzw. verwertet wurde. Während in den 1980er Jahren noch über die Hälfte des Schlamms deponiert wurde, ging dieser Anteil bis zum Deponierungsverbot für unbehandelte Abfälle im Jahr 2006 auf null zurück. Stattdessen nahm der Anteil der landwirtschaftlichen Verwertung als Düngemittel und/oder zum Landschaftsbau zu. Nach einem Maximum von etwa 60% zur Jahrtausendwende ging dieser Anteil zugunsten der thermischen Entsorgung zurück. Zurzeit wird etwas mehr als die Hälfte des Klärschlamms verbrannt, der Rest wird weiterhin in Landwirtschaft und Landschaftsbau verwertet.

Der Anteil der Verbrennung wird vermutlich in Zukunft weiter steigen. Ein wesentlicher Grund dafür ist die zunehmende Besorgnis über Schadstoffe im Klärschlamm, die Mensch und Umwelt schädigen können. Klärschlämme stellen die Schadstoffsenke der Abwasserreinigung dar. Dabei handelt es sich um organische (Harrison et al., 2006) und anorganische Schadstoffe (Marani et al., 2003). Ein Hauptaugenmerk liegt auf Emerging Pollutants of Concern (EMPOC) wie Rückständen und Metaboliten und Abbauprodukten von Kosmetika und Antibiotika (Guardia et al., 2004). Darüber hinaus hat die Bundesregierung im Koalitionsvertrag Ende 2013 beschlossen, die landwirtschaftliche Verwertung des Klärschlamms vollständig einzustellen (Koalitionsvertrag 2013).

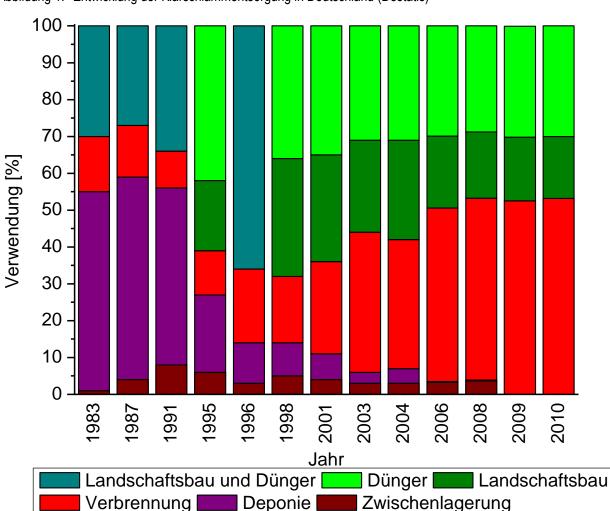


Abbildung 1: Entwicklung der Klärschlammentsorgung in Deutschland (Destatis)

Thermisch zu entsorgender Klärschlamm wird entweder in Monoverbrennungsanlagen umgesetzt oder in Kraftwerken, Hausmüllverbrennungsanlagen oder Zementwerken mit verbrannt. Die Monoverbrennung ist im Hinblick auf eine mögliche Rückgewinnung von Ressourcen interessanter. Zum Einen werden die Wertstoffe bei der Mitverbrennung mit anderen Materialien verdünnt und die Aschen gemeinsam deponiert. Zum Anderen können durch die Zusatzbrennstoffe weitere Schadstoffe eingetragen werden. Diese Punkte erschweren eine Rückgewinnung von Wertstoffen aus Mitverbrennungsasche oder machen sie ganz unmöglich.

Zurzeit werden in Deutschland fast 800.000 t Klärschlamm pro Jahr in Monoverbrennungsanlagen entsorgt. Dabei entstehen etwa 300.000 t Klärschlammasche (eigene Umfrage, sowie (Lehrmann, 2010; Wiechmann et al., 2012)). Diese wird zurzeit fast ausschließlich deponiert oder als Bergversatz oder im Straßenbau eingesetzt. Damit werden sämtliche in der Asche enthaltenen Rohstoffe wie Phosphor und Technologiemetalle dem Wirtschaftskreislauf dauerhaft entzogen.


Phosphor ist für alle Spezies auf der Erde lebensnotwendig. Neben Hydroxylapatiten für den Knochenbau und Adenosintri- und diphosphaten (ATP, ADP) für den Energiestoffwechsel werden große Mengen Phosphat zum Aufbau von Desoxyribonucleinsäurse (DNS) und Ribonucleinsäure (RNS) benötigt. Der hierzu nötige Phosphor wird durch die Nahrung aufgenommen und somit über die landwirtschaftliche Pflanzenproduktion letztlich dem Boden entzogen. Der Phosphor muss dem Boden wieder zugeführt werden, damit dieser weiter landwirtschaftlich genutzt werden kann. Für Deutschland ergibt sich ein Jahresbedarf von über 500.000 t. Abbildung 2 zeigt die Herkunft des Phosphors auf (Zahlen nach (Gethke-Albinus, 2012)). Problematisch ist dabei besonders der Stoffstrom mineralischer Dünger. Der Phosphor hierfür wird ausschließlich bergmännisch als Rohphosphat abgebaut. Obwohl die Lagerstätten nach aktuellen Berechnungen eine statische Reichweite von 370 Jahren aufweisen (USGS, 2013), ist die Produktion in Ländern konzentriert, die entweder einen hohen Eigenbedarf haben (China, USA) oder in politisch instabilen Regionen liegen. Da die Europäische Union über keine nennenswerten Lagerstätten verfügt, besteht eine nahezu vollständige Importabhängigkeit für Rohphosphat bzw. Phosphordünger. Darüber hinaus sind Rohphosphate oftmals stark mit Schwermetallen belastet, die auf die Felder gelangen und damit Boden und Grundwasser gefährden können. Dies betrifft insbesondere Cadmium (>30 mg/kg) und Uran (>100 mg/kg) (Dissanayake et al., 2009).

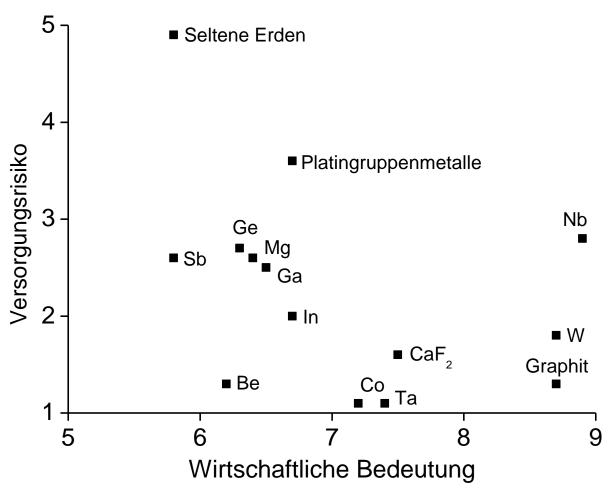

Klär-Kompost mineralischer schlamm Gärrück-Dünger 15.315 16.000 Wirtschaftsstände dünger 147.599 160.622 227.000 566.536 t P/a

Abbildung 2: Phosphorquellen für die Landwirtschaft (Angaben in t/a; Zahlen nach (Gethke-Albinus, 2012))

Die Importabhängigkeit und damit auch Abhängigkeit von volatilen Weltmarktpreisen sowie die möglichen Umweltgefahren durch Rohphosphate zeigen den Bedarf an alternativen Phosphorquellen.

Entsprechende Überlegungen gelten auch für Technologiemetalle. Die Europäische Kommission hat 41 industriell wichtige Rohstoffe im Hinblick auf ihre wirtschaftliche Bedeutung und das jeweilige Versorgungsrisiko bewertet (EUCommission, 2010). Ein Index größer Fünf für die wirtschaftliche Bedeutung steht für einen Rohstoff, der nicht oder nur schwer ersetzt werden kann. Ein Versorgungsrisiko größer Eins kennzeichnet einen Rohstoff, dessen Produktion in wenigen Ländern konzentriert ist, die politisch instabil sind und/oder einen hohen Eigenbedarf haben. Nach diesen Kriterien wurden 14 Rohstoffe als kritisch eingestuft. Diese sind in Abbildung 3 dargestellt. Auch für diese Rohstoffe lohnt es sich, nach alternativen Quellen zu suchen, um die Importabhängigkeit und die Abhängigkeit von schwankenden Weltmarktpreisen zu reduzieren.

4 Projektziele

Ziel des Projekts war, alle in Deutschland anfallenden Klärschlammaschen aus Monoverbrennungsanlagen, möglichst im Jahresgang, auf ihre chemische Zusammensetzung zu analysieren. Bestimmt wurden neben der Elementzusammensetzung auch Restgehalte an Kohlenstoff und organischem Material sowie mögliche organische Schadstoffe und die Pflanzenverfügbarkeit des enthaltenen Phosphors. Soweit möglich wurden regionale Unterschiede in der Zusammensetzung der Asche bestimmt.

An ausgewählten Anlagen wurde der Einfluss unterschiedlicher Verbrennungstechniken (Wirbelschichtfeuerung und Rostfeuerung) auf die Elementzusammensetzung der Aschen untersucht. Dazu wurden Proben aus verschiedenen Phasen des Betriebsablaufs genommen, um die jeweiligen Massenströme und die Verteilung der Elemente bestimmen zu können.

Das sich aus der Elementzusammensetzung und den jeweiligen Aschemengen ergebende Rückgewinnungspotential an Wertstoffen wurde ermittelt.

Für die Klärschlammaschen wurde geprüft, inwieweit daraus Referenzmaterialien für die Analytik hergestellt werden können, da bisher keine entsprechenden Referenzmaterialien verfügbar sind.

5 Teilnehmer und Probenaquise

In Deutschland gibt es 26 Monoverbrennungsanlagen für Klärschlamm, die in Abbildung 4 dargestellt sind. Traditionell befinden sich die Anlagen in Ballungsräumen, in denen es aufgrund fehlender Flächen keine Möglichkeit zur landwirtschaftlichen Verwertung von Klärschlamm gibt. Darüber hinaus sind in den letzten Jahren neue Anlagen in Bundesländern entstanden, in denen die Verbrennung des Klärschlamms zunehmend favorisiert wird.

Hamburg Lünen Marl (Infracor) Vorpommer Herne Berlin Ruhleben Bottrop Elverlingsen Wuppertal-Bitterfeld-Wolfen Leverkusen (ChemPark) Düren Frankfurt a. M. Bonn Straubing Frankfurt-Höchst Burghausen Frankenthal (BASF) (Wacker Chemie) Mannheim Gendorf (Infraserv) Karlsruhe München Dinkelsbühl Stuttgart Balingen Neu-Ulm Altenstadt

Abbildung 4: Monoverbrennungsanlagen für Klärschlamm in Deutschland

Die Resonanz der Anlagenbetreiber auf die Anfrage nach Proben der Klärschlammasche war sehr positiv. Mit zwei Ausnahmen haben alle Betreiber an dem Projekt teilgenommen. In einem Fall (10) handelt es sich dabei um eine Anlage, die nicht nur Klärschlamm, sondern auch weitere, sehr uneinheitliche Brennstoffe einsetzt und auch nur einen geringen Durchsatz hat. Bei der Anlage 24 verhinderten konzerninterne Richtlinien eine Teilnahme. Da beide Anlagen jedoch nur einen geringen Anteil der gesamten Aschemenge liefern (siehe Kapitel 6), werden mit den 24 teilnehmenden Anlagen mehr als 97 % der jährlich anfallenden Asche erfasst.

Je nach Ascheaufkommen, Betriebszustand und dem jeweiligen Probenahmeplan wurden pro Anlage 1 bis 18 Proben von jeweils 1 kg zur Verfügung gestellt. Die Proben stammen größtenteils aus dem laufenden Betrieb, sind zum Teil aber auch Rückstellproben. Daher sind die Probenahmezeiträume unterschiedlich. In den meisten Fällen wird ein Zeitraum von einem Jahr mit 12 Proben abgedeckt, so dass für diese Anlagen mögliche saisonale Schwankungen untersucht

werden konnten. Insgesamt beläuft sich die Probenanzahl auf 252. Tabelle 1 zeigt die Anzahl der Proben pro Anlage, den Probenahmezeitraum und dazu den Verbrennungstyp und die Herkunft des Klärschlamms. 15 Anlagen verbrennen ausschließlich kommunalen Klärschlamm, 3 rein industrielle Schlämme und 8 verwerten Schlamm aus beiden Quellen.

Die in diesem Bericht verwendete Probennummer setzt sich zusammen aus der Nummer der Anlage und der laufenden Nummer der Probe, so steht z.B. die Bezeichnung 3-12 für die 12. Probe der Anlage Nummer 3.

Darüber hinaus wurden von den Anlagen 2, 14 und 17 Proben des Klärschlamms, der Asche und Reststoffe aus weiteren Betriebsabschnitten genommen, um Massenströme und Elementverteilungen bestimmen zu können (siehe Kapitel 9.7).

Tabelle 1: Monoverbrennungsanlagen, Probenanzahl und Probenahmezeitraum

Interne Teilnehmernummer	Verbrennungstyp	Art des Klärschlamms	Probenanzahl	Probenahmezeitraum
1	Wirbelschichtvergaser	kommunal	4	03/12-12/12
2	stationäre Wirbelschicht	kommunal	12	05/12-04/13
3	stationäre Wirbelschicht	kom./ind.	18	04/10-01/13
4	stationäre Wirbelschicht	kommunal	12	09/12-07/13
5	stationäre Wirbelschicht	kom./ind.	12	03/12-03/13
6	stationäre Wirbelschicht	kom./ind.	12	02/12-01/13
7	stationäre Wirbelschicht	kom./ind.	15	02/12-09/13
8	Etagenwirbler	kommunal	12	09/11-08/12
9	stationäre Wirbelschicht	kommunal	9	05/12-12/12
10	stationäre Wirbelschicht	kom./ind.	-	-
11	stationäre Wirbelschicht	kommunal	13	02/12-01/13
12	Wirbelschicht	kom./ind.	12	03/12-04/13
13	stationäre Wirbelschicht	kommunal	12	03/12-02/13
14	stationäre Wirbelschicht	kommunal	12	03/12-02/13
15	stationäre Wirbelschicht	kommunal	11	01/12-12/12
16	stationäre Wirbelschicht	kommunal	13	03/12-02/13
17	Rostfeuerung	kommunal	18	02/12-08/13
18	Pyrobuster	kommunal	1	k.A.
19	Wirbelschicht	kom./ind.	5	11/12-08/13
20	Wirbelschicht	industriell	8	k.A.
21	Wirbelschicht	kom./ind.	1	k.A.
22	Wirbelschicht	kom./ind.	6	04/12-09/12
23	Etagenofen	industriell	12	k.A.
24	Wirbelschicht	industriell	-	-
25	Wirbelschichtvergasung	kommunal	10	09/12-07/13
26	Rost (Flugverbrennung)	kommunal	12	02/12-12/12 und 10/13

Bei der überwiegenden Mehrheit der Anlagen handelt es sich um Wirbelschichtverbrennungsanlagen, bei denen der Klärschlamm in einem wirbelnden Sandbett verbrannt wird. Der Ascheaustrag erfolgt hier hauptsächlich über den Abgasstrom. Darüber hinaus können noch Rückstände der Rauchgasreinigung und des Sandabzugs anfallen. Die Wirbelschichtvergasung zielt auf die Herstellung von Synthesegas ab, was zu einer unvollständigeren Umsetzung des Kohlenstoffs führt. Die Rückstände enthalten demzufolge einen höheren Restkohlenstoffgehalt. Bei der Rostfeuerung wird der Schlamm über einen Rost geführt und verbrannt. Der Großteil der Asche wird über den Rost ausgetragen, nur ein kleiner Teil über die Rauchgasreinigung.

6 Klärschlammaschemengen und Verbleib

Im Rahmen des Projekts wurden die Anlagenbetreiber nach Kapazität und Auslastung ihrer Anlagen befragt. Darüber hinaus wurden die Herkunft des Klärschlamms sowie der Verbleib der Asche abgefragt. In den Fällen, in denen keine Daten verfügbar waren, wurde auf frühere Umfragen zurückgegriffen (Lehrmann, 2010; Wiechmann et al., 2012). Tabelle 2 zeigt die Kapazitäten und die Auslastung für das Jahr 2011. Nicht aufgeführt sind die nicht teilnehmenden Anlagen 10 und 24, sowie 18, 25, 26, weil diese Anlagen zu der Zeit (2011) außer Betrieb beziehungsweise noch im Bau waren. Nach Rücksprache mit den Anlagenbetreibern wird die Aschemenge aus den nicht teilnehmenden Anlagen 10 und 24 auf 7.000 t/a abgeschätzt. Mit der Gesamtmenge von 293.791 t/a ergibt sich eine Erfassungsquote von 97,6 %. Werden die Kapazitäten der 2011 noch nicht in Betrieb befindlichen Anlagen 25 (etwa 5.000 t/a) und 26 (1.300 t/a) dazugerechnet, ergibt sich ein Aschemenge von insgesamt 300.091 t/a und eine Quote von 97,7 %.

Tabelle 2: Monoverbrennungsanlagen, Kapazitäten und Auslastung 2011

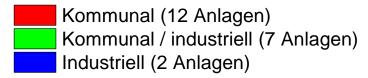

Interne Teilnehme rnummer	Kapazität [t OS/a]	TR [%]	Kapazität [t TM/a]	Durchsatz 2011 [t]	Asche [t TM/a]	Asche- gehalt 2011 [%]	Auslastung 2011 [%]
1	1.500	78	1.200	1.200	600	50	100
2	248.000	26	64.474	50.000	11.280	23	78
3	60.000	26	15.167	9.532	4.506	47	63
4	29.100	22	8.000	7.432	2.708	36	93
5	110.000	40	44.000	41.600	14.205	34	95
6	45.455	40	15.000	6.200	2.000	32	41
7	200.000	30	61.320	57.028	35.000	61	93
8	54.000	98	52.560	35.651	7.500	21	68
9	146.963	41	60.255	60.255	19.972	33	100
11	87.000	23	20.000	10.375	3.661	35	52
12	288.000	42	120.960	106.947	48.000	45	88
13	49.344	97	48.000	20.787	8.000	38	43
14	88.000	25	22.000	18.223	6.000	33	83
15	200.000	43	40.000	24.700	8.000	32	62
16	123.695	26	32.000	27.326	11.000	40	85
17	16.000	35	55.000	50.000	23.000	46	91
19	40.000	25	10.000	9.465	4.859	51	95
20	25.000	18	5.000	3.728	2.000	54	75
21	400.000	40	160.000	140.400	30.000	21	88
22	205.000	60	80.000	60.000	31.500	53	75
23	120.000	27	32.500	30.000	20.000	67	92
Summe bzw. Ø	2.537.057	41	947.436	770.849	293.791	41	79

Abbildung 5 zeigt Aschemengen nach der Herkunft des Klärschlamms. Während die Klärschlammasche aus rein industriellen Quellen mit 8 % nur einen geringen Teil ausmacht, steuern die 7 Anlagen, die sowohl kommunalen als auch industriellen Schlamm umsetzen über

die Hälfte der Asche bei. Die 12 Anlagen, die ausschließlich kommunale Schlämme verwerten, liefern knapp $40\,\%$ der Asche.

In Abbildung 6 sind die derzeitigen Entsorgungswege aufgezeigt. Dabei waren Mehrfachnennungen möglich, so dass auf die 21 Anlagen insgesamt 25 Entsorgungswege kommen. Zu sehen ist, dass mit 5 % bisher nur ein geringer Teil der Aschen als Düngemittel verwertet wird. Der überwiegende Teil wird deponiert, als Bergversatzmaterial oder für Deponie- oder Straßenbau verwendet.

Abbildung 5: Klärschlammasche nach Herkunft des Klärschlamms

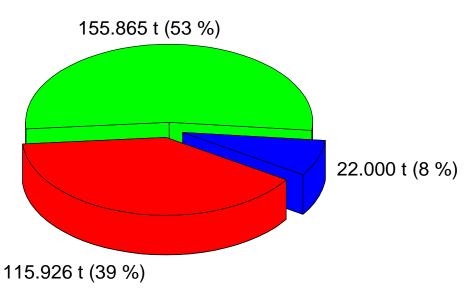
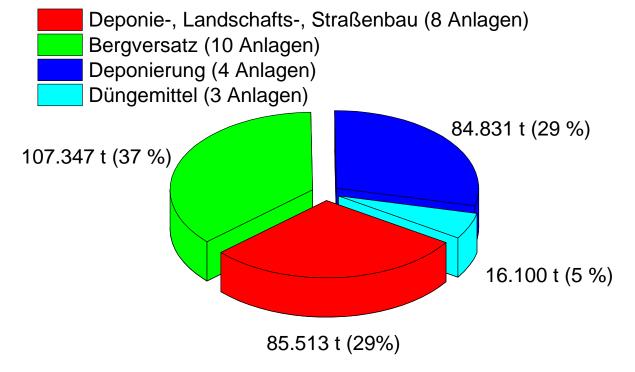



Abbildung 6: Verbleib der Klärschlammasche

7 Analytik und Methodenentwicklung

7.1 Probenvorbereitung, Geräte und Methoden

Die zugesandten Proben wurden luftgetrocknet, mit einem Teilungskreuz repräsentativ geteilt und mit einer Wolframcarbid Scheibenschwingmühle gemahlen.

Die gemahlenen Proben wurden mikrowellenunterstützt in Anlehnung an DIN ISO 11466 aufgeschlossen.

- inverser Königswasserauszug (KE): 0,5 g Probe auf 0,1 mg eingewogen; 8 ml konz. HNO₃, 2,5 ml konz. HCl.
- Totalaufschluss (TA): 0,1 g Probe auf 0,1 mg eingewogen; 8 ml konz. HNO₃, 2,5 ml konz.
 HCl, 1 ml konz. HF; Komplexierung der überschüssigen Flusssäure mit 5 ml kaltgesättigter HBO₃.
- Perchlorsäureaufschluss (Per): 0,1 g Probe auf 0,1 mg eingewogen; 4 ml konz. HNO₃, 1,5 ml konz. HClO₄, 0,5 ml konz. HF; Komplexierung der überschüssigen Flusssäure mit 2,5 ml kaltgesättigter HBO₃.
- Der Anteil des pflanzenverfügbaren Phosphors wurde als in neutralem Ammoniumcitrat löslichem Phosphor nach (DIN EN 15957, 2011-12) bestimmt.

Schmelzaufschlüsse wurden als Soda-Pottasche Aufschlüsse nach (Ochsenkühn-Petropulu et al., 1994) durchgeführt.

Die Anreicherung und Matrixabtrennung zum Bestimmen der Platingruppenelemente wurde mittels Tellursammelfällung in Doppelbestimmung nach (DIN 19741, 2012-01) durchgeführt.

Die Elementbestimmung wurde mittels Induktiv gekoppeltem Plasma (ICP), gekoppelt mit optischer Emissionsspektroskopie (OES) bzw. Massenspektrometrie (MS) durchgeführt.

- ICP-OES: nach (DIN EN ISO 11885, 2009-09); Messung unverdünnt aus der Aufschlusslösung, die Hauptelemente (Al, Ca, Fe, Mg, P, S, Si) wurden sowohl unverdünnt als auch aus einer 1:10 Verdünnung gemessen; Matrixnivellierung mit 10 g/l LiNO₃; Elemente: Al, Ca, Fe, K, Mg, Na, P, S, Si, Ti, V, Cr, Mn, Cu, Zn, Sr, Zr, Sn, Ba, W, Pb. Geräte: ThermoFisher IRIS Intrepid II und ThermoFisher iCAP 7400.
- ICP-MS: nach (DIN EN ISO 17294-2, 2005-02); Messung aus 1:10 Verdünnung im knietischen Energiediskriminierungsmodus (KED) mit He als Kollisionsgas; interner Standard ¹¹⁵In, soweit nicht anders vermerkt; Elemente: Sc, Co, Ni, Ga, Ge, As, Se, Y, Nb, Mo, Ag, Cd, Sb, La, Seltene Erden, Hf, Ta, Au, Hg, Th, U; Rh, Pd, Pt mit ¹⁰¹Ru als internem Standard, Messung direkt aus der Lösung der Tellursammelfällung; Gerät: ThermoFisher iCAP Qc.

Detaillierte Messparameter für die ICP-Analytik sind im Anhang aufgeführt (Kapitel 11.1, Tabelle 29). In den Tabellen sind zunächst die Hauptelemente (Matrixelemente) mit den jeweiligen Gehalten in % aufgeführt. Danach folgen die weiteren Elemente (in mg/kg), aufsteigend sortiert nach der Ordnungszahl (⁴⁵Sc bis ²³⁸U).

Wassergehalt und Glühverlust wurden nach (DIN 18128, 2002-12) bestimmt. Die im Trockenschrank bei 105°C vorgetrocknete Probe wurde 4 h bei 550°C geglüht.

Der Gehalt an organischem Kohlenstoff (Total Organic Carbon, TOC) wurde vom Umweltbundesamt nach (DIN 13137, 2001-12) bei 1100°C bestimmt.

Die Differenz-Thermoanalyse wurde mit nicht getrockneten Proben im Korundtiegel mit einem Netzsch STA 449F3 durchgeführt.

Für die Untersuchung nach organischen Schadstoffen wurden die Ascheproben mit dem jeweils angegeben Lösungsmittel extrahiert (NRW, 2000-07). Die Extrakte wurden mit einem Shimadzu GCMS QP 2010 Ultra (Säule: TG5-MS, 0.25mm*30m*0.25 μ m; Temperaturprogramm: 60°C_{2min} > 30°C/min > 300°C_{10min}) beziehungsweise im Fachbereich 4.1 der BAM mit einem Agilent 6859 GC-MS (Säule: HP-5MS, 0.25mm*30m*0.25 μ m; Temperaturprogramm: 70°C_{0min} > 25°C/min > 150°C_{0min} > 3°C/min > 200°C_{0min} > 8°C/min > 280°C_{10min}) gemessen.

7.2 Methodenentwicklung

Bei der Auswahl der zu messenden Elemente lag das Hauptaugenmerk auf einer möglichst vollständigen Charakterisierung. Diskussionen mit Anlagenbetreibern führten im Verlauf des Projekts zu geringfügigen Anpassungen der Elementauswahl, so dass nicht alle Elemente für alle Proben bestimmt wurden. Das betrifft insbesondere Cobalt (Co), Selen (Se) und Quecksilber (Hg).

Zu Projektbeginn wurden einzelne Proben mit verschieden Methoden aufgeschlossen, um das geeignetste Aufschlussverfahren zu ermitteln. Abbildung 7 bis Abbildung 12 zeigen die Elementkonzentrationen von vier verschiedenen Proben, jeweils mit Königswasser (KW), Totalaufschluss (TA) und Perchlorsäureaufschluss (Per) aufgeschlossen und mit der ICP-OES gemessen.

Die Ergebnisse zeigen, dass Per fast durchweg die höchsten Konzentrationen erzielte. Während Silicium (Si) und Titan (Ti) (Abbildung 9) sich erwartungsgemäß nur unter Zuhilfenahme von Flusssäure aufschließen lassen (TA, Per), zeigt der TA für Wolfram (W) deutlich geringere Werte als KW und Per. Per weist für Natrium (Na) (Abbildung 8), Vanadium (V), Chrom (Cr) (Abbildung 9), Gallium (Ga) und Molybdän (Mo) (Abbildung 11) die signifikant höchsten Werte auf. Lediglich im Falle von Kalium (K) (Abbildung 7), Nickel (Ni) (Abbildung 10) und Barium (Ba) (Abbildung 11) treten einzelne höhere Werte bei anderen Aufschlüssen auf. Bei Mangan (Mn) und Zink (Zn) lieferte Per in fast allen Fällen die niedrigsten Konzentrationen, jedoch liegen die Ergebnisse aller Aufschlüsse im gleichen Bereich (Abbildung 10).

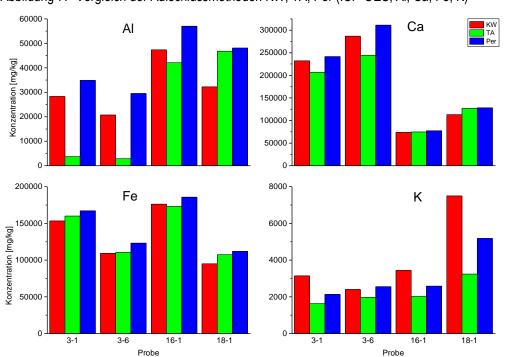


Abbildung 7: Vergleich der Aufschlussmethoden KW, TA, Per (ICP-OES; Al, Ca, Fe, K)

Abbildung 8: Vergleich der Aufschlussmethoden KW, TA, Per (ICP-OES; Mg, Na, P, S)

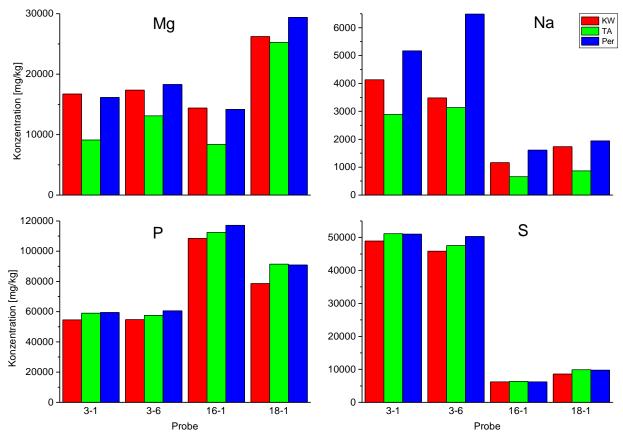
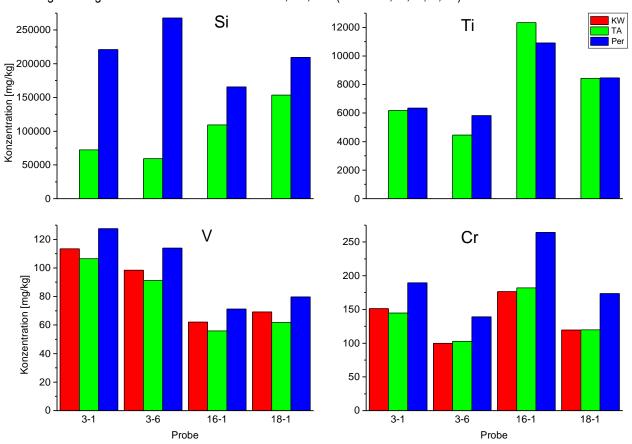



Abbildung 9: Vergleich der Aufschlussmethoden KW, TA, Per (ICP-OES; Si, Ti, V, Cr)

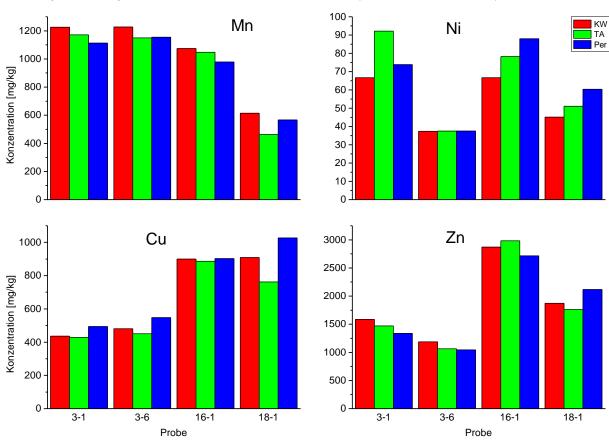


Abbildung 10: Vergleich der Aufschlussmethoden KW, TA, Per (ICP-OES; Mn, Ni, Cu, Zn)

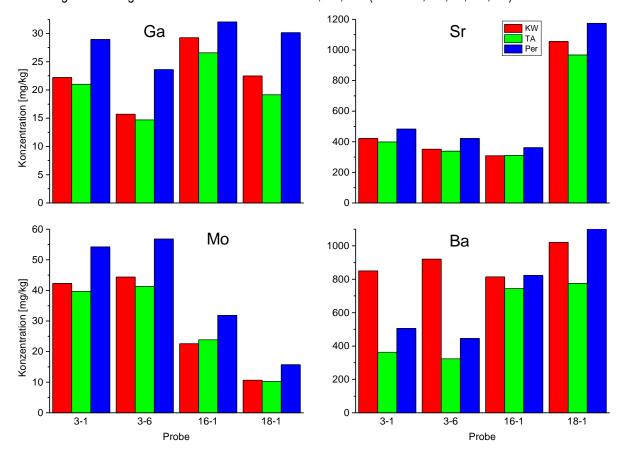


Abbildung 12: Vergleich der Aufschlussmethoden KW, TA, Per (ICP-OES; W, Pb)

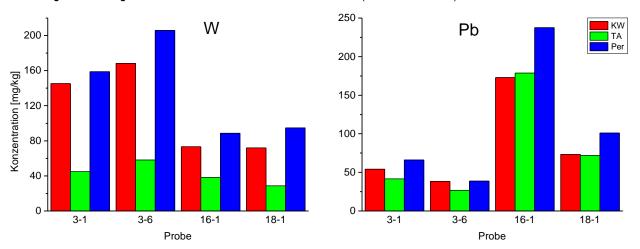
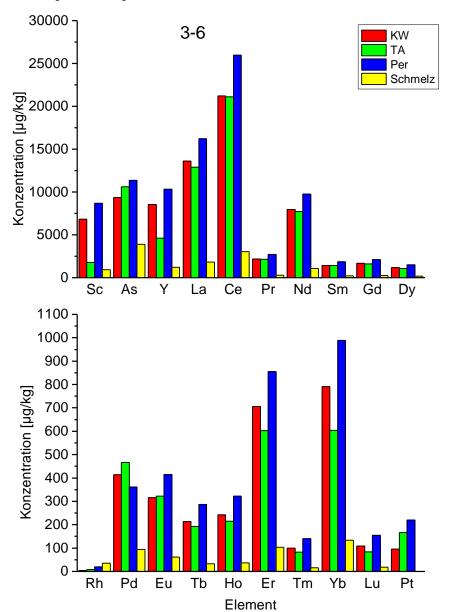



Abbildung 13: Vergleich der Aufschlussmethoden KW, TA, Per und Schmelzaufschluss (ICP-MS) für Probe 3-6

Für die ICP-MS Messungen wurde eine Probe jeweils mit Königswasser (KW), Totalaufschluss (TA), Perchlorsäureaufschluss (Per) und Schmelzaufschluss (Schmelz) aufgeschlossen. Die Ergebnisse sind in Abbildung 13 gezeigt. Dabei ist zu beachten, dass für Platin (Pt) im Falle des Schmelzaufschlusses kein Wert angegeben werden kann, da der Aufschluss im Platintiegel erfolgte. Mit Ausnahme von Rhodium (Rh) und Palladium (Pd) zeigt Per für alle Elemente die höchste Konzentration. Bei diesen beiden Elementen liegen die Ergebnisse jedoch im Bereich der Maximalwerte der anderen Aufschlüsse.

Die Ergebnisse legen nahe, dass Per die Probenmatrix der Klärschlammaschen am vollständigsten aufschließt. Insbesondere für Si, Ti, V, Cr, Mo und W sind Werte, die den tatsächlichen Gesamtgehalten nahekommen, offenbar nur mit diesem Aufschluss zu erreichen.

Da im Projekt eine möglichst vollständige Charakterisierung der Klärschlammaschen angestrebt wurde, wurden alle Proben mit dem Perchlorsäureaufschluss behandelt.

8 Qualitätssicherung

8.1 Bestimmungsgrenzen

Die Bestimmungsgrenzen (BG) wurden nach der Blindwertmethode abgeschätzt und mit dem entsprechenden Verdünnungsfaktor der Messmethode (500 für die ICP-OES, 5000 für die ICP-MS) auf den Feststoffgehalt in mg/kg umgerechnet. Die Bestimmungsgrenzen sind in Tabelle 3 angegeben. Insgesamt wiesen nur wenige Einzelmessungen Werte unterhalb der Bestimmungsgrenze auf (18x Au, 5x W, 4x Pb, 2x Cd, 1x Ta, 1x K).

Tabelle 3: Be	estimmungsgrenzen der mit i	ICP-OES and ICP-MS and	alysierten Elemente [mg/kg]
---------------	-----------------------------	------------------------	-----------------------------

Element	BG [mg/kg]						
Al	376	Co	0,59	Cd	0,10	Er	0,16
Ca	513	Ni	2,7	Sn	3,28	Tm	0,04
Fe	334	Cu	2,8	Sb	0,90	Yb	0,13
K	124	Zn	59,4	Ва	120	Lu	0,03
Mg	122	Ga	0,23	La	0,19	Hf	0,21
Na	154	Ge	0,62	Ce	0,11	Та	0,15
Р	218	As	4,6	Pr	0,07	W	6,0
S	52	Se	0,75	Nd	0,11	Au	0,15
Si	1609	Sr	0,77	Sm	0,16	Hg	0,10
Ti	39	Υ	0,16	Eu	0,14	Pb	3,50
Sc	0,45	Zr	1,3	Gd	0,14	U	0,16
V	1,7	Nb	0,15	Tb	0,10		
Cr	2,2	Мо	0,29	Dy	0,13		
Mn	95	Ag	0,20	Но	0,09		

8.2 Blindwerte

Im Projektverlauf wurden insgesamt 36 Blindversuche durchgeführt, indem die komplette Probenvorbereitung ohne Probe durchgeführt wurde. In allen Fällen lagen die Messwerte unterhalb der Bestimmungsgrenze, mit Ausnahme von Si, wo merkliche Konzentrationen gefunden wurden. Die Reinigungsprozedur der Aufschlussbehälter wurde angepasst (reinigen mit Natronlauge, Leerläufe in der Mikrowelle), die Quelle dieser Signale konnte jedoch nicht ermittelt werden und die Blindwerte blieben bestehen.

Da die mit der hier angewandten Methode ermittelten Siliciumgehalte eine sehr gute Übereinstimmung mit dem untersuchten Referenzmaterial sowie mit Vergleichsmessungen mit der Röntgenfloureszenzsanalyse (RFA) zeigen (siehe Kapitel 8.3), wird der Einfluss dieser Blindwerte als gering eingeschätzt. Es kann jedoch nicht ausgeschlossen werden, dass die hier ermittelten Siliciumgehalte geringfügig zu hoch sind.

8.3 Vergleich mit Referenzmaterialien und Röntgenfluoreszenzanalyse

Zum Prüfen der Probenvorbereitung und der instrumentellen Analytik wurde ein Referenzmaterial untersucht (Kohlenflugasche CTA-FFA-1 vom Institute of Nuclear Chemistry and Technology, Laboratory of Nuclear Analytical Methods, Warsaw, Poland). Eine Klärschlammasche als Referenzmaterial war nicht verfügbar. Die Ergebnisse sind in Tabelle 4 gezeigt. Angegeben sind die eigenen Messwerte sowie die zertifizierten bzw. informativen Gehalte. Letztere sind ohne Schwankungsbereich angegeben. Für die meisten Elemente ergibt sich eine gute Übereinstimmung, dennoch zeigen sich in einigen Fällen geringere Gehalte, besonders für V, Ni, As, Ba. Dabei ist jedoch zu bedenken, dass es sich bei dem Material um eine Kohlenflugasche und keine Klärschlammasche handelt, die eine andere Matrix und eine andere Zusammensetzung der Hauptelemente aufweist. Darüber hinaus wurde mit dem Perchlorsäureaufschluss eine andere Aufschlussmethode als beim zertifizierenden Ringversuch verwendet.

Tabelle 4: Messung des Referenzmaterials CTA/FFA-1 (Gehalte in % bzw. mg/kg)

Element	CTA-FFA- 1 (eigene Messung)	Zertifiziert / informativ [%]	Element	CTA-FFA- 1 (eigene Messung)	Zertifiziert / informativ [mg/kg]	Element	CTA-FFA- 1 (eigene Messung)	Zertifiziert [mg/kg]
Al	16,4	14,87±0,39	Sc	19,5	24,2±1,1	Ce	113,1	120±7
Ca	2,32	2,29	٧	222,0	260±10	Nd	50,0	56,8±3,7
Fe	4,73	4,89±0,14	Cr	136,2	156±8	Sm	10,5	10,9±0,6
K	1,69	2,20	Mn	999,0	1066±41	Eu	2,4	2,39±0,06
Mg	1,76	1,55	Ni	77,1	99,0±5,8	Gd	9,6	10,0±2,6
Na	1,7	2,19±0,08	Cu	156,2	158±9	Tb	1,5	1,38±0,14
Р	0,08	0,0725 ±0,0074	Zn	592,5	569±58	Dy	8,5	9,09±1,45
Si	23,7	22,48±0,92	Ga	59,2	49,00	Er	4,8	4,52±1,12
Ti	0,71	0,58	As	40,8	53,6±2,7	Tm	0,8	0,71±0,2
			Sr	234,2	250±13	Yb	4,4	4,24±0,19
			Y	38,2	45,0±13,5	Lu	0,7	0,66±0,04
			Мо	13,2	17,00	Hf	6,4	6,09±0,45
			Cd	2,8	2,80	Ta	2,2	2,11±0,16
			Ва	681,0	835±56	W	12,7	10,5±1,1
			La	56,3	60,7±4,0	Pb	331,1	369±46
				_		Th	34,6	29,4±0,7

Zwei Klärschlammaschen (SNBA 13 und SINDL 52) wurden sowohl nach Aufschluss mit der ICP als auch direkt mit Röntgenfluoreszenzanalyse (RFA) untersucht. Dabei kamen sowohl die halbquantitative (RFA sq) als auch die Rekonstitutionsanalyse (RFA rekon) zum Einsatz. Die Ergebnisse sind in Tabelle 5 sowie Tabelle 6 dargestellt. Die Übereinstimmung der ICP-Ergebnisse insbesondere mit der als sehr präzise eingeschätzten Rekonstitutionsanalyse wird als gut eingeschätzt.

Tabelle 5: Vergleich ICP-RFA für die Klärschlammasche SNBA 13

Element	RFA sq [%]	RFA rekon [%]	ICP-OES [%]	Element	RFA sq [mg/kg]	RFA rekon [mg/kg]	ICP-OES [mg/kg]
Al	4,9	5,8	6,0	Cr	178	189	180
Ca	14,1	16,2	15,4	Ni	105	85,9	77,5
Fe	11,1	11,7	10,1	Cu	1705	1458	1241
K	1,1	n.b.	0,9	Zn	3001	2988	2565

Element	RFA sq [%]	RFA rekon [%]	ICP-OES [%]	Element	RFA sq [mg/kg]	RFA rekon [mg/kg]	ICP-OES [mg/kg]
Mg	1,7	1,7	1,6	Sn	70,6	n.b.	63,1
Na	0,5	n.b.	0,4	Pb	339	410	308
Р	9,5	10,4	10,3				
S	1,7	n.b.	1,6				
Si	8,9	11,6	10,8				

Tabelle 6: Vergleich ICP-RFA für die Klärschlammasche SINDL 52

Element	RFA sq [%]	RFA rekon [%]	ICP-OES [%]	Element	RFA sq [mg/kg]	RFA rekon [mg/kg]	ICP-OES [mg/kg]
Al	12,5	14,9	14,7	Cr	95,6	139	135
Ca	13,3	13,8	13,0	Ni	100	76,0	63,9
Fe	2,3	2,4	2,2	Cu	1565	1125	1092
K	0,8	n.b.	0,8	Zn	3120	2892	2571
Mg	1,0	1,2	1,1	Sn	87,4	121	83,1
Na	0,5	0,0	0,4	Pb	184	240	196
Р	9,2	9,7	9,7				
S	0,8	n.b.	0,6				
Si	10,2	12,4	11,6				

8.4 Wiederholbarkeit

Zum Prüfen der Wiederholbarkeit wurden jeweils 10 unabhängig aufgeschlossene und vorbereitete Proben derselben Asche per ICP-OES (2-1) bzw. per ICP-MS (1-1) gemessen. Die Mittelwerte sowie die relativen Standardabweichungen (RSD) sind in Tabelle 7 und Tabelle 8 angegeben. Grundsätzlich zeigen sich gute bis sehr gute Wiederholbarkeiten für alle Elemente. Ausnahmen sind Al, Cr, Na und Ba, deren hohe Standardabweichungen möglicherweise auf Inhomogenitäten in der Probe zurückzuführen sind. Im Falle von Si hängt der hohe RSD möglicherweise auch mit der Blindwertproblematik zusammen (siehe auch Kapitel 8.2). Die hohen RSDs für Tb, Ho, Tm, Lu und Au sind vermutlich auf die geringen Konzentrationen nahe der Bestimmungsgrenze zurückzuführen.

Tabelle 7: Wiederholbarkeit von Aufschlüssen für die ICP-OES anhand Probe 2-1

Element	Ø 2-1 [%]	RSD 2-1 [%]	Element	Ø 2-1 [mg/kg]	RSD 2-1 [%]	Element	Ø2-1 [mg/kg]	RSD 2-1 [%]
Al	1,7	29,5	٧	35,6	1,6	Ва	1294	30,6
Ca	9,7	7,1	Cr	90,4	12,9	W	25,1	7,5
Fe	14,9	1,3	Mn	5442	2,7	Pb	124	3,8
K	1,0	3,6	Ni	64,3	5,5			
Mg	1,3	3,4	Cu	2479	1,8			
Na	0,6	14,9	Zn	2956	3,0			

Element	Ø 2-1 [%]	RSD 2-1 [%]	Element	Ø 2-1 [mg/kg]	RSD 2-1 [%]	Element	Ø2-1 [mg/kg]	RSD 2-1 [%]
Р	10,3	2,4	Sr	615	2,8			
S	0,9	2,8	Zr	166	8,2			
Si	9,1	11,3	Ag	11,9	3,7			
Ti	0,4	5,4	Sn	90,3	1,7			

Tabelle 8: Wiederholbarkeit von Aufschlüssen für die ICP-MS anhand Probe 1-1

Element	Ø 1-1 [mg/kg]	RSD 1-1 [%]	Element	Ø 1-1 [mg/kg]	RSD 1-1 [%]	Element	Ø 1-1 [mg/kg]	RSD 1-1 [%]
Sc	7,4	6,7	Ce	44,3	4,4	Tm	0,4	23,0
Ga	14,3	1,3	Pr	4,9	3,0	Yb	1,4	7,8
Ge	8,5	9,5	Nd	17,3	3,1	Lu	0,3	34,5
As	16,1	9,0	Sm	3,4	2,0	Hf	1,8	6,2
Υ	13,2	1,7	Eu	0,9	5,7	Ta	1,2	8,5
Nb	9,4	2,8	Gd	3,2	5,2	Au	1,2	51,2
Мо	17,6	4,1	Tb	0,6	19,1	Th	6,0	3,4
Cd	0,3	6,9	Dy	2,5	3,3	U	4,9	3,6
Sb	10,8	1,6	Но	0,7	14,3			
La	27,9	3,6	Er	1,5	6,6			

Um die Messunsicherheit der ICP zu überprüfen, wurde eine Aufschlusslösung der Probe 2-1 jeweils drei Mal vermessen. Mittelwerte und relative Standardabweichungen sind in Tabelle 9 angegeben und zeigen mit Ausnahme von Ta gute bis sehr gute RSDs. Im Falle von Ta handelt es sich möglicherweise um einen Ausreißer. Grundsätzlich konnte die gute Messgenauigkeit der ICP-OES und ICP-MS gezeigt werden.

Tabelle 9: Wiederholbarkeit von Einzelmessungen an der ICP anhand Probe 1-1

Element	Ø 2-1 [mg/kg]	RSD 2-1 [%]									
Al	1,6	0,2	Sc	2,0	1,8	Nb	4,8	1,4	Dy	1,1	2,1
Ca	9,5	0,5	٧	36,5	0,8	Мо	24,8	2,1	Но	0,2	1,6
Fe	14,8	0,4	Cr	98,3	2,8	Ag	10,5	1,9	Er	0,5	1,2
K	0,9	0,3	Mn	5475	1,0	Cd	2,7	1,3	Tm	0,1	1,7
Mg	1,3	0,4	Co	15,4	1,8	Sn	93,5	1,1	Yb	0,6	0,3
Na	0,5	0,3	Ni	47,5	4,7	Sb	7,6	0,7	Lu	0,1	0,7
Р	10,5	0,6	Cu	2477	0,2	Ва	895,1	0,5	Hf	3,7	1,2
S	0,9	0,5	Zn	3073	0,8	La	32,6	1,6	Та	0,4	18,8
Si	8,1	0,6	Ga	5,6	0,3	Ce	41,6	1,0	W	27,4	3,6
Ti	0,4	0,5	Ge	5,4	1,6	Pr	3,0	1,5	Au	1,0	2,0
			As	55,9	1,4	Nd	10,1	1,4	Hg	1,4	0,9

Element	Ø 2-1 [mg/kg]	RSD 2-1 [%]									
			Se	1,4	7,5	Sm	1,5	2,7	Pb	121,6	0,7
			Sr	575,8	0,2	Eu	0,4	2,7	Th	1,7	1,2
			Υ	6,0	2,4	Gd	2,6	1,9	U	3,7	0,8
			Zr	148,1	0,6	Tb	0,2	3,1			

9 Ergebnisse und Diskussion

9.1 Zusammenfassung aller Elementgehalte

In Tabelle 10 und Tabelle 11 sind die Elementgehalte der Haupt- bzw. Nebenbestandteile aufgeführt. Angegeben sind jeweils Minimal-, Maximal- und Mittelwerte sowie die Mediane und die Anzahl der jeweiligen Einzelproben. Da der Median grundsätzlich robuster gegen Ausreißer ist als der Mittelwert, lässt sich erkennen, in welchen Fällen der Mittelwert durch einzelne Proben mit sehr hohen Gehalten erhöht wird. So z.B. zu sehen für Ca, Ba, Mn, Ta und Pb.

Tabelle 10: Zusammenfassung der Hauptelementgehalte aller Proben [Massen-%]

Element	Min	Max	Mittelwert	Median	Messwerte
Al	0,7	20,2	5,2	4,8	252
Ca	6,1	37,8	13,8	10,5	252
Fe	1,8	20,3	9,9	9,5	252
K	<0,006	1,7	0,9	0,9	227
Mg	0,3	3,9	1,4	1,3	252
Na	0,2	2,6	0,7	0,6	252
Р	1,5	13,1	7,3	7,9	252
S	0,3	6,9	1,5	1,0	252
Si	2,4	23,7	12,1	12,1	252
Ti	0,1	1,5	0,4	0,4	252

Tabelle 11: Zusammenfassung der Spurenelementgehalte aller Proben [mg/kg]

Ele- ment	Min	Max	Mittel- wert	Me- dian	Mess- werte	Ele- ment	Min	Max	Mittel- wert	Me- dian	Mess- werte
Sc	0,7	48,5	6,1	4,2	252	La	9,8	269	32,0	25,5	252
V	9,3	1206	136	54,0	252	Ce	15,7	169	49,2	42,8	252
Cr	58	1502	267	159,7	252	Pr	1,37	18,4	4,9	4,2	252
Mn	334	6488	1914	1307	252	Nd	4,71	60,9	17,2	15,6	252
Co	7,3	83,5	28,1	20,7	164	Sm	0,9	20,8	3,3	2,9	252
Ni	8,2	501	105,8	74,8	251	Eu	0,18	2,1	0,7	0,6	252
Cu	162	3467	916	785	252	Gd	0,8	59,1	4,6	2,8	252
Zn	552	5515	2535	2534	252	Tb	0,1	1,8	0,5	0,4	252
Ga	3,2	24,7	11,8	11,6	252	Dy	0,5	11,1	2,4	1,9	252
Ge	2,4	12,8	5,9	5,5	252	Но	0,1	1,9	0,5	0,4	252
As	4,2	124,0	17,5	13,6	252	Er	0,3	6,1	1,3	1,0	252
Se	0,8	9,9	2,5	2,0	102	Tm	0,0	0,7	0,2	0,2	252
Sr	67	2340	578	493	252	Yb	0,3	5,7	1,3	1,0	252
Υ	1,1	53,0	11,6	9,2	252	Lu	0,0	0,9	0,2	0,2	252
Zr	23,9	984	167	106	250	Hf	0,8	25,2	4,4	3,2	252
Nb	0,6	293	19,5	11,0	252	Та	<0,15	98,7	4,3	1,2	252

Ele- ment	Min	Max	Mittel- wert	Me- dian	Mess- werte	Ele- ment	Min	Max	Mittel- wert	Me- dian	Mess- werte
Мо	7,5	112	25,3	20,0	252	W	<6,0	336	52,8	41,1	252
Ag	0,5	133,1	12,5	9,1	248	Au	<0,15	8,4	1,2	0,9	252
Cd	<0,1	80,3	3,3	2,7	252	Hg	0,1	3,6	0,8	0,5	143
Sn	7,3	8706	194	76,6	252	Pb	<3,5	1112	151	117	252
Sb	1,5	454	23,0	12,4	252	Th	1,0	19,3	5,2	4,9	252
Ва	128	13650	2173	1057	229	U	1,58	25,5	5,8	4,9	252

Aufgrund der komplexen und aufwendigen Probenvorbereitung zur

Platingruppenelementbestimmung konnten nur ausgewählte Proben als Doppelbestimmung untersucht werden. Die Ergebnisse sind in Tabelle 12 dargestellt. Die zu beobachtenden hohen Werte wie für Pt in Probe 6-1 oder für Pd in Probe 22-1 sind möglicherweise auf Einleiter aus industrieller Produktion zurückzuführen. Da allerdings jeweils nur eine Probe untersucht wurde, sind auch Ausreißer nicht auszuschließen. Messtechnische Unsicherheiten sind unwahrscheinlich, da alle Ergebnisse durch Doppelbestimmung bestätigt wurden.

Tabelle 12: Platingruppenelementgehalte ausgewählter Proben [µg/kg]

Probe	Rh	Pd	Pt
1-1	25,2	111	38
2-1	5,2	91	103
5-1	15,3	60	73
6-1	1,1	21	1036
7-1	19,1	96	63
8-1	7,1	168	192
9-1	4,4	109	151
11-2	5,7	124	117
11-2	5,2	108	104
12-1	23,3	311	183
13-1	6,9	161	155
14-1	3,5	81	92
15-1	6,1	80	64
16-2	5,9	134	95
18-1	4,2	64	108
19-1	2,9	154	134
20-1	2,0	71	282
21-1	42,3	228	147
22-1	12,8	629	75
Min	1,1	21	38
Max	42,3	629	1036
Mittelwert	10,4	147	169
Median	5,9	109	108

9.2 Vergleich Königswasserauszug und Perchlorsäureaufschluss - Konsequenzen für die Bewertung gemäß Düngemittelverordnung

Abbildung 14 bis Abbildung 16 zeigen vergleichend die Elementkonzentrationen ausgewählter Proben, bestimmt nach Königswasser (KW) beziehungsweise Perchlorsäureaufschluss (Per). Für Eisen (Fe), Calcium (Ca) und Phosphor (P) zeigen sich vergleichbare Ergebnisse mit jedoch fast durchweg leicht höheren Werten beim Perchlorsäureaufschluss. Bei Aluminium (Al) dagegen ist das Bild uneinheitlich mit teilweise deutlich größeren Unterschieden und teilweise auch Mehrbefunden beim KW-Auszug. Das könnte auf Inhomogenitäten in der Probe zurückzuführen sein, die möglicherweise auch ein Grund für die relativ schlechte Standardabweichung bei Al ist (siehe auch Kapitel 8.4). Für Silicium (Si) und Titan (Ti) liegen die Werte der KW-Auszüge erwartungsgemäß erheblich niedriger, da die entsprechenden Verbindungen sich ohne Flusssäure nur schlecht bzw. gar nicht aufschließen lasen.

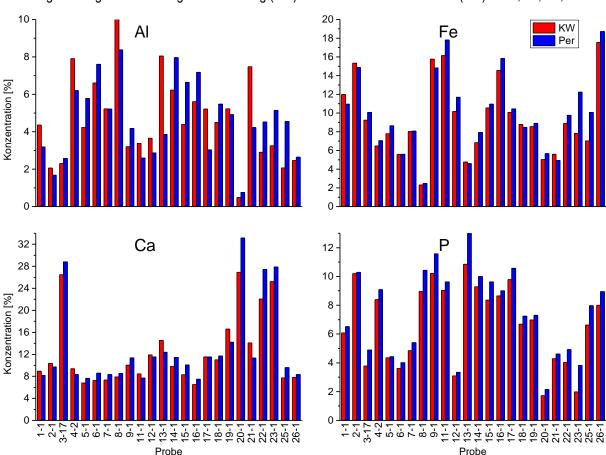
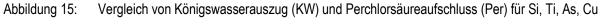



Abbildung 14: Vergleich von Königswasserauszug (KW) und Perchlorsäureaufschluss (Per) für Al, Fe, Ca, P

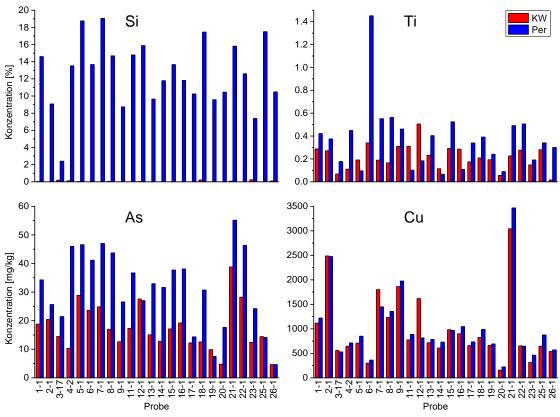
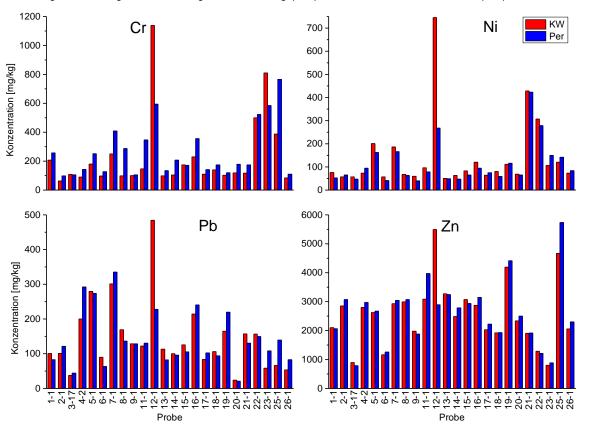



Abbildung 16: Vergleich von Königswasserauszug (KW) und Perchlorsäureaufschluss (Per) für Cr, Ni, Pb, Zn

Während für Nickel (Ni) mit beiden Aufschlussmethoden etwa ähnlich Gehalte gefunden werden, liegen beim Perchlorsäureaufschluss die Arsen-Gehalte (As) erheblich und die Gehalte an Kupfer (Cu), Chrom (Cr), Blei (Pb) und Zink (Zn) teilweise deutlich über denen der Königswasserauszüge. Das ist vermutlich auf das höhere Oxidationspotential der verwendeten Säuren sowie den vollständigeren Aufschluss der Probenmatrix durch die Verwendung von Flusssäure zurückzuführen (siehe auch Kapitel 7.2).

Die einzige Ausnahme stellt die Probe 12-1 dar, bei der die KW-Ergebnisse teilweise doppelt so hoch sind. Fehler in der Probenvorbereitung sind eher auszuschließen, da es sich bei der KW-Probe um eine Doppelbestimmung mit sehr guter Übereinstimmung handelte und die Ergebnisse der Per-Probe im Bereich der Mittelwerte aus 12 Einzelproben liegen. Analytische Artefakte oder Inhomogenitäten in der Probe können jedoch nicht ausgeschlossen werden, so dass es sich in diesem Fall um einen Ausreißer handeln könnte.

Tabelle 13 zeigt die Quecksilbergehalte in verschiedenen Proben, gemessen in Doppelbestimmung sowohl nach Königswasserauszug (KW) als auch nach Perchlorsäureaufschluss (Per). In allen Fällen liegen die Per-Ergebnisse höher als die der KW-Auszüge.

Quecksilber-Gehalte ausgewählter Proben, bestimmt per Königswasserauszug (KW) und Tabelle 13: Perchlorsäreaufschluss (Per)

Probennummer	Aufschluss	Hg [mg/kg]
5-8	KW	1,76
	Per	2,59
5-9	KW	2,23
	Per	3,12
23-6	KW	0,23
	Per	0,29
23-7	KW	0,50
	Per	0,53

Die Mehrbefunde für einige Elemente beim Perchlorsäureaufschluss, insbesondere Spurenbestandteile wie As, Cr, Pb oder Hg, sind bedeutsam im Hinblick auf die Frage, ob die Aschen direkt als Düngemittel verwendet werden können. Die Düngemittelverordnung legt für diese Elemente Grenzwerte bzw. Kennzeichnungspflichten fest (Düngemittelverordnung, 2012). Da diese Werte jedoch auf Königswasserauszügen beruhen, sind sie nicht uneingeschränkt mit den hier dargestellten, mittels Perchlorsäureaufschluss gewonnenen Ergebnissen zu vergleichen. Es ist zu vermuten, dass einige Aschen, die nach der hier angewandten Untersuchungsmethode die Grenzwerte der Düngemittelverordnung nicht einhalten, diese nach Untersuchung mit Königswasserauszug unterschreiten könnten. Da das Hauptaugenmerk dieses Forschungsprojekts auf einer möglichst umfassenden Charakterisierung der Klärschlammaschen lag, wurde der Perchlorsäureaufschluss gewählt, um die Totalgehalte der Elemente bestimmen zu können. Für eine zukünftig angemessene Analytik und gesetzliche Analysevorschriften ist unter Umständen zu diskutieren, welche Untersuchungsmethoden die umfassendste Risikobewertung für Düngemittel ermöglichen. Obgleich Königswasserauszüge schnell und einfach durchzuführen sind, zeigen sie jedoch nur ein unvollständiges und eher willkürliches Bild der im Material vorliegenden Elemente. Die Analytik kann durch unterschiedliche Probenmatrices beeinflusst werden, insbesondere davon, wie groß der Anteil an silikatischen Komponenten ist.

Perchlorsäureaufschlüsse erfordern aufgrund des Einsatzes von Flusssäure erhöhte Anforderungen

an die Arbeitssicherheit und sind deshalb aufwendiger. Anderseits liefern sie Elementgehalte, die den Totalgehalten sehr nahe kommen, da mit diesem Aufschluss auch silikatische oder andere schwerlösliche Verbindungen aufgeschlossen werden können. Weder der Königswasserauszug noch der Perchlorsäureaufschluss stellen reale Umweltbedingungen dar und können daher nicht simulieren, welche Mengen an Schadstoffen tatsächlich ausgelaugt werden können. Grundsätzlich wäre daher auch der Einsatz von Elutionsversuchen denkbar, die den Wirkungspfad Boden-Grundwasser berücksichtigen (DIN 19528, 2009-01; DIN 19529, 2009-01). Dabei wird die Probe im Schüttel- oder Säulenversuch mit Wasser versetzt und damit die Auslaugeng von Schadstoffen in der Umwelt simuliert. Auf diese Weise lässt sich ermitteln, wie viele Schadstoffe tatsächlich freigesetzt werden und in die Umwelt gelangen können.

In Tabelle 14 sind die Anlagen zusammengefasst, deren Klärschlammaschen einen oder mehrere der Grenzwerte der Düngemittelverordnung überschreiten. Dazu sind die entsprechenden Aschemengen und die daraus resultierenden Phosphormengen angegeben. Es zeigt sich, dass von den knapp 19.000 t P jährlich, die grundsätzlich zur Rückgewinnung zur Verfügung stehen (siehe Kapitel 9.6), über 12.000 t nicht direkt zur Verwertung als Düngemittel herangezogen werden können. Diese Zahl könnte durch Änderungen im Betriebsablauf verändert werden. Da ein Großteil der Aschen zurzeit deponiert wird, werden häufig Rückstände aus der Rauchgasreinigung oder anderen Prozessschritten mit der Asche vermischt und erhöhen somit unter Umständen deren Schadstoffgehalt. Werden die Abfallströme getrennt, lassen sich die entsprechenden Schwermetallgehalte möglicherweise reduzieren. Darüber hinaus müssen die Aschen zum Einsatz als Düngemittel vermutlich ohnehin behandelt werden, um die Pflanzenverfügbarkeit des Phosphors zu erhöhen (siehe Kapitel 9.8). In dem Zuge könnten Schadstoffe durch entsprechende Verfahren entfernt oder deren Konzentration verringert werden.

Über GW DüMVO	Ni	Pb	As	Hg	Cd	Insgesamt
Anlagen	10	8	1	5	2	13
Asche [t/a]	204.564	167.244	19.972	114.485	83.000	233.244
P [t/a]	10.043	9.437	1.863	6.185	3.807	12.718

Tabelle 14: Klärschlammaschen mit Schwermetallgehalten oberhalb der Grenzwerte der Düngemittelverordnung

9.3 Elementgehalte einzelner Anlagen im Vergleich

In Abbildung 17 bis Abbildung 34 sind die Mittelwerte der Elementgehalte der Aschen aller Anlagen dargestellt. Dabei sind die Ergebnisse von Aschen aus rein industriellen Klärschlämmen rot dargestellt, solche aus gemischten Quellen gelb und diejenigen aus rein kommunalen Quellen grün. Die Legende weist die Nummerierung der Anlagen aus. Alle Anlagen sind auf allen Abbildungen in der gleichen Reihenfolge sortiert, und zwar aufsteigend nach dem Phosphorgehalt. So lassen sich ungewöhnlich hohe oder niedrige Werte identifizieren.

Die hohen Ca-Werte einiger Anlagen von über 25 % (Anlagen 20, 23, 22, 3; Abbildung 17) sind vermutlich auf Kalkzusätze zur Phosphatfällung oder bei der Rauchgasreinigung zurückzuführen.

Der hohe Ti-Gehalt in den Aschen der Anlage 6 (>10.000 mg/kg; Abbildung 20) ist vermutlich auf Weißpigment aus der Papierproduktion im Einzugsgebiet zurückzuführen.

Die Aschen der Anlage 5 weisen hohe Gehalte an Ba (>10.000 mg/kg; Abbildung 20) und Sr (2.000 mg/kg; Abbildung 22) auf. Nach Auskunft des Betreibers ist dies auf Wasser aus

stillgelegten Steinkohlegruben zurückzuführen, welches hohe Konzentrationen dieser Elemente enthält.

Der hohe Sn-Gehalt bei Anlage 19 (5.000 mg/kg; Abbildung 21) ist um eine bis drei Größenordnungen höher als die aller anderen Anlagen und auf die Herstellung von SnCl₄ am Standort zurückzuführen. In den Aschen der Anlage 19 wurden darüber hinaus erhebliche Mengen an Indium gefunden (10-40 mg/kg), welches in diesem Fall durch das vergesellschaftete Zinn in die Asche gelangt. Da Klärschlammaschen in der Regel kein Indium enthalten (Zhang et al., 2002), wurde dieses Element als interner Standard für die ICP-MS Analytik genutzt. Im Falle der Aschen dieser Anlage wurde ¹⁰³Rh als interner Standard verwendet und die Indiumgehalte semiquantitativ aus der Wiederfindung des internen Standards Indium abgeschätzt.

Die hohen Ag-Werte der Aschen aus Anlage 3 (>40 mg/kg; Abbildung 25) sind vermutlich auf Einleiter aus der Solarzellenherstellung zurückzuführen.

Anlage 18 zeigt einen hohen Gehalt an Uran von über 25 mg/kg, während alle anderen Aschen um 10 mg/kg oder noch deutlich darunter liegen (Abbildung 28). Da es sich in diesem Fall um eine Einzelprobe dieser Anlage handelt, lässt sich nicht klären, ob die Werte dieser Anlage generell so hoch sind und möglicherweise geogenen Ursprungs sind, oder es sich um einen Einzelfall handelt.

Beim Cadmium (Abbildung 32) zeigen sich nur bei den Anlagen 12 und 7 Gehalte von 10 mg/kg oder darüber. Ansonsten liegen die Werte bei 3-4 mg/kg und darunter.

Damit weisen die Aschen im Vergleich zu Rohphosphaten um Größenordnungen geringere Gehalte an Cadmium (>30 mg/kg) und Uran (>100 mg/kg) auf (Dissanayake et al., 2009; Römer et al., 2010). Sowohl die Cd als auch die U-Gehalte der Rohphosphate schwanken sehr stark, je nach Herkunftsort. So finden sich praktisch uranfreie Rohphosphate (Finnland) und Rohphosphat aus South Carolina mit 399 mg/kg U. Im Zuge des Säureaufschlusses von Rohphosphaten, mit denen das Phosphat pflanzenverfügbar gemacht wird, erhöht sich auch die Verfügbarkeit von Schwermetallen wie Uran. So haben (Römer et al., 2010) berechnet, das mit Superphosphaten bis zu 700 mg U pro kg P auf die Ackerböden aufgebracht wird. Eine Ergänzung oder teilweiser Ersatz von Rohphosphaten durch Recyclingphosphate aus Klärschlammaschen könnte somit dazu beitragen, den Eintrag von Uran und Cadmium in die Umwelt zu reduzieren.

Die Verteilung der Seltenen Erden ist für die meisten Anlagen ähnlich (Abbildung 26, Abbildung 27, Abbildung 30, Abbildung 31, Abbildung 33, Abbildung 34). Die Aschen der Anlage 13 weisen durchweg die höchsten Gehalte auf. Daher ist anzunehmen, dass diese Verteilung nicht auf anthropogene, sondern geogene Einflüsse zurückzuführen ist. Eine Ausnahme stellen die Gd-Werte von über 25 mg/kg der Anlage 12 dar (Abbildung 30). Diese sind nach Aussagen des Betreibers entweder auf Rückstände aus der Herstellung von Legierungen und/oder der Produktion von Gd-haltigen Kontrastmitteln für die MRT zurückzuführen.

Außergewöhnlich hohe Gehalte an Metallen, wie z.B. für Zr (Abbildung 23), Nb (Abbildung 24) und Sc (Abbildung 27) der Aschen der Anlage 23 sind vermutlich auf industrielle Prozesse zurückzuführen.

In den Aschen der Anlage 13 finden sich mit über 55 mg/kg Tantalgehalte, die um Größenordnungen über denen der anderen Aschen liegen (Abbildung 28). Der Grund dafür ist bisher nicht bekannt, möglich wären Abwässer aus der Elektronikindustrie. Aufgrund der sehr hohen Gehalte werden geogene Einflüsse als unwahrscheinlich eingeschätzt.

Zusätzlich sind in den nachfolgenden Grafiken die Grenzwerte der Düngemittelverordnung für diese Elemente eingezeichnet. Bei der Diskussion der Messerte (siehe Kapitel 9.2) ist zu bedenken, dass die hier dargestellten Ergebnisse in Aufschlusslösungen nach

Perchlorsäureaufschluss gemessen wurden (siehe Kapitel 7.2). Da mit dieser Methode mitunter höhere Gehalte als mit dem in der Düngemittelverordnung vorgeschriebenen Königswasserauszug ermittelt werden, sind die betreffenden Daten nur eingeschränkt vergleichbar (siehe Kapitel 9.2).

Abbildung 17: Mittlere Elementgehalte aller Anlagen im Vergleich (Ca, Si, Fe)

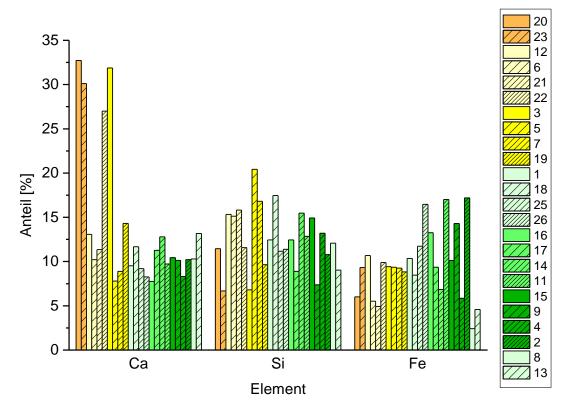


Abbildung 18: Mittlere Elementgehalte aller Anlagen im Vergleich (P, Al, S)

Abbildung 19: Mittlere Elementgehalte aller Anlagen im Vergleich (Mg, K, Na)

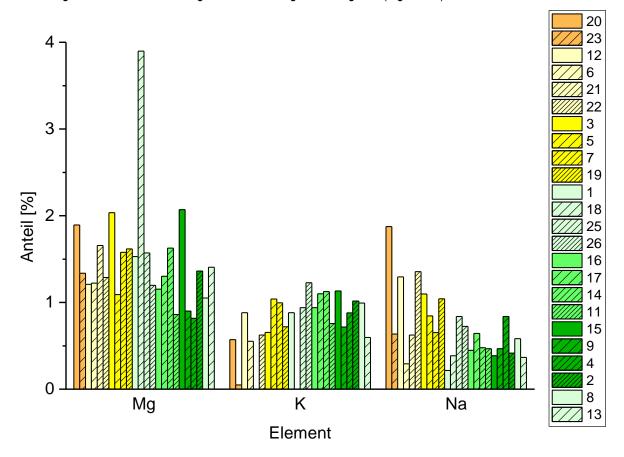
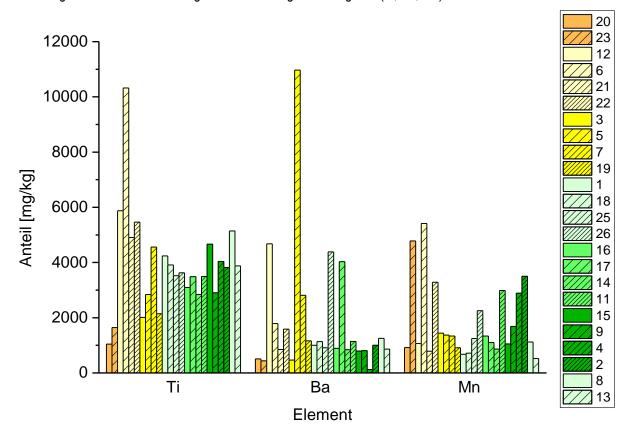



Abbildung 20: Mittlere Elementgehalte aller Anlagen im Vergleich (Ti, Ba, Mn)

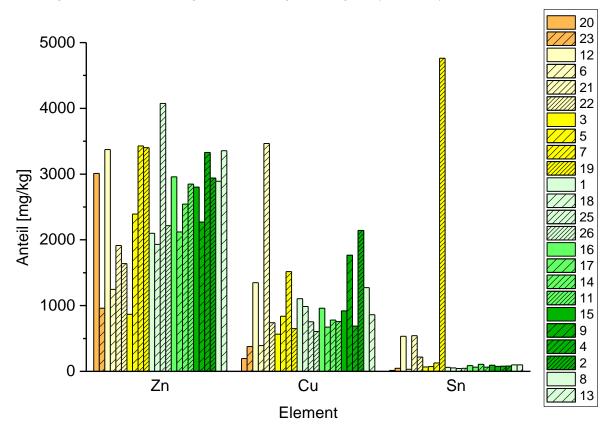


Abbildung 22: Mittlere Elementgehalte aller Anlagen im Vergleich (Sr, V, Cr), zusätzlich eingezeichnet der Wert zur Kennzeichnungspflicht für Cr nach Düngemittelverordnung

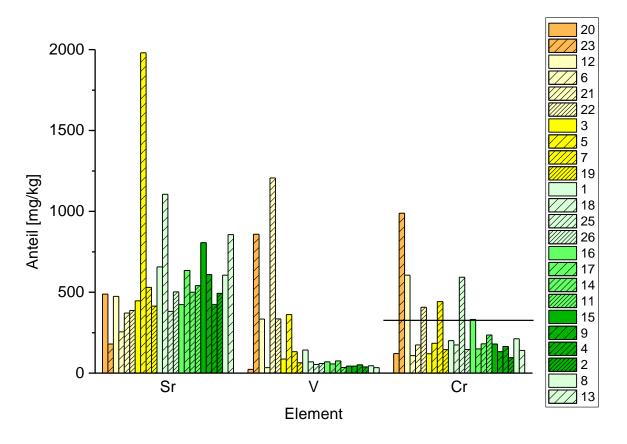


Abbildung 23: Mittlere Elementgehalte aller Anlagen im Vergleich (Zr, Ni, Pb), zusätzlich eingezeichnet die Grenzwerte für Ni und Pb nach Düngemittelverordnung

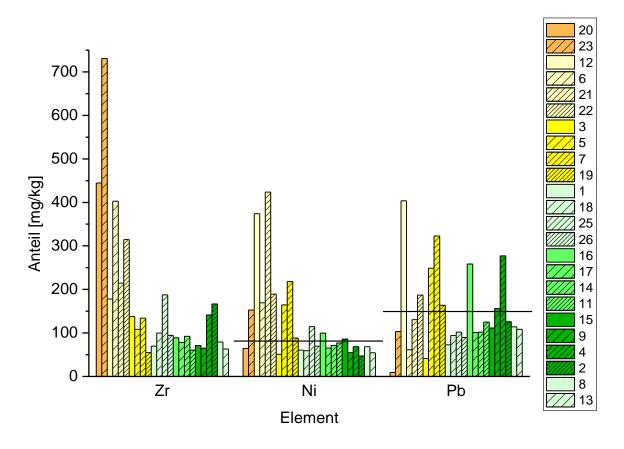


Abbildung 24: Mittlere Elementgehalte aller Anlagen im Vergleich (Nb, Sb, Mo)

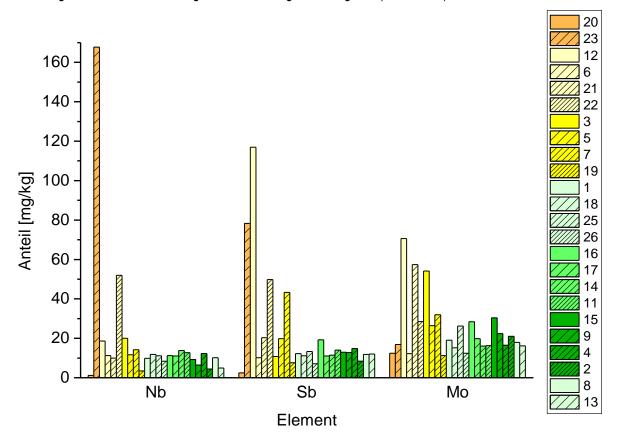


Abbildung 25: Mittlere Elementgehalte aller Anlagen im Vergleich (Co, As, Ag), zusätzlich eingezeichnet der Grenzwert für As nach Düngemittelverordnung

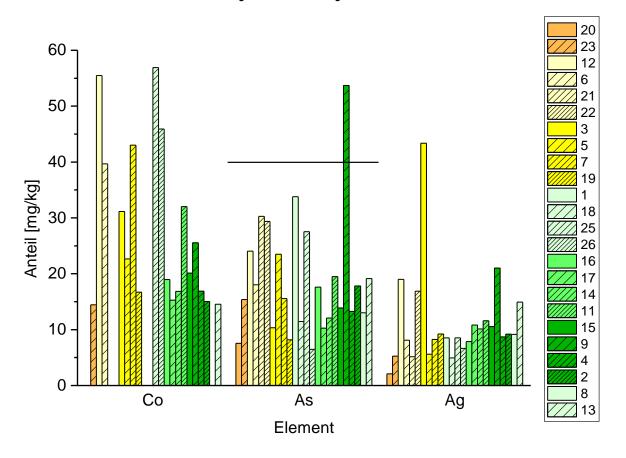


Abbildung 26: Mittlere Elementgehalte aller Anlagen im Vergleich (W, La, Ce)

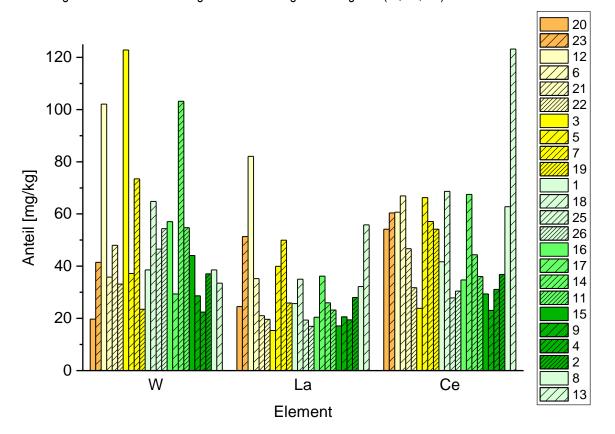


Abbildung 27: Mittlere Elementgehalte aller Anlagen im Vergleich (Nd, Y, Sc)

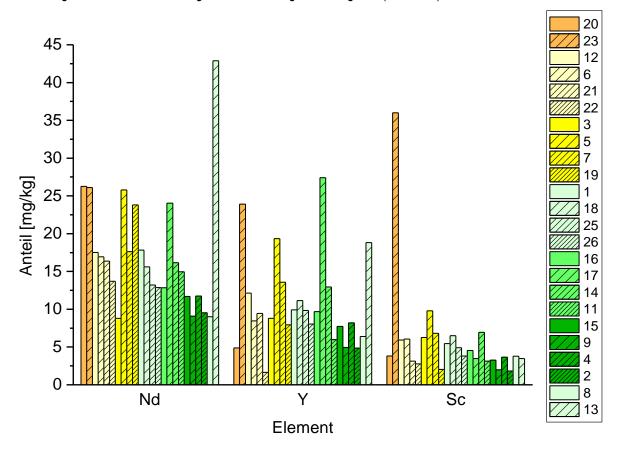


Abbildung 28: Mittlere Elementgehalte aller Anlagen im Vergleich (Ta, Th, U)

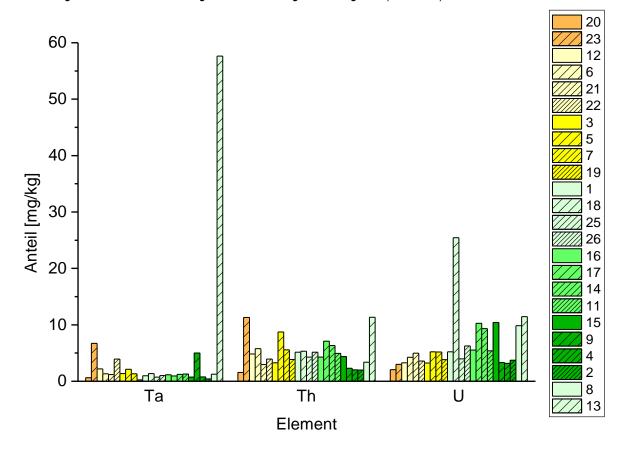


Abbildung 29: Mittlere Elementgehalte aller Anlagen im Vergleich (Ga, Ge, Hf)

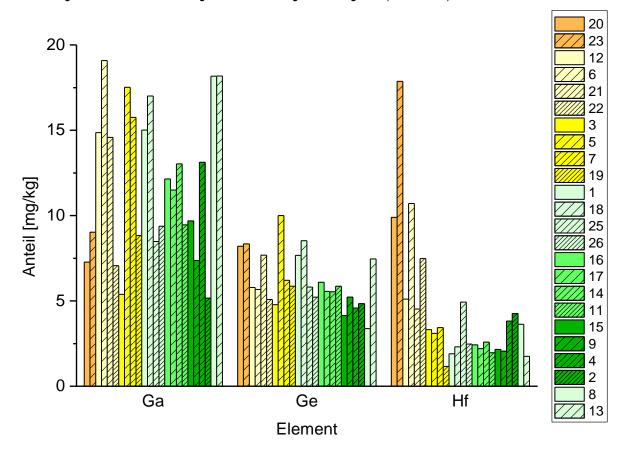


Abbildung 30: Mittlere Elementgehalte aller Anlagen im Vergleich (Pr, Sm, Gd)

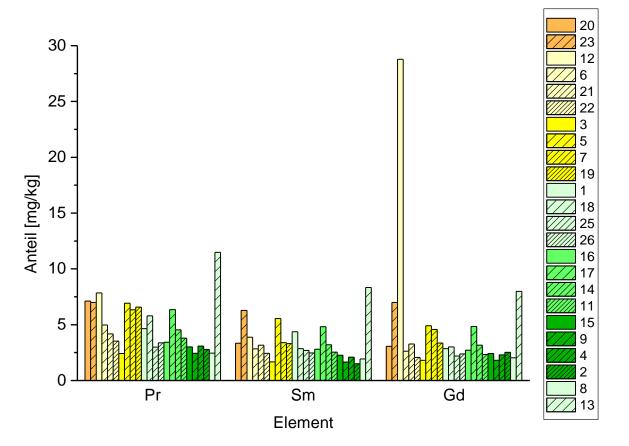


Abbildung 31: Mittlere Elementgehalte aller Anlagen im Vergleich (Dy, Er, Yb)

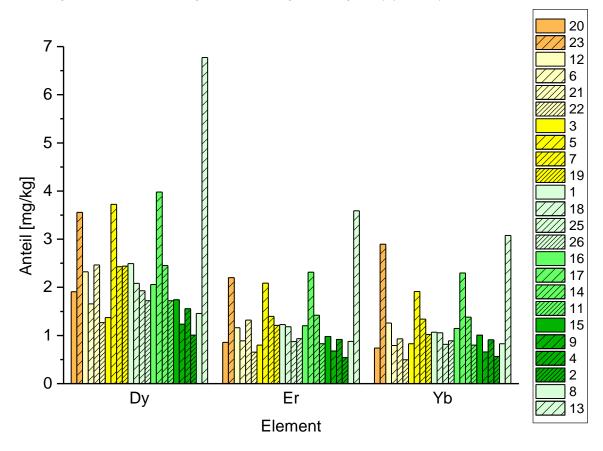


Abbildung 32: Mittlere Elementgehalte aller Anlagen im Vergleich (Cd, Se, Au), zusätzlich eingezeichnet der Grenzwert für Cd bei 12 % P₂O₅ nach Düngemittelverordnung

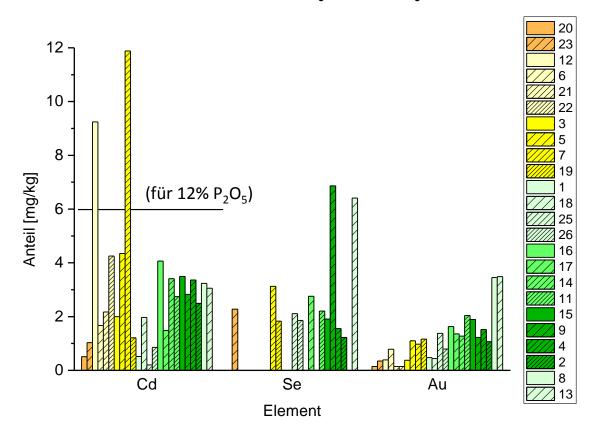


Abbildung 33: Mittlere Elementgehalte aller Anlagen im Vergleich (Hg, Eu, Tb)

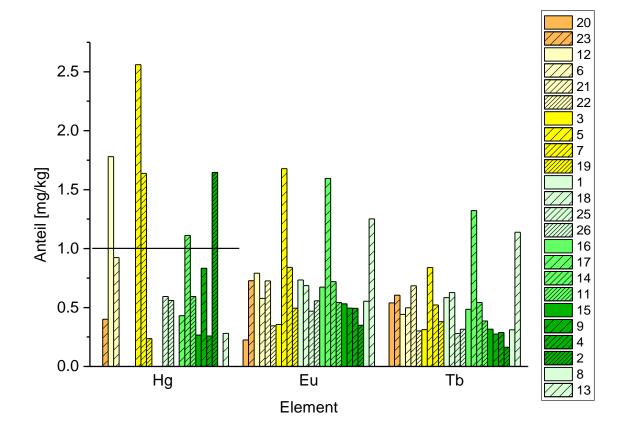


Abbildung 34: Mittlere Elementgehalte aller Anlagen im Vergleich (Ho, Tm, Lu)

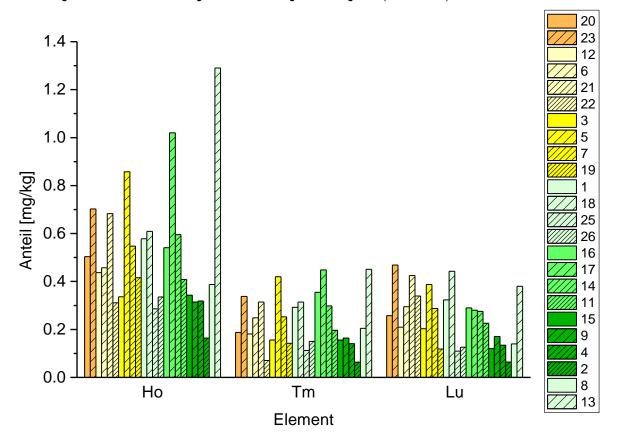
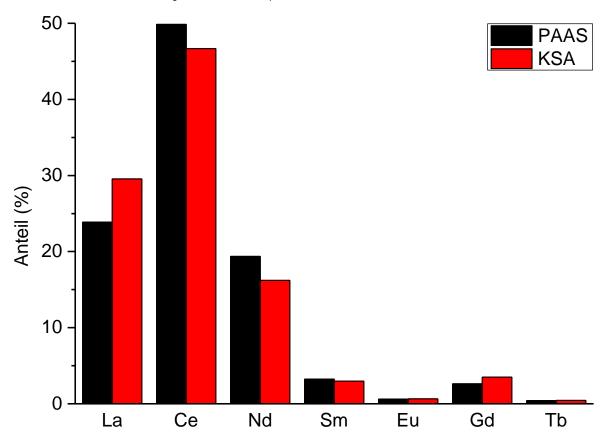



Abbildung 35: Verteilung der Seltenen Erden in Klärschlammaschen im Vergleich zum geogenen Hintergrund (PAAS, Post archean Australian shale, Vergleichswerte nach (Bau et al., 1996); KSA, Klärschlammasche, Mittelwerte aller gemessen Proben)

Um zu prüfen, ob die beobachteten Konzentrationen an seltenen Erden anthropogenen Ursprungs sind, wurde die Verteilung der bedeutenderen Seltenen Erden in den untersuchten Klärschlammaschen bestimmt und der natürlichen Verteilung in der Erdkruste gegenüber gestellt (Abbildung 35). Als Referenz wurde die Verteilung in der post archean Australian shale (PAAS) gewählt, die die natürliche Verteilung der seltenen Erden in der Erdkruste gut beschreibt (Bau et al., 1996). Beide Verteilungen stimmen gut überein, so dass von einigen bereits oben diskutierten Ausnahmen abgesehen (z.B. Gd in Anlage 12, Abbildung 30), der anthropogene Einfluss auf die Verteilung der seltenen Erden als gering eingeschätzt wird.

Die Konzentrationen ausgewählter seltener Erden in den Klärschlammaschen sowie die Gesamtsumme sind in Tabelle 15 dargestellt. Die Mittelwerte liegen im Bereich der Hintergrundwerte für Böden und Gesteine (Hu et al., 2006), so dass auch hier der anthropogene Einfluss als gering eingeschätzt wird.

Tabelle 15: Konzentrationen an seltenen Erden in Klärschlammaschen

Element	Min	Max	Ø	Median
La	9,8	269	32,0	25,5
Се	15,7	169	49,2	42,8
Nd	4,7	60,9	17,2	15,6
ΣREE	45,3	454	136	117

9.4 Thermische Analytik

Im Folgenden werden die Ergebnisse der thermischen Analytik zusammengefasst und diskutiert. Die Einzeldaten finden sich im Anhang (11.4, Tabelle 171).

Der Wassergehalt der Aschen lag im Allgemeinen bei weniger als 1 %. In drei Fällen wurden die Proben feucht angeliefert (Anlagen 6, 13, 19; 20-50 %), da die Aschen dort betriebsbedingt feucht aufgefangen werden.

Tabelle 16 zeigt Glühverlust und TOC der Aschen aus Wirbelschichtanlagen. Beide Werte liegen im Mittel bei unter 1 %, die Aschen sind im Allgemeinen sehr gut ausgebrannt und weisen nur einen geringen Restkohlenstoffgehalt auf. Einige Proben zeigen jedoch hohe Werte für Glühverlust und TOC. Dabei treten auch merkliche Unterschiede zwischen TOC und Glühverlust auf, die vermutlich auf die unterschiedlichen Messparameter zurückzuführen sind (siehe 7.1). Darüber hinaus war bei einigen Proben eine Massezunahme beim Glühverlust zu beobachten. Um diese Ergebnisse bewerten zu können, wurden ausgewählte Proben mittels Differenz-Thermoanalyse (DTA) untersucht. Damit lässt sich die Masseänderung einer Probe bei Änderung der Temperatur detailliert beobachten. Abbildung 36 zeigt einen typischen Verlauf der Massenänderung einer Ascheprobe mit geringem Kohlenstoffgehalt. Die grüne Kurve weist nur wenige flache Stufen auf, die auf nur geringe Masseverluste bei den entsprechenden Temperaturen hindeuten. Vermutlich handelt es sich um restliches Wasser (bei ca. 150 °C), organische Verbindungen (ca. 500 °C) sowie Ruß oder andere kohlenstoffhaltige Verbrennungsrückstände (bei größer 600 °C). Insgesamt deutet die Messung wie schon die geringen Werte für Glühverlust und TOC, darauf hin, dass die Mehrzahl der Aschen aus der Wirbelschichtfeuerung sehr gut ausgebrannt sind und nur noch wenige organische oder andere kohlenstoffhaltige Verbindungen in den Aschen vorliegen. Abbildung 37 zeigt einen der Ausreißer mit stärkeren Masseverlusten. Die Temperaturbereiche der Stufen sind ähnlich und geben einen Hinweis, woher die in einigen Fällen beobachteten Unterschiede von Glühverlust und TOC herrühren. Da der Glühverlust bei 550 °C bestimmt wird, kann mit dieser Methode die Stufe bei >600 °C (das vermutliche Abrauchen von Ruß) nicht erfasst werden. Mit der TOC Bestimmung bei 1100 °C ist dies jedoch möglich. Abbildung 38 zeigt einen Massezuwachs bei etwa 550-600 °C. Das korreliert mit dem beobachteten negativen Glühverlust. Dieser Zuwachs ist möglicherweise auf Oxidationsprozesse von nicht verbranntem Material zurückzuführen. Da im weiteren Verlauf über 600 °C die Masse deutlich abnimmt, kann dieser zwischenzeitliche Zuwachs mit der TOC nicht beobachtet werden.

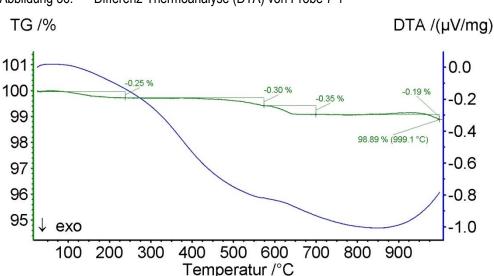


Abbildung 36: Differenz-Thermoanalyse (DTA) von Probe 7-1

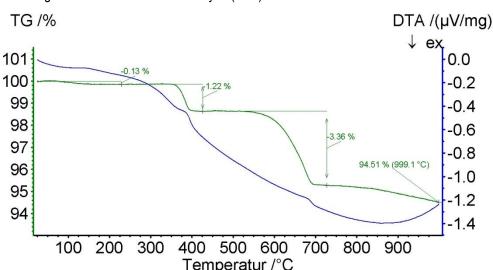


Abbildung 37: Differenz-Thermoanalyse (DTA) von Probe 3-2

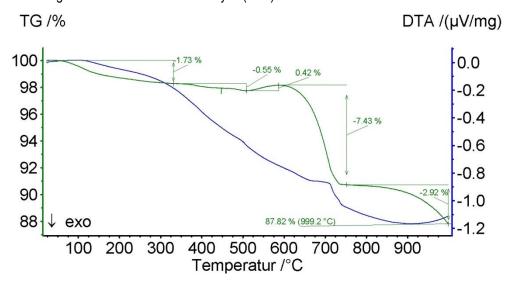


Tabelle 16: Glühverlust und Gesamt organischer Kohlenstoff (TOC) von Aschen aus Wirbelschichtanlagen (183 Proben aus 18 Anlagen)

%	Min	Max	Ø	Median
Glühverlust	-4,1	8,7	0,7	0,4
тос	0,02	3,6	0,5	0,2

Für die Aschen aus der Etagenfeuerung zeigt sich hinsichtlich der thermischen Analytik ein mit den Wirbelschichtaschen vergleichbares Bild (Tabelle 17). Die Aschen der Wirbelschichtvergasungsanlagen hingegen weisen deutlich höhere Werte für Glühverlust und TOC von bis zu über 10 % auf (Tabelle 18). Das deutet darauf hin, dass die Aschen noch erhebliche Anteile von organischem Kohlenstoff sowie vermutlich Ruß enthalten, was auf die Art der thermischen Behandlung (Vergasung) zurückzuführen ist. Diese Anlagen sind auf die Produktion von Synthesegas optimiert, wobei der Kohlenstoff im Klärschlamm prozessbedingt nicht vollständig umgesetzt wird. Aschen aus der Rostfeuerung (Tabelle 19) weisen im Vergleich zu Wirbelschichtaschen ebenfalls höhere Werte für Glühverlust und TOC auf, was auf eine weniger vollständige Verbrennung hindeutet. Weiterhin lag eine Einzelprobe der einzigen Pyrobuster-

Anlage vor (18-1). Diese wies mit einem Glühverlust von 0,9 % und einem TOC von 1,3 % niedrige und mit den Aschen der Wirbelschichtfeuerung vergleichbare Werte auf.

Tabelle 17: Glühverlust und gesamt organischer Kohlenstoff (TOC) von Aschen aus Etagenfeuerungsanlagen (24 Proben aus 2 Anlagen)

%	Min	Max	Ø	Median
Glühverlust	0,5	1,1	0,8	0,8
TOC	0,03	1,3	0,6	0,5

Tabelle 18: Glühverlust und gesamt organischer Kohlenstoff (TOC) von Aschen aus Wirbelschichtvergasungsanlagen (7 Proben aus 2 Anlagen)

%	Min	Max	Ø	Median
Glühverlust	3,3	7,7	5,5	5,4
TOC	6,5	11,5	8,0	7,1

Tabelle 19: Glühverlust und gesamt organischer Kohlenstoff (TOC) von Aschen aus Rostfeuerungsanlagen (30 Proben aus 2 Anlagen)

%	Min	Max	Ø	Median
Glühverlust	0,7	13,1	4,8	3,8
TOC	0,4	8,9	5,3	5,7

9.5 Einzelergebnisse

Die Einzelergebnisse für Elementgehalte, Wassergehalt und Glühverlust für die einzelnen beprobten Anlagen sind im Anhang aufgeführt (Anhang 11.3).

9.6 Wertstoffpotentiale

Die Rückgewinnungspotentiale wurden aus den Mittelwerten bzw. den Medianen aller Proben der jeweiligen Anlage und dem entsprechenden Ascheaufkommen berechnet. Die Ergebnisse sind in Tabelle 20 angegeben. Darin sind zunächst die Hauptelemente (Al-Ti) und dann die weiteren Elemente, aufsteigend sortiert nach der Ordnungszahl.

Tabelle 20: Jährliche Rückgewinnungspotentiale aus deutschen Klärschlammaschen

Element	Rückgewinnungspotential nach MW [t/a]	Rückgewinnungspotential nach Median [t/a]
Asche [t/a]	300.091	300.091
Al	14.999	15.099
Ca	42.669	42.533
Fe	29.049	28.843
K	2.227	2.250
Mg	4.061	4.279
Na	2.416	2.414

Element	Rückgewinnungspotential nach MW [t/a]	Rückgewinnungspotential nach Median [t/a]
Р	18.812	18.669
S	6.028	5.410
Si	38.637	39.120
Ti	1.264	1.296
Sc	2,0	2,0
٧	96,0	89,4
Cr	107,3	102,6
Mn	531,1	529,9
Co	7,2	6,6
Ni	58,0	56,3
Cu	395,3	398,8
Zn	763,0	749,5
Ga	3,6	3,6
Ge	1,9	1,8
As	6,7	6,5
Se	0,5	0,5
Sr	165,8	168,2
Υ	3,6	3,6
Zr	58,2	57,6
Nb	8,0	7,4
Мо	10,5	10,3
Ag	3,6	3,6
Cd	1,4	1,2
Sn	87,2	80,2
Sb	12,6	10,8
Ва	748,6	764,2
La	11,9	10,5
Се	15,3	14,7
Pr	1,6,	1,5
Nd	5,3	5,2
Sm	1,1	1,0
Eu	0,2	0,2
Gd	2,3	2,2
Tb	0,2	0,2
Dy	0,7	0,7
Но	0,2	0,2
Er	0,4	0,4
Tm	0,1	0,1
Yb	0,4	0,4
Lu	0,1	0,1

Element	Rückgewinnungspotential nach MW [t/a]	Rückgewinnungspotential nach Median [t/a]
Hf	1,5	1,5
Та	1,1	1,0
W	16,5	15,3
Au	0,3	0,2
Hg	0,3	0,2
Pb	62,0	60,7
Th	1,6	1,5
U	1,6	1,5

Für die Platingruppenelemente lässt sich aufgrund der stichprobenartigen Analysen nur eine grobe Schätzung zum Wertstoffpotential angeben. Untersucht wurden Aschen von 19 Anlagen, bei denen 247.238 t Klärschlammasche pro Jahr anfällt (Daten für 2011). Mit den jeweils gemessenen Mittelwerten ergibt sich daraus eine Menge von 4,1 kg Rhodium, 56,0 kg Palladium und 31,9 kg Platin pro Jahr.

Tabelle 21 zeigt das Wertstoffpotential für ausgewählte kritische Rohstoffe im Vergleich mit den jährlichen Importen. Zu sehen ist, dass die Mengen der in der Klärschlammasche vorliegenden Rohstoffe gering sind im Vergleich mit dem jeweiligen Bedarf. Es ist davon auszugehen, dass eine ausschließliche Rückgewinnung dieser Rohstoffe aus den Klärschlammaschen nicht wirtschaftlich wäre. Möglicherweise sind jedoch Rückgewinnungsstrategien in Kombination mit der Phosphorrückgewinnung sinnvoll. Denkbar sind auch kombinierte Ansätze zur Wertstoffrückgewinnung und Schadstoffentfrachtung, falls Aschen vor der Verwendung als Düngemittel bearbeitet werden müssen, um die Grenzwerte der Düngemittelverordnung zu erreichen. In Einzelfällen, insbesondere bei Klärschlammaschen aus industriellen Prozessen, kann aufgrund einzelner hoher Gehalte eine direkte Wertstoffrückgewinnung sinnvoll sein. Das könnte z.B. für die Aschen der Anlage 19 mit den sehr hohen Sn-Gehalten zutreffen (Abbildung 21), insbesondere aufgrund des mit dem Zinn vergesellschafteten Indiums. So wird die Indiummenge vom Betreiber auf über 1 t/a geschätzt, was bei einer Indium-Weltjahresproduktion von knapp 600 t einen relevanten Stoffstrom darstellt.

Tabelle 21: Wertstoffpotential für kritische Rohstoffe im Vergleich mit Importen

Rohstoff - CRM 14	Menge [t/a]	Import 2011 [t] (BGR 2013)
Mg	4.061	520.546 (Magnesit)
Ga	3,6	62 (Ga, In, TI)
Ge	1,9	11,0
Nb	8,0	753 (Nb, Ta, Re, ohne Ferroniob)
Sb	12,6	447 (ohne Oxide)
Seltene Erden	45,2	1.105 (ohne SE-Verbindungen)

Für Phosphor ergibt sich ein jährliches Rückgewinnungspotential von knapp 19.000 t. Das entspricht etwa 12,6 % der jährlich in Deutschland über mineralischen Dünger eingesetzten Phosphormenge (siehe Kapitel 1). Tabelle 22 zeigt die Phosphorgehalte in den Klärschlammaschen, aufgeschlüsselt nach der Herkunft des Klärschlamms. Erwartungsgemäß liegen die Konzentrationen in Aschen aus rein kommunalen Klärschlämmen am höchsten und in

solchen aus rein industriellen Schlämmen am niedrigsten. Daraus ergibt sich das in Tabelle 23 dargestellte herkunftsabhängige Phosphorrückgewinnungspotential. Obwohl die Aschen aus gemischt kommunalen und industriellen Schlämmen über 50 % der Aschemenge ausmachen, tragen sie aufgrund des geringeren Phosphorgehaltes weniger als 40 % zur gesamten Phosphormenge bei. Phosphor aus industriellen Klärschlämmen spielt mit weniger als 600 t/a nur eine untergeordnete Rolle, während die Aschen aus kommunalen Quellen fast 11.000 t/a Phosphor enthalten. Damit sind diese Aschen am attraktivsten für eine mögliche Rückgewinnung. Das gilt insbesondere, weil davon auszugehen ist, dass die Konzentrationen an Schwermetallen in den rein kommunalen Aschen geringer sind und diese somit eher für eine Verwertung als Düngemittel in Frage kommen (siehe auch 9.2).

Tabelle 22: Herkunftsabhängige Phosphorgehalte in Klärschlammaschen

[%]	Min	Max	Ø	Median
Р	1,5	13,1	7,3	7,9
P (komm.)	3,6	13,1	9,0	9,1
P (komm./ind.)	2,8	7,5	4,9	4,8
P (ind.)	1,5	3,8	2,3	2,3

Tabelle 23: Herkunftsabhängiges Phosphorrückgewinnungspotential aus Klärschlammaschen

	Asche [t/a]	P [t/a]
Gesamt	300.091	18.812
komm.	122.226	10.939
komm./ind.	155.865	7.319
ind.	22.000	554

In Abbildung 39 bis Abbildung 41 sind die Ascheaufkommen, Phosphorgehalte und die daraus resultierenden Phosphormengen pro Jahr angegeben. In allen Grafiken sind die Klärschlammverbrennungsanlagen dabei absteigend nach der jeweiligen Aschemenge pro Jahr angeordnet. Zu sehen ist, dass in kommunalen Anlagen mit den höchsten Phosphorgehalten häufig nur geringe Aschemengen anfallen, woraus dann nur geringe absolute Phosphormengen resultieren, so z.B. für die Anlagen 11, 4, 26 und 1. Andererseits zeigt sich, dass die höchste Phosphormenge mit über 2.000 t/a in Anlage 7 trotz eines relativ geringen Phosphorgehalltes von 6 % anfällt. Diese Punkte sind bei einer eventuellen Phosphorrückgewinnung zu berücksichtigen, um die Wirtschaftlichkeit zu gewährleisten bzw. nicht zu gefährden.

Abbildung 39: Ascheaufkommen der KS-Monoverbrennungsanlagen sortiert nach anfallender Aschemenge [t/a]

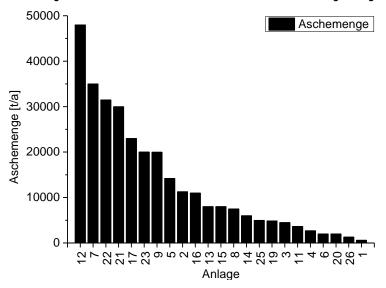


Abbildung 40: Phosphorgehalt in Aschen der KS-Monoverbrennungsanlagen [%]

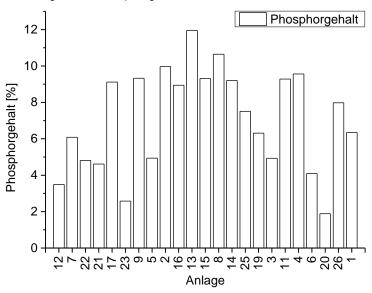
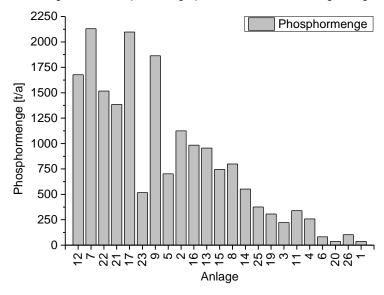



Abbildung 41: Phosphormenge pro KS-Monoverbrennungsanlagen [t/a]

9.7 Massenströme ausgewählter Anlagen

Um mögliche Einflüsse unterschiedlicher Verbrennungstechniken auf die Massenströme der Elemente im Verarbeitungsprozess zu identifizieren, wurden Input- und Outputströme von drei Anlagen beprobt (2 und 14, beides Wirbelschichtfeuerung sowie 17, Rostfeuerung). Detaillierte Daten zu den Berechnungsgrundlagen, den betreffenden Konzentrationen und Frachten finden sich im Anhang (11.5). In den nachfolgenden Tabellen sind ausgewählte Elemente mit ihren jeweiligen Anteilen in verschiedenen Outputströmen angegeben. Der Inputstrom - in allen Fällen getrockneter Klärschlamm - wird dabei auf 100 % gesetzt. Generell ist festzuhalten, dass diese Ergebnisse nur grobe Näherungen darstellen können, da jeweils nur ein Datenpunkt erfasst wird, der mit gemittelten Werten für die jeweiligen Stoffstrommengen in Bezug gesetzt wird. Eine komplette Massenbilanz zu erstellen, ist somit nicht möglich. Die Ergebnisse können jedoch einen Hinweis darauf geben, ob bestimmte Elemente in einem Outputstrom angereichert werden.

Tabelle 24 zeigt die Elementverteilung für Anlage 2 auf Gipsschlamm aus der Rauchgasreinigung und die Klärschlammasche. Dabei wird deutlich, dass sich die Anteile der einzelnen Elemente zumeist nicht auf 100 % addieren, obwohl es sich um die zwei einzigen relevanten Outputströme der Anlage handelt. Hg ist als einziges Element signifikant im Gipsschlamm angereichert. Weitere Aussagen lassen sich aufgrund der hohen Ungenauigkeiten nicht treffen.

Tabelle 24:	Prozentualer Anteil	ausgewählter Elemente in	Outputströmen der Anlage 2
		adogonamico Elomonico m	o alpatoti om aoi 7 tinago 2

Element	Anteil MF2-2 (Gipsschlamm) [%]	Anteil MF 2-4 (Klärschlammasche) [%]
Cr	0,6	41,8
Ni	1,6	55,9
Cu	0,1	96,1
Zn	0,2	79,5
Cd	1,2	37,0
Hg	5,1	31,3
Pb	0,3	59,1

In Tabelle 25 sind die Ergebnisse für die Anlage 14 dargestellt. Die Outputströme sind hier die Klärschlammasche und das Adsorbens aus der Rauchgasreinigung. Da hier zwei Proben aus dem Inputstrom genommen wurden (Klärschlamm nach dem Trockner und Klärschlamm nach der Zentrifuge), sind beide Outputströme unabhängig für beide Trocknungsstufen berechnet. Es zeigt sich ein zur Anlage 2 vergleichbares Bild, mit der einzigen nennenswerten Anreicherung für Hg. Insgesamt geht hier die Massenbilanz besser auf, die Summen der Anteile liegen zumeist näher bei 100 %.

Tabelle 25: Prozentualer Anteil ausgewählter Elemente in Outputströmen der Anlage 14

Element	Anteil MF 14-2 (Adsorbens, Trockner) [%]	Anteil MF 14-1 (Klärschlammasche,Trockner) [%]	Anteil MF 14-2 (Adsorbens, Zentrifuge) [%]	Anteil MF 14-1 (Klärschlammasche, Zentrifuge) [%]
Cr	0,08	86,1	0,07	78,2
Ni	0,08	134,5	0,06	102,1
Cu	0,01	100,4	0,01	89,2

Element	Anteil MF 14-2 (Adsorbens, Trockner) [%]	Anteil MF 14-1 (Klärschlammasche,Trockner) [%]	Anteil MF 14-2 (Adsorbens, Zentrifuge) [%]	Anteil MF 14-1 (Klärschlammasche, Zentrifuge) [%]
Zn	0,00	75,7	0,00	61,3
Cd	0,01	103,7	0,01	91,8
Hg	11,50	27,6	8,25	19,8
Pb	0,05	94,4	0,04	72,5

Tabelle 26 zeigt die Ergebnisse für die Rostfeuerungsanlage 17. Outputströme sind die Filterasche aus der Rauchgasreinigung und die Rostasche, einmal frisch aus dem Ofen und eine abgelagerte Asche. Die Massenbilanz geht auch hier nicht vollständig auf, allerdings sind hier die Wiederfindungen zumeist zu hoch. Neben Hg scheint hier auch Cd in der Filterasche angereichert zu sein. Umfassende Schlussfolgerungen sind aufgrund der hohen Unsicherheiten nicht zu ziehen, es scheint sich jedoch anzudeuten, dass auch die Rostfeuerung mit der Ausnahme von Cd, keine Schwermetalle in der Filterasche anreichert.

Tabelle 26: Prozentualer Anteil ausgewählter Elemente in Outputströmen der Anlage 17

Element	Anteil MF 17-2 (Filterasche) [%]	Anteil 17-16 (Rostasche) [%]	Anteil MF 17-1 (Rostasche, frisch) [%]
Cr	3,8	124,8	134,1
Ni	3,3	130,6	119,4
Cu	3,0	110,1	134,1
Zn	3,1	48,4	70,1
Cd	42,1	101,0	57,9
Hg	79,2	33,9	77,1
Pb	9,5	108,5	107,9

9.8 Phosphorverfügbarkeit

Der in neutralem Ammoniumcitrat lösliche Phosphoranteil wurde in ausgewählten Proben bestimmt. In Tabelle 27 sind der Phosphorgehalt, die entsprechende Löslichkeit und der daraus resultierende Anteil an löslichem Phosphor dargestellt. Die Werte liegen im Mittel bei etwa 30 % Phosphorlöslichkeit, wobei die Bandbreite jedoch von knapp 10 bis über 80 % reicht. Diese höchsten Werte wurden in industriellen Aschen mit einem sehr geringen Gesamtgehalt an Phosphor von etwa 2 % gemessen. Der Grund hierfür ist unklar. Insgesamt zeigt der große Unterschied von Mittelwert und Median von über 5 Prozentpunkten eine hohe Streuung der Messwerte an. Festzuhalten bleibt, dass der Phosphor auch aus unbehandelten Klärschlammaschen eine Löslichkeit aufweist, die allerdings weit unter den Anforderungen an Phosphordüngemittel liegt. Um die tatsächliche Bioverfügbarkeit des Phosphors bestimmen zu können, sind weitere agrarwissenschaftliche Experimente wie Feld- und Topfversuche erforderlich.

Tabelle 27: Neutralammoncitratlöslichkeit von Phosphor aus Klärschlammaschen

Probennummer	Pges [%]	MW Pnac [%]	Pnac/Pges [%]
1-1	6,5	2,91	44,6

Probennummer	Pges [%]	MW Pnac [%]	Pnac/Pges [%]
1-3	6,3	2,93	46,4
2-1	11,2	2,38	21,3
3-1	5,5	1,46	26,8
3-7	5,3	2,94	55,8
5-7	4,7	2,02	42,7
6-1	4,0	0,93	23,1
6-7	4,0	0,98	24,4
7-1	5,4	1,82	33,7
7-4	6,1	2,34	38,5
7-7	6,7	1,61	23,9
7-10	6,5	1,88	28,7
11-1	10,4	2,65	25,5
11-2	9,6	2,91	30,3
11-8	9,0	1,66	18,4
12-6	3,2	0,81	25,6
13-1	13,1	2,77	21,2
13-1	13,1	3,02	23,1
13-9	11,7	1,27	10,9
13-9	11,7	2,70	23,1
14-7	8,9	2,09	23,5
15-1	9,6	3,53	36,6
15-9	8,2	4,07	50,0
16-8	8,3	0,85	10,2
17-1	10,6	2,68	25,4
17-16	8,5	2,91	34,1
18-1	7,2	2,03	28,0
19-1	7,3	0,70	9,6
20-1	2,2	1,78	82,6
20-5	1,8	1,37	78,2
21-1	4,6	1,01	21,8
22-1	4,9	1,45	29,3
23-1	3,8	0,53	13,9
25-1	8,0	2,95	37,0
25-8	6,9	1,75	25,3
MW			31,2
Median			25,6
Min			9,6
Max			82,6

9.9 Monatliche Verläufe

Zum Identifizieren möglicher jahreszeitlicher Schwankungen sind die Phosphorgehalte der Aschen monatsweise in Abbildung 42 bis Abbildung 45 dargestellt. Während sich bei relativ niedrigen Phosphorgehalten (Abbildung 45) und auch einzelnen Anlagen mit hohen P-Gehalten

(Anlage 2, Abbildung 42) deutliche Schwankungen, aber keine klaren Trends abzeichnen, zeigen insbesondere die phosphorreichen Aschen abnehmende Werte zur Jahresmitte hin. Nachdem etwa zu Jahresbeginn die höchsten Werte erreicht werden, nehmen diese bis zum Tiefstand im Juli und August hin ab.

Für diese beobachteten Trends sind verschiedene Erklärungen denkbar. Eine Möglichkeit wäre ein geringerer Phosphorzulauf in die Kläranlagen in den Sommermonaten durch geänderte Essgewohnheiten oder anderes Freizeitverhalten. Das könnte auch erklären, warum diese Schwankungen besonders bei Aschen auftreten, deren Klärschlämme ausschließlich oder vorwiegend aus kommunalen Quellen stammen. Da diese Hypothese jedoch im Rahmen dieser Arbeit nicht zu überprüfen ist, wird im Folgenden nicht weiter darauf eingegangen.

Weiterhin könnten auch Änderungen im Betriebsablauf der Kläranlage oder der Monoverbrennung diesen Trend verursachen. Hinweise darauf sollten sich in geänderten Zusammensetzungen der Aschen zeigen. Um das zu prüfen, sind in Abbildung 46 bis Abbildung 50 die monatlichen Verläufe der Gehalte an Matrixelementen, aufgeschlüsselt nach den einzelnen Anlagen, dargestellt. Zwischen den Gehalten an Phosphor und Calcium zeigt sich häufig eine positive Korrelation (Anlagen 2 (Abbildung 46); 5, 7, 8 (Abbildung 47); 11 (Abbildung 48); 15 (Abbildung 49); 26 (Abbildung 50) und nur in einem Fall eine negative Korrelation (14 (Abbildung 49)). Damit kann für die meisten Fälle eine Verdünnung des Phosphors durch z.B. verstärkte Kalkzugabe im Betriebsablauf oder ähnliches ausgeschlossen werden. Häufig zeigen sich negative Korrelationen zwischen dem Siliciumgehalt und denen einzelner oder mehrerer Matrixelemente. Dies gilt insbesondere für Anlage 2 (Fe, Ca, P), Anlage 3 (Ca), Anlage 4 (P) (alle Abbildung 46); Anlage 8 (Al, Ca, P) (Abbildung 47); Anlage 13 (Al, Ca) (Abbildung 48); Anlage 15 (P, Fe, Ca), Anlage 17 (Al, Ca) (beide Abbildung 49) sowie die Anlagen 25 (Al) und 26 (Fe) (beide Abbildung 50). Das könnte darauf hindeuten, dass siliciumhaltige Bestandteile über die Schlämme oder im Betriebsablauf in die Asche gelangen und die anderen Matrixelemente verdünnen. Eine mögliche Quelle hierfür könnten Betriebsstoffe wie zum Beispiel Kohle (Si-Gehalt) sein, die in einigen Anlagen mit verbrannt wird. Ein eindeutiger Zusammenhang zum Phosphorgehalt ist jedoch nicht festzustellen.

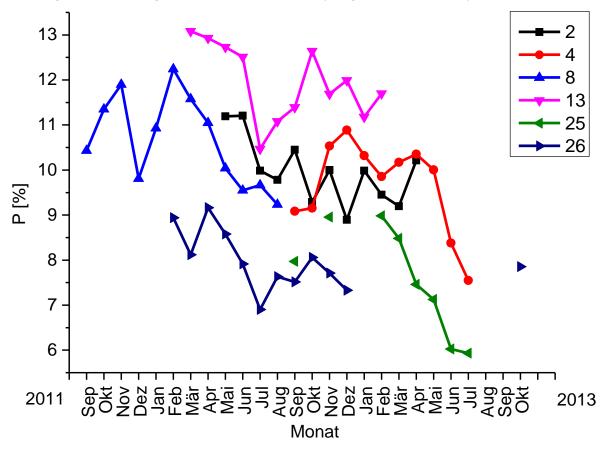


Abbildung 43: Phosphorgehalte im monatlichen Verlauf (Anlagen 11, 15,17)

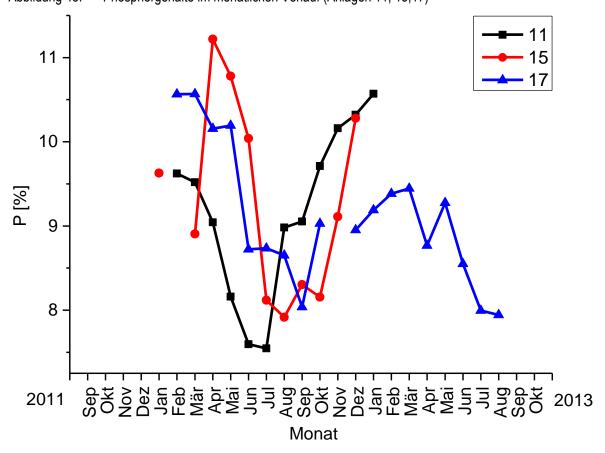


Abbildung 44: Phosphorgehalte im monatlichen Verlauf (Anlagen 9, 14, 16)

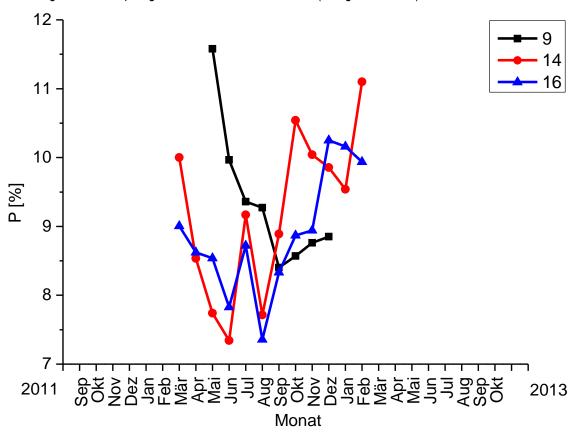


Abbildung 45: Phosphorgehalte im monatlichen Verlauf (Anlagen 1, 3, 5, 6, 7, 12,19, 22)

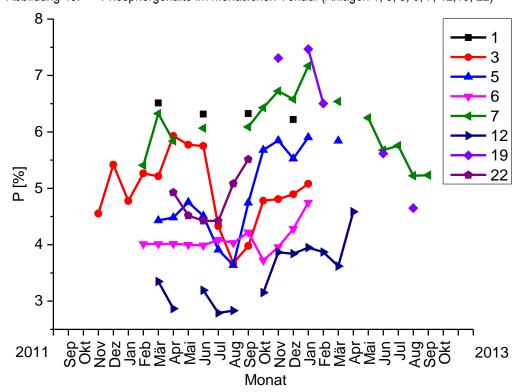


Abbildung 46: Gehalte an Matrixelementen im monatlichen Verlauf (Anlagen 1, 2, 3, 4)

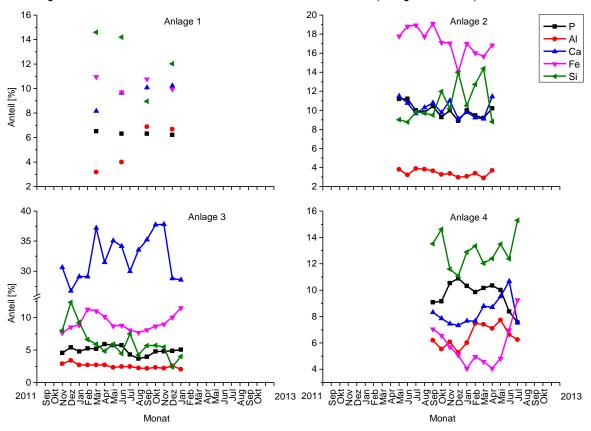


Abbildung 47: Gehalte an Matrixelementen im monatlichen Verlauf (Anlagen 5, 6, 7, 8)

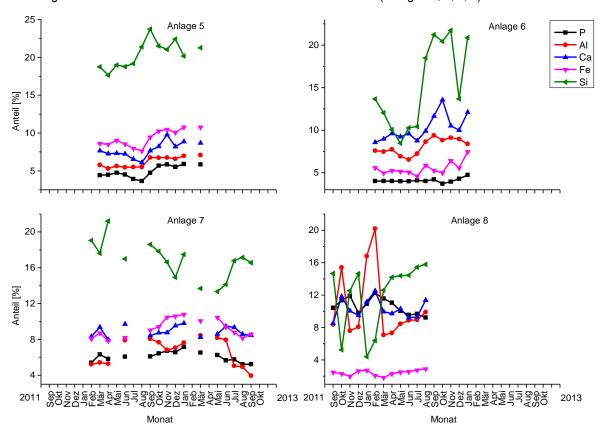


Abbildung 48: Gehalte an Matrixelementen im monatlichen Verlauf (Anlagen 9, 11, 12, 13)

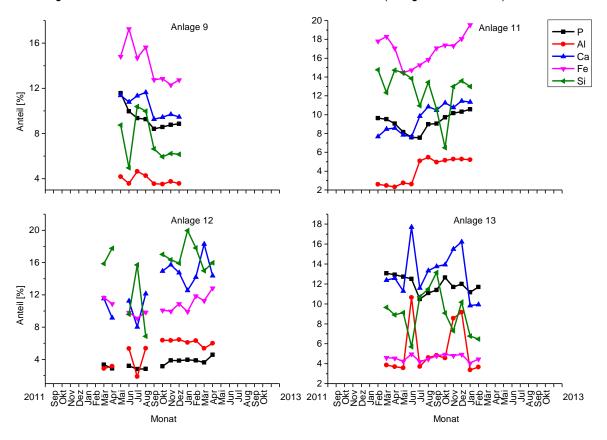
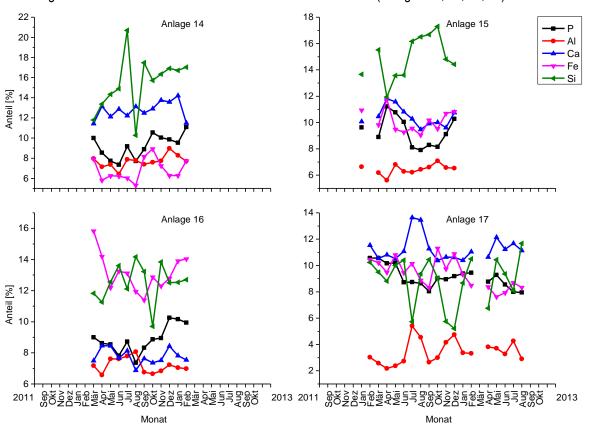



Abbildung 49: Gehalte an Matrixelementen im monatlichen Verlauf (Anlagen 14, 15, 16, 17)

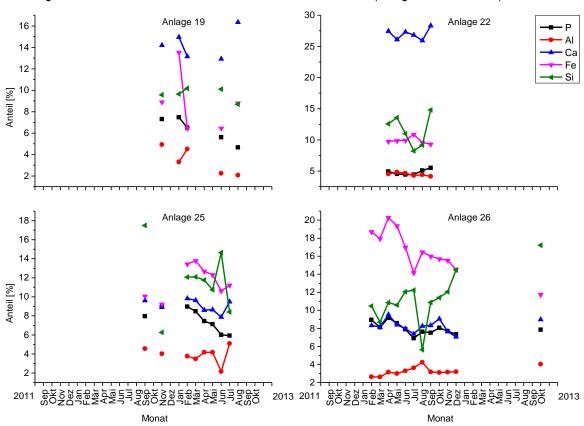


Abbildung 50: Gehalte an Matrixelementen im monatlichen Verlauf (Anlagen 19, 22, 25, 26)

In Abbildung 51bis Abbildung 53 sind die Konzentrationen an Nickel, Blei und Quecksilber in den Aschen der einzelnen Anlagen im monatlichen Verlauf dargestellt. Zusätzlich sind die Grenzwerte der Düngemittelverordnung für diese Elemente eingezeichnet (Ni: 80 mg/kg; Pb: 150 mg/kg; Hg: 1 mg/kg). Bei der Diskussion dieser Werte ist zu bedenken, dass die hier dargestellten Ergebnisse in Aufschlusslösungen nach Perchlorsäureaufschluss gemessen wurden (siehe Kapitel 7.2). Da mit dieser Methode mitunter höhere Gehalte als mit dem in der Düngemittelverordnung vorgeschriebenen Königswasserauszug ermittelt werden, sind die betreffenden Daten nur eingeschränkt vergleichbar (siehe Kapitel 9.2).

In allen Fällen zeigt sich, dass die größten monatlichen Schwankungen bei den Aschen auftreten, die die höchsten Gehalte aufweisen und dass die meisten Aschen über den gesamten zeitlichen Verlauf entweder vollständig ober- oder unterhalb des jeweiligen Grenzwertes liegen. In einigen Fällen jedoch schwanken die Werte um den Grenzwert (Anlage 8, Ni (Abbildung 51); Anlage 9, Pb (Abbildung 52); Anlagen 9 und 14, Hg (Abbildung 53)). Dies ist im Hinblick auf eine mögliche Nutzung bzw. Wiederverwertung der betreffenden Aschen wichtig. Wurde der Entschluss zur Verwertung einer bestimmten Asche anhand einer Stichprobenmessung einer eher schwach belasteten Charge getroffen, so ist es nicht auszuschließen, dass die Grenzwerte im Laufe eines Jahres dennoch überschritten werden. Dies ist bei der Auswahl von Klärschlammaschen zur Verwertung zu bedenken und zu überprüfen.

Abbildung 51: Nickelgehalte im monatlichen Verlauf inklusive des Grenzwertes der Düngemittelverordnung

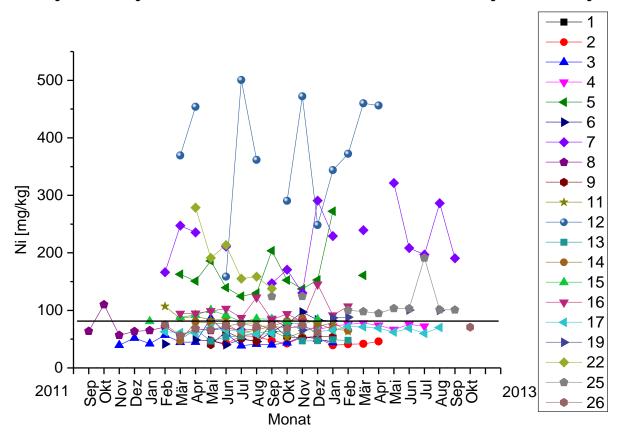
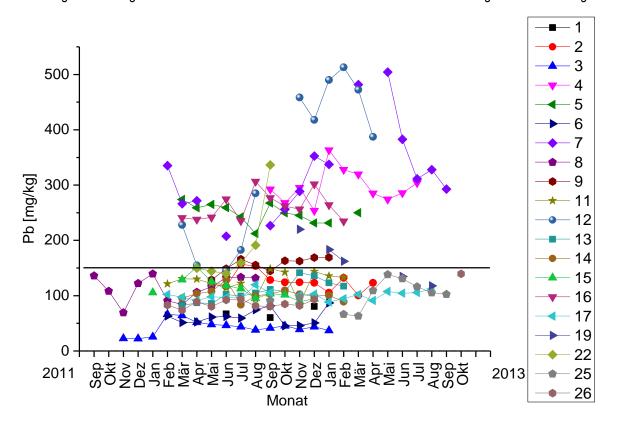



Abbildung 52: Bleigehalte im monatlichen Verlauf inklusive des Grenzwertes der Düngemittelverordnung

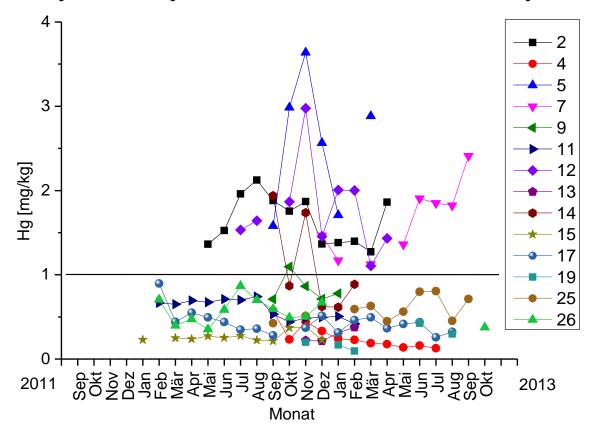


Abbildung 53: Quecksilbergehalte im monatlichen Verlauf inklusive des Grenzwertes der Düngemittelverordnung

9.10 Organische Schadstoffe

Der Gehalt an polycyclischen aromatischen Kohlenwasserstoffen (PAK) wurde an ausgewählten Proben nach Extraktion mit verschiedenen Lösungsmitteln als Summe der 16 EPA-PAK bestimmt. Darüber hinaus wurde ein Screening nach organischen Substanzen, darunter auch Dioxine, durchgeführt. Die Ergebnisse der PAK-Analytik sind Tabelle 28 dargestellt. Die Gehalte an PAK sind insgesamt gering. Auffällig ist, dass die Unterschiede aufgrund der Wahl des Extraktionsmittels größer sind, als die der einzelnen Proben untereinander. Die höheren Werte nach Extraktion mit Acetonitril bzw. Toluol sind im Wesentlichen auf größere Mengen an Naphthalin zurückzuführen.

Tabelle 28: Polycyclische aromatische Kohlenwasserstoffe (Summe 16 EPA-PAK) in Klärschlammaschen in mg/kg

Lösungsmittel	Min	Max	Mittelwert	Median
Aceton	0,001	0,333	0,110	0,040
Acetonitril	0,824	1,527	1,110	1,080
Methanol	0,003	0,054	0,020	0,010
Toluol	1,331	1,885	1,510	1,460

Das allgemeine Screening nach organischen Schadstoffen zeigte eine Vielzahl von verschiedenen Substanzen. Auch hier scheinen die Unterschiede eher von der Wahl des Extraktionsmittels als der Probe abzuhängen. Quantifizierungen waren nicht möglich, die Konzentrationen werden jedoch als gering eingeschätzt. Zu der Vielzahl an gefunden Verbindungen zählen vor allem langkettige Alkane, Alkylalkohole, Amide, Biphenyle und Phthalate. Mit der angewandten Methode konnten in keiner der Proben polychlorierte Dibenzodioxine oder -furane nachgewiesen werden.

Nach den im Rahmen des Vorhabens durchgeführten Untersuchungen wird die Belastung der getesteten Aschen mit organischen Schadstoffen insgesamt als gering beurteilt. Dies korreliert mit den insgesamt beobachteten niedrigen Restkohlenstoffgehalten (siehe Kapitel 9.4), die vermutlich zum großen Teil auf Ruß oder andere kohlenstoffhaltige Verbrennungsrückstände zurückzuführen sind. Es wurden jedoch auch keine Unterschiede zwischen Aschen bzw. Vergasungsrückständen mit erhöhten Restkohlenstoffgehalten und gut ausgebrannten Aschen bezüglich der Belastung mit organischen Schadstoffen gefunden.

9.11 Referenzmaterial

Die Klärschlammaschen wurden im Hinblick auf ihre Eignung als mögliche Referenzmaterialien überprüft. Ausgewählt wurden eine aluminiumreiche sowie eine eisenreiche Klärschlammasche, da diese jeweils eine Asche typischer Zusammensetzung repräsentieren. Diese Aschen wurden in Zusammenarbeit mit der Abteilung 1 der BAM "Analytische Chemie, Referenzmaterialien" charakterisiert (siehe 8.3, Tabelle 5 und Tabelle 6). Der Zertifizierungsprozess dieser beiden Aschen läuft und die potentiellen Referenzmaterialien wurden dem Zertifizierungskomitee bereits vorgestellt. Zurzeit kann noch kein endgültiges Datum zum Abschluss des Prozesses gegeben werden. Es ist jedoch geplant, dass zukünftig Referenz-Klärschlammaschen von der BAM bezogen werden können.

10 Zusammenfassung - Ausblick

Die aktuell in Deutschland anfallenden Klärschlammaschen aus der Monoverbrennung wurden umfassend beprobt und analysiert. Jährlich fallen etwa 300.000 t Klärschlammasche an, die insgesamt mehr als 18.000 t Phosphor enthalten. Das entspricht über 12 % des jährlich für mineralischen Dünger benötigten Phosphors aus Rohphosphaten. Dieser Anteil könnte deutlich erhöht werden, wenn der gesamte in Deutschland anfallende Klärschlamm der Monoverbrennung zugeführt bzw. der Phosphor möglichst vollständig zurückgewonnen würde. Weiterhin kommt in den Aschen eine große Zahl von weiteren Metallen und Rohstoffen vor, deren Rückgewinnungspotential zurzeit allerdings als eher gering eingeschätzt wird. Eine Rückgewinnung könnte jedoch für einzelne Elemente wirtschaftlich sein, da einige Aschen hohe Gehalte an wirtschaftlich interessanten Elementen aufweisen, die auf entsprechende industrielle Prozesse zurückzuführen sind. Weiterhin kann sich eine mit weiterer Behandlung der Asche kombinierte Rohstoffrückgewinnung lohnen, wenn die Klärschlammaschen mit dem Ziel der Phosphorrückgewinnung behandelt werden. Eine Anreicherung von wirtschaftlich interessanten Elementen in Nebenströmen der Phosphorrückgewinnungsverfahren ist denkbar und sollte weiter untersucht werden.

Eine direkte Verwertung der Klärschlammaschen ist nur für etwa ein Drittel der Aschen möglich, da die restlichen zwei Drittel die Grenzwerte der Düngemittelverordnung zumindest teilweise überschreiten. Im Hinblick auf eine direkte Verwertung könnten zunächst die Aschen mit hohen Phosphor- und niedrigen Schwermetallgehalten genutzt werden. Weiterhin sollten Prozesse optimiert werden, um die Schwermetallbelastung der Aschen zu reduzieren. Eine Zusammenarbeit mit den Abwassereinleitern hinsichtlich optimierter Prozesse könnte die Schadstofffracht des Abwasser und damit letztlich auch der Klärschlammasche weiter verringern. Stark belastete, aber mengenmäßig geringe Abfallströme, z.B. aus der Rauchgasreinigung sollten getrennt entsorgt werden. Eingehende Klärschlämme könnten sortenrein nach kommunalen und industriellen Quellen getrennt verbannt werden. Darüber hinaus sollten die Aschen mit geeigneten Verfahren umgesetzt werden, um die Schwermetallgehalte zu reduzieren und die Pflanzenverfügbarkeit des Phosphors zu erhöhen.

Die Löslichkeit des Phosphors aus den Klärschlammaschen in neutralem Ammoniumcitrat beträgt im Mittel etwa 30 %. Dies ist sicherlich ein für Phosphordüngemittel viel zu geringer löslicher Anteil, welcher durch entsprechende Verfahren zur Düngemittelkonfektionierung gesteigert werden muss. Um die Eignung der Aschen als Dünger bewerten zu können, sind weitere agrarwissenschaftliche Experimente, insbesondere Topf- und Feldversuche erforderlich.

Über den Jahresverlauf zeigten sich hauptsächlich Schwankungen im Phosphorgehalt. Zur Jahresmitte hin nahmen die Phosphorgehalte ab und erreichten jeweils zum Jahreswechsel ihr Maximum. Mögliche Gründe dafür sind im Jahresverlauf wechselnde Ernährungsgewohnheiten oder Änderungen im Betriebsablauf der Kläranlagen bzw. der Verbrennungsanlagen. Jahreszeitliche Schwankungen der Schwermetallkonzentrationen sind eher gering ausgeprägt, können aber dazu führen, dass Klärschlammaschen einer Verbrennungsanlage durchaus chargenweise die Grenzwerte nach Düngemittelverordnung überschreiten, während sie im Jahresmittel darunter liegen.

Unterschiede der angewandten thermischen Verfahren und Anlagentypen zeigen sich hauptsächlich im verbleibenden Kohlenstoffgehalt der Aschen. Während dieser bei der am weitesten verbreiteten Technik, der Wirbelschichtverbrennung, mit <1 % sehr niedrig liegt, liegt dieser Wert bei der Wirbelschichtvergasung sowie der Rostfeuerung bei etwa 5 %. Während die erhöhten Restkohlenstoffgehalte der Vergasungsanlagen verfahrensbedingt zu erwarten sind,

wird für die Rostfeuerungsanlagen eine unvollständige Verbrennung festgestellt. Insgesamt wird die Belastung aller untersuchten Aschen mit organischen Schadstoffen als gering eingeschätzt.

Die Probenvorbereitung zur Analytik mittels Perchlorsäureaufschluss ermöglicht gegenüber dem üblicherweise verwendeten Königswasserauszug einen nahezu vollständigen Aufschluss der Probe. Damit können, wie in vergleichenden Messungen mit z.B. der Röntgenfluoreszenzanalytik gezeigt, Elementgehalte bestimmt werden, die den tatsächlichen Gehalten sehr nahe kommen. Dieser Aspekt sollte gegebenenfalls bei der Vorschrift von Analyseverfahren zur Bestimmung von Grenzwerten Berücksichtigung finden.

Die Eignung ausgewählter Aschen als Referenzmaterialien wurde erfolgreich geprüft und der entsprechende Zertifizierungsprozess eingeleitet.

11 Anhänge

11.1 Analyseparameter

Tabelle 29: Messparameter für die Elementanalytik per ICP-OES und ICP-MS

Element	ICP-OES (Wellenlänge)	ICP-MS (Isotop)	Element	ICP-OES (Wellenlänge)	ICP-MS (Isotop)
Al	396,152 (radial)	-	Ag	-	¹⁰⁷ Ag
Ca	318,128 (radial)	-	Cd	-	¹¹¹ Cd
Fe	217,809 (axial)	-	Sn	189,989 (axial)	-
K	766,490 (radial)	-	Sb	-	¹²¹ Sb
Mg	279,079 (radial)	-	Ва	233,527 (radial)	-
Na	589,592 (radial)	-	La	-	¹³⁹ La
Р	213,618 (axial)	-	Ce	-	¹⁴⁰ Ce
S	182,034 (axial)	-	Pr	-	¹⁴¹ Pr
Si	251,611 (radial)	-	Nd	-	¹⁴⁶ Nd
Ti	334,941 (radial)	-	Sm	-	¹⁴⁹ Sm
Sc	-	⁴⁵ Sc	Eu	-	¹⁵³ Eu
V	292,402 (axial)	-	Gd	-	¹⁵⁷ Gd
Cr	267,716 (axial)	-	Tb	-	¹⁵⁹ Tb
Mn	293,930 (axial)	-	Dy	-	¹⁶³ Dy
Со	-	⁵⁹ Co	Но	-	¹⁶⁵ Ho
Ni	-	⁶⁰ Ni	Er	-	¹⁶⁷ Er
Cu	324,754 (axial)	-	Tm	-	¹⁶⁸ Tm
Zn	206,200 (axial)	-	Yb	-	¹⁷² Yb
Ga	-	⁷¹ Ga	Lu	-	¹⁷⁵ Lu
Ge	-	⁷³ Ge	Hf	-	¹⁷⁸ Hf
As	-	⁷⁵ As	Та	-	¹⁸¹ Ta
Se	-	⁸² Se	W	209,860 (axial)	-
Sr	421,552 (radial)	-	Pt	-	¹⁹⁵ Pt
Υ	-	89 Y	Au	-	¹⁹⁷ Au
Zr	339,198 (axial)	-	Hg	-	²⁰⁰ Hg
Nb	-	⁹³ Nb	Pb	220,353 (axial)	-
Мо	202,030 (axial)	-	Th	-	²³² Th
Rh	-	¹⁰³ Rh	U	-	238 U
Pd	-	¹⁰⁵ Pd			

11.2 Vergleich Königswasserauszug - Perchlorsäureaufschluss

In den folgenden Tabellen sind die Elementkonzentrationen ausgewählter Proben angegeben, jeweils bestimmt mit Königswasserauszug (KW; Zeile 1) und Perchlorsäureaufschluss (Per; Zeile 2). In der jeweils dritten Zeile ist der relative Unterschied beider Ergebnisse in % angegeben. Ein negativer Wert kennzeichnet dabei einen Mehrbefund mit Perchlorsäureaufschluss.

Tabelle 30: Hauptelementkonzentrationen im Vergleich Königswasserauszug und Perchlorsäureaufschluss

	. Haaptolomont										
Proben- nummer		Al	Ca	Fe	K	Mg	Na	Р	S	Si	Ti
1-1	KW [%]	4,4	8,9	12,0	0,9	1,1	0,1	6,1	2,2	0,0	0,3
	Per [%]	3,2	8,2	11,0	n.b.	1,5	0,2	6,5	2,4	14,6	0,4
	∆(KW-Per) [%]	26,8	8,6	8,5	n.b.	-31,4	-93,0	-7,0	-8,5	n/a	-46,1
2-1	KW [%]	2,1	10,3	15,3	0,7	1,3	0,2	10,2	0,9	0,0	0,3
	Per [%]	1,7	9,7	14,9	1,0	1,3	0,6	10,3	0,9	9,1	0,4
	Δ(KW-Per) [%]	18,6	6,0	2,9	-29,1	-2,2	-129,1	-0,8	-0,2	n/a	-38,3
3-17	KW [%]	2,3	26,5	9,2	0,6	1,2	0,8	3,8	3,3	0,2	0,1
	Per [%]	2,6	28,8	10,1	0,6	1,5	0,9	4,9	3,6	2,4	0,2
	Δ(KW-Per) [%]	-18,7	-9,9	-22,7	4,4	-42,1	-58,0	-39,1	0,6	n/a	-200,2
4-2	KW [%]	7,9	9,4	6,5	0,8	1,3	0,2	8,4	0,6	0,1	0,1
	Per [%]	6,2	8,3	7,1	0,9	0,9	0,8	9,1	0,7	13,5	0,4
	∆(KW-Per) [%]	21,5	11,3	-8,9	-13,0	33,7	-235,2	-8,2	-4,2	n/a	-302,5
5-1	KW [%]	4,2	6,8	7,8	1,1	1,1	0,5	4,3	0,7	0,0	0,2
	Per [%]	5,8	7,7	8,6	0,9	0,5	0,9	4,4	0,9	18,8	0,1
	∆(KW-Per) [%]	-36,7	-12,4	-10,8	16,3	54,3	-65,5	-2,0	-22,5	n/a	49,6
6-1	KW [%]	6,6	7,3	5,6	0,6	0,8	0,3	3,6	0,4	0,0	0,3
	Per [%]	7,6	8,6	5,6	n.b.	1,6	0,2	4,0	0,5	13,7	1,5
	∆(KW-Per) [%]	-15,2	-18,1	-0,6	n.b.	-109,2	27,1	-11,1	-34,2	n/a	-326,6
7-1	KW [%]	5,2	7,3	8,0	0,9	1,2	0,5	4,9	0,9	0,0	0,2
	Per [%]	5,2	8,3	8,1	n.b.	1,9	0,5	5,4	1,0	19,1	0,6
	∆(KW-Per) [%]	0,1	-13,4	-0,6	n.b.	-62,1	1,6	-11,5	-10,2	n/a	-192,2
8-1	KW [%]	10,6	7,9	2,3	0,8	1,0	0,3	9,0	0,3	0,0	0,2
	Per [%]	8,4	8,5	2,5	0,8	0,8	0,6	10,4	0,3	14,7	0,6
	∆(KW-Per) [%]	20,7	-8,3	-8,1	-5,5	14,9	-105	-16,3	-14,4	n/a	-239,6
9-1	KW [%]	3,2	10,1	15,8	0,7	1,2	0,4	10,2	0,4	0,0	0,3
	Per [%]	4,2	11,4	14,8	0,8	1,3	0,4	11,6	0,4	8,7	0,5
	∆(KW-Per) [%]	-30,5	-13,1	6,0	-6,7	-16,8	-11,7	-13,4	-0,5	n/a	-48,7
11-1	KW [%]	3,4	8,5	16,1	0,9	0,8	0,2	9,0	0,5	0,0	0,3
	Per [%]	2,6	7,7	17,8	0,8	0,3	0,6	9,6	0,7	14,8	0,1
	∆(KW-Per) [%]	23,4	9,2	-10,3	4,5	60,6	-188,9	-6,5	-38,9	n/a	67,4
12-1	KW [%]	3,7	11,9	10,2	1,1	1,1	1,7	3,1	2,3	0,0	0,5
	Per [%]	2,9	11,5	11,7	0,8	0,5	1,6	3,3	2,5	15,9	0,2
	∆(KW-Per) [%]	21,3	2,9	-14,8	21,2	57,8	5,4	-8,2	-11,6	n/a	63,4
13-1	KW [%]	8,0	14,5	4,8	0,5	1,8	0,2	10,8	0,6	0,0	0,2
	Per [%]	3,9	12,4	4,6	0,7	1,0	0,4	13,1	0,6	9,6	0,4
	∆(KW-Per) [%]	52,0	14,7	3,2	-33,7	44,5	-71,8	-20,6	-6,4	n/a	-74,0
14-1	KW [%]	6,2	9,8	6,8	1,2	1,6	0,4	9,3	0,8	0,0	0,1
	Per [%]	8,0	11,4	7,9	1,2	0,7	0,7	10,0	1,0	11,8	0,1
	∆(KW-Per) [%]	-27,8	-16,8	-16,0	-6,0	58,2	-70,5	-7,7	-24,1	n/a	41,7
15-1	KW [%]	4,4	8,3	10,6	1,1	1,7	0,3	8,4	0,5	0,0	0,3
	Per [%]	6,6	10,1	11,0	1,1	2,1	0,4	9,6	0,5	13,7	0,5

Proben- nummer		Al	Ca	Fe	K	Mg	Na	Р	S	Si	Ti
	∆(KW-Per) [%]	-51,2	-21,4	-3,8	-0,2	-21,8	-38,2	-15,3	-3,0	n/a	-80,2
16-1	KW [%]	5,6	6,5	14,5	0,8	1,1	0,2	8,6	0,4	0,0	0,3
	Per [%]	7,2	7,5	15,8	0,8	0,5	0,5	9,0	0,6	11,8	0,1
	∆(KW-Per) [%]	-28,0	-14,9	-8,9	-1,1	55,8	-120,4	-4,2	-51,9	n/a	62,0
17-1	KW [%]	5,2	11,5	10,1	1,0	1,7	0,4	9,8	0,6	0,0	0,2
	Per [%]	3,0	11,5	10,4	1,3	1,1	0,8	10,6	0,6	10,2	0,3
	∆(KW-Per) [%]	41,9	0,0	-3,8	-39,0	36,3	-74,6	-8,1	-1,1	n/a	-94,3
18-1	KW [%]	4,5	11,0	8,8	1,4	2,2	0,4	6,7	0,6	0,2	0,2
	Per [%]	5,5	11,7	8,5	n.b.	3,9	0,4	7,2	0,6	17,5	0,4
	∆(KW-Per) [%]	-21,6	-6,0	3,5	n.b.	-73,7	-4,3	-8,4	-15,5	n/a	-86,7
19-1	KW [%]	5,2	16,6	8,5	0,6	1,6	0,9	7,0	1,2	0,0	0,2
	Per [%]	4,9	14,2	8,9	0,7	1,6	1,3	7,3	1,2	9,6	0,2
	Δ(KW-Per) [%]	5,9	14,4	-4,3	-18,3	1,2	-46,8	-4,6	0,1	n/a	-25,0
20-1	KW [%]	0,5	26,9	5,0	0,6	1,7	2,5	1,7	0,7	0,0	0,1
	Per [%]	0,8	33,2	5,7	n.b.	3,5	1,9	2,2	0,9	10,5	0,1
	Δ(KW-Per) [%]	-56,8	-23,2	-12,7	n.b.	-103,2	23,4	-25,1	-27,2	n/a	-64,8
21-1	KW [%]	7,5	14,1	5,6	0,9	1,5	0,6	4,3	2,5	0,1	0,2
	Per [%]	4,2	11,3	4,9	n.b.	1,7	0,6	4,6	2,7	15,8	0,5
	∆(KW-Per) [%]	43,5	19,6	12,2	n.b.	-8,1	-2,3	-7,7	-7,0	n/a	-116,9
22-1	KW [%]	2,9	22,1	8,9	0,5	1,1	1,1	4,0	3,4	0,0	0,3
	Per [%]	4,5	27,4	9,8	0,7	1,4	1,5	4,9	3,8	12,6	0,5
	∆(KW-Per) [%]	-55,8	-24,4	-10,1	-50,6	-33,5	-31,1	-22,6	-9,9	n/a	-83,2
23-1	KW [%]	3,2	25,2	7,8	0,2	0,8	0,6	2,0	2,7	0,2	0,1
	Per [%]	5,1	27,9	12,2	0,1	1,9	0,6	3,8	2,2	7,4	0,2
	∆(KW-Per) [%]	-58,4	-10,6	-56,2	48,5	-121,4	-9,6	-93,1	21,3	n/a	-30,1
25-1	KW [%]	2,1	7,7	7,0	0,5	1,6	0,5	6,6	1,4	0,0	0,3
	Per [%]	4,5	9,6	10,1	0,9	2,4	1,0	8,0	1,6	17,5	0,3
	Δ(KW-Per) [%]	-119,9	-24,6	-43,3	-73,1	-52,4	-117,3	-20,2	-14,6	n/a	-21,5
26-1	KW [%]	2,5	7,8	17,6	0,7	1,2	0,2	8,0	1,6	0,1	0,0
	Per [%]	2,6	8,3	18,7	1,1	1,3	0,8	8,9	1,6	10,5	0,3
	Δ(KW-Per) [%]	-7,0	-6,4	-6,6	-54,9	-3,1	-244,5	-11,7	-4,6	n/a	-1760

Tabelle 31: Spurenelementkonzentrationen 1 im Vergleich Königswasserauszug und Perchlorsäureaufschluss

Proben- nummer		Ag	As	Ва	Cr	Cu	Mn	Мо
1-1	KW [mg/kg]	4	19	2473	208	1115	490	16
	Per [mg/kg]	8	34	934	257	1222	714	18
	Δ(KW-Per) [%]	-86	-82	62	-23	-10	-46	-17
2-1	KW [mg/kg]	12	20	2457	63	2486	5286	24
	Per [mg/kg]	12	26	895	98	2477	5475	26
	∆(KW-Per) [%]	4	-25	64	-57	0	-4	-8

Proben-		Ag	As	Ва	Cr	Cu	Mn	Мо
nummer		ر و			0.			
3-17	KW [mg/kg]	46	14	1947	108	557	1339	65
	Per [mg/kg]	39	21	369	106	528	1468	62
	∆(KW-Per) [%]	15	-48	81	2	5	-10	6
4-2	KW [mg/kg]	7	10	2439	90	648	4203	14
	Per [mg/kg]	9	46	n.b.	143	712	4579	17
	∆(KW-Per) [%]	-25	-345	n.b.	-59	-10	-9	-15
5-1	KW [mg/kg]	6	29	11456	179	710	1797	25
	Per [mg/kg]	6	47	10380	252	852	1994	27
	∆(KW-Per) [%]	-9	-61	9	-40	-20	-11	-10
6-1	KW [mg/kg]	3	24	3182	97	299	5660	7
	Per [mg/kg]	8	41	2099	127	364	6488	11
	∆(KW-Per) [%]	-211	-74	34	-32	-22	-15	-57
7-1	KW [mg/kg]	6	25	3519	250	1801	1190	29
	Per [mg/kg]	15	47	2267	409	1448	1500	34
	∆(KW-Per) [%]	-158	-89	36	-64	20	-26	-17
8-1	KW [mg/kg]	8	17	2651	98	1234	912	17
	Per [mg/kg]	9	44	1201	287	1358	1049	22
	Δ(KW-Per) [%]	-8	-157	54	-193	-10	-15	-28
9-1	KW [mg/kg]	18	13	2059	100	1861	1238	17
	Per [mg/kg]	28	27	708	105	1973	1453	19
	∆(KW-Per) [%]	-50	-110	66	-6	-6	-17	-9
11-1	KW [mg/kg]	11	17	3002	148	773	3541	16
	Per [mg/kg]	18	37	1528	347	887	3862	17
	Δ(KW-Per) [%]	-57	-112	49	-135	-15	-9	-12
12-1	KW [mg/kg]	23	28	7798	1139	1618	2372	107
	Per [mg/kg]	9	27	2633	594	816	859	41
	∆(KW-Per) [%]	63	2	66	48	50	64	62
13-1	KW [mg/kg]	13	15	2191	98	716	512	15
	Per [mg/kg]	19	33	748	135	785	592	20
	Δ(KW-Per) [%]	-46	-119	66	-37	-10	-16	-29
14-1	KW [mg/kg]	4	13	2389	105	607	667	14
	Per [mg/kg]	5	32	872	207	731	831	16
	Δ(KW-Per) [%]	-16	-147	64	-98	-20	-25	-11
15-1	KW [mg/kg]	8	17	2257	174	984	1075	23
	Per [mg/kg]	19	38	830	171	965	1140	24
	Δ(KW-Per) [%]	-131	-120	63	2	2	-6	-4
16-1	KW [mg/kg]	6	19	2410	230	900	983	28
	Per [mg/kg]	8	38	955	356	1046	1302	32
	Δ(KW-Per) [%]	-37	-98	60	-54	-16	-32	-14
17-1	KW [mg/kg]	9	12	2447	110	658	979	22
* * *	Per [mg/kg]	12	14	4537	141	735	1092	25
	Δ(KW-Per) [%]	-32	-17	-85	-28	-12	-12	-16

Proben- nummer		Ag	As	Ва	Cr	Cu	Mn	Мо
18-1	KW [mg/kg]	4	13	2280	140	824	538	12
	Per [mg/kg]	5	31	1137	174	987	717	15
	∆(KW-Per) [%]	-14	-144	50	-24	-20	-33	-20
19-1	KW [mg/kg]	8	10	2166	102	664	764	16
	Per [mg/kg]	9	n.b.	n.b.	120	692	857	18
	∆(KW-Per) [%]	-17	n.b.	n.b.	-18	-4	-12	-13
20-1	KW [mg/kg]	2	5	1639	118	157	652	15
	Per [mg/kg]	2	18	366	179	227	881	18
	∆(KW-Per) [%]	-7	-267	78	-51	-44	-35	-22
21-1	KW [mg/kg]	5	39	2256	117	3043	618	56
	Per [mg/kg]	10	55	848	174	3467	787	61
	∆(KW-Per) [%]	-103	-42	62	-49	-14	-27	-9
22-1	KW [mg/kg]	18	28	2661	500	654	3334	30
	Per [mg/kg]	26	46	1198	523	645	3465	34
	∆(KW-Per) [%]	-40	-64	55	-5	1	-4	-14
23-1	KW [mg/kg]	3	12	2039	811	318	4301	17
	Per [mg/kg]	7	24	383	584	462	4431	25
	∆(KW-Per) [%]	-145	-94	81	28	-45	-3	-48
25-1	KW [mg/kg]	7	14	2166	387	644	1179	25
	Per [mg/kg]	12	14	1108	766	876	1460	29
	Δ(KW-Per) [%]	-87	2	49	-98	-36	-24	-19
26-1	KW [mg/kg]	7	5	2423	85	538	1217	9
	Per [mg/kg]	8	5	4617	110	572	1302	11
	Δ(KW-Per) [%]	-16	0	-91	-30	-6	-7	-24

Tabelle 32: Spurenelementkonzentrationen 2 im Vergleich Königswasserauszug und Perchlorsäureaufschluss

Proben- nummer		Ni	Pb	Sn	Sr	V	W	Zn	Zr
1-1	KW [mg/kg]	76	101	62	674	146	18	2101	12
	Per [mg/kg]	52	83	69	658	152	16	2067	70
	Δ(KW-Per) [%]	31	17	-10	2	-4	7	2	-495
2-1	KW [mg/kg]	57	101	84	596	34	14	2852	4
	Per [mg/kg]	65	122	93	576	37	27	3073	148
	Δ(KW-Per) [%]	-14	-20	-11	3	-8	-91	-8	-3758
3-17	KW [mg/kg]	57	37	57	453	105	75	890	7
	Per [mg/kg]	47	44	50	405	102	106	783	124
	Δ(KW-Per) [%]	18	-17	14	11	3	-42	12	-1667
4-2	KW [mg/kg]	73	200	68	409	44	47	2799	29
	Per [mg/kg]	95	293	77	437	53	54	2970	149
	Δ(KW-Per) [%]	-30	-46	-14	-7	-21	-16	-6	-413
5-1	KW [mg/kg]	201	280	75	1747	233	21	2619	10

Proben- nummer		Ni	Pb	Sn	Sr	V	W	Zn	Zr
	Per [mg/kg]	163	274	78	2291	244	25	2671	107
	Δ(KW-Per) [%]	19	2	-3	-31	-4	-16	-2	-989
6-1	KW [mg/kg]	57	90	22	205	37	27	1162	7
	Per [mg/kg]	41	63	31	243	39	32	1255	462
	Δ(KW-Per) [%]	28	29	-45	-18	-6	-20	-8	-6862
7-1	KW [mg/kg]	187	301	95	504	183	64	2927	6
	Per [mg/kg]	166	335	122	538	212	68	3042	226
	Δ(KW-Per) [%]	11	-11	-28	-7	-16	-6	-4	-3556
8-1	KW [mg/kg]	67	169	84	554	55	9	2991	12
	Per [mg/kg]	64	136	92	562	53	41	3075	86
	Δ(KW-Per) [%]	5	19	-9	-1	3	-373	-3	-618
9-1	KW [mg/kg]	60	128	72	564	44	12	1980	3
	Per [mg/kg]	40	129	73	542	41	35	1882	92
	Δ(KW-Per) [%]	33	0	-1	4	8	-188	5	-2675
11-1	KW [mg/kg]	96	122	70	555	43	34	3088	5
	Per [mg/kg]	78	130	76	896	43	58	3970	85
	∆(KW-Per) [%]	19	-7	-8	-61	0	-73	-29	-1685
12-1	KW [mg/kg]	746	485	1275	550	849	97	5492	15
	Per [mg/kg]	268	228	549	294	289	59	2893	185
	Δ(KW-Per) [%]	64	53	57	47	66	38	47	-1103
13-1	KW [mg/kg]	51	113	90	937	38	5	3269	11
	Per [mg/kg]	49	82	92	892	29	33	3246	63
	Δ(KW-Per) [%]	3	27	-3	5	23	-585	1	-446
14-1	KW [mg/kg]	64	100	98	505	70	27	2489	8
	Per [mg/kg]	47	96	118	745	66	48	2787	74
	Δ(KW-Per) [%]	26	4	-20	-48	6	-75	-12	-779
15-1	KW [mg/kg]	83	126	92	870	60	10	3069	6
	Per [mg/kg]	65	106	90	848	51	41	2937	76
	Δ(KW-Per) [%]	22	16	2	2	16	-310	4	-1205
16-1	KW [mg/kg]	121	214	85	366	68	35	2874	7
	Per [mg/kg]	95	241	90	537	69	63	3148	87
	Δ(KW-Per) [%]	22	-12	-7	-47	-2	-80	-10	-1126
17-1	KW [mg/kg]	64	83	54	608	44	45	2032	8
	Per [mg/kg]	75	102	62	661	48	51	2221	63
	Δ(KW-Per) [%]	-17	-23	-14	-9	-10	-13	-9	-644
18-1	KW [mg/kg]	80	106	49	1150	78	64	1922	6
	Per [mg/kg]	59	94	53	1106	70	65	1931	100
	Δ(KW-Per) [%]	27	11	-8	4	10	-1	0	-1529
19-1	KW [mg/kg]	112	165	3036	439	53	26	4191	38
	Per [mg/kg]	116	220	3224	465	52	29	4413	77
	Δ(KW-Per) [%]	-4	-33	-6	-6	2	-12	-5	-105
20-1	KW [mg/kg]	68	24	8	740	27	7	2335	5

Proben- nummer		Ni	Pb	Sn	Sr	V	W	Zn	Zr
	Per [mg/kg]	65	21	16	760	21	2	2500	268
	Δ(KW-Per) [%]	5	14	-98	-3	22	78	-7	-4836
21-1	KW [mg/kg]	428	157	527	369	1063	43	1910	8
	Per [mg/kg]	424	130	543	372	1206	48	1914	214
	Δ(KW-Per) [%]	1	17	-3	-1	-14	-12	0	-2453
22-1	KW [mg/kg]	307	157	168	373	370	11	1284	6
	Per [mg/kg]	279	150	169	372	370	27	1215	284
	Δ(KW-Per) [%]	9	4	0	0	0	-137	5	-4405
23-1	KW [mg/kg]	106	58	23	162	754	20	797	136
	Per [mg/kg]	150	109	36	179	1082	34	886	817
	Δ(KW-Per) [%]	-42	-87	-54	-10	-44	-74	-11	-501
25-1	KW [mg/kg]	120	66	29	311	49	23	4671	6
	Per [mg/kg]	142	139	43	396	64	49	5738	249
	Δ(KW-Per) [%]	-18	-111	-47	-27	-30	-111	-23	-4247
26-1	KW [mg/kg]	73	54	33	445	46	19	2058	9
	Per [mg/kg]	84	83	41	476	52	66	2299	83
	Δ(KW-Per) [%]	-15	-54	-22	-7	-14	-248	-12	-836

11.3 Einzelergebnisse nach Anlagen

11.3.1 Anlage 1

Tabelle 33: Hauptelemente [%], Wassergehalt (RF) [%], Glühverlust (GV) [%] der Anlage 1

Probe		Al	Ca	Fe	K	Mg	Na	Р	S	Si	Ti	RF	GV
1-1	13.03.12	3,2	8,2	11,0		1,5	0,2	6,5	2,4	14,6	0,4	0,8	7,7
1-2	20.06.12	4,0	9,6	9,7		1,7	0,2	6,3	1,9	14,2	0,5	0,4	3,3
1-3	11.09.12	6,9	10,1	10,8	0,9	1,6	0,2	6,3	1,6	9,0	0,4	2,6	5,4
1-4	11.12.12	6,7	10,2	10,0	0,9	1,4	0,2	6,2	1,6	12,0	0,4	2,7	7,6
	Min	3,2	8,2	9,7	0,9	1,4	0,2	6,2	1,6	9,0	0,4		
	Max	6,9	10,2	11,0	0,9	1,7	0,2	6,5	2,4	14,6	0,5		
	Mittelwert	5,2	9,5	10,4	0,9	1,5	0,2	6,3	1,9	12,5	0,4		
	Median	5,3	9,9	10,4	0,9	1,5	0,2	6,3	1,7	13,1	0,4		

Tabelle 34: Spurenelemente 1 [mg/kg] der Anlage 1

Probe		Sc	V	Cr	Mn	Со	Ni	Cu	Zn	Ga	Ge	As
1-1	13.03.12	3,9	152	257	714		52,3	1222	2067	14,5	8,8	16,7
1-2	20.06.12	3,9	155	232	740		61,7	1241	2242	15,8	8,6	88,4
1-3	11.09.12	7,1	142	146	646		59,3	966	2091	15,0	6,5	13,9
1-4	11.12.12	6,9	121	166	609		68,2	993	1995	14,7	6,7	16,1
	Min	3,9	121	146	609		52,3	966	1995	14,5	6,5	13,9
	Max	7,1	155	257	740		68,2	1241	2242	15,8	8,8	88,4

Probe		Sc	V	Cr	Mn	Со	Ni	Cu	Zn	Ga	Ge	As
	Mittelwert	5,5	142	200	677		60,4	1105	2099	15,0	7,7	33,8
	Median	5,4	147	199	680		60,5	1107	2079	14,9	7,7	16,4

Tabelle 35: Spurenelemente 2 [mg/kg] der Anlage 1

Probe		Se	Sr	Υ	Zr	Nb	Мо	Ag	Cd	Sn	Sb	Ва
1-1	13.03.12		658	6,3	70,5	9,4	18,3	4,9	0,1	68,6	12,5	934
1-2	20.06.12		760	5,1	64,0	10,8	21,3	4,0	0,0	66,2	14,7	1469
1-3	11.09.12		588	14,7	65,9	9,9	17,9	13,9	0,1	48,9	10,4	788
1-4	11.12.12		622	13,6	77,4	9,2	18,6	11,3	1,9	59,8	11,2	821
	Min		588	5,1	64,0	9,2	17,9	4,0	0,0	48,9	10,4	788
	Max		760	14,7	77,4	10,8	21,3	13,9	1,9	68,6	14,7	1469
	Mittelwert		657	9,9	69,5	9,8	19,0	8,5	0,5	60,9	12,2	1003
	Median		640	9,9	68,2	9,6	18,5	8,1	0,1	63,0	11,9	877

Tabelle 36: Spurenelemente 3 [mg/kg] der Anlage 1

Probe		La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er
1-1	13.03.12	23,5	39,8	4,2	15,1	2,6	0,6	2,4	0,6	1,7	0,5	0,9
1-2	20.06.12	24,6	39,5	4,3	15,7	2,7	0,7	2,4	0,6	1,8	0,5	0,9
1-3	11.09.12	26,5	43,3	5,0	19,7	4,6	0,8	3,4	0,6	3,0	0,6	1,6
1-4	11.12.12	28,0	44,3	5,0	20,9	7,5	0,8	3,3	0,6	3,5	0,6	1,5
	Min	23,5	39,5	4,2	15,1	2,6	0,6	2,4	0,6	1,7	0,5	0,9
	Max	28,0	44,3	5,0	20,9	7,5	0,8	3,4	0,6	3,5	0,6	1,6
	Mittelwert	25,7	41,7	4,6	17,8	4,4	0,7	2,9	0,6	2,5	0,6	1,2
	Median	25,6	41,5	4,6	17,7	3,7	0,8	2,8	0,6	2,4	0,6	1,2

Tabelle 37: Spurenelemente 4 [mg/kg] der Anlage 1

Probe		Tm	Yb	Lu	Hf	Та	W	Au	Hg	Pb	Th	U
1-1	13.03.12	0,3	0,7	0,4	1,8	1,0	16,5	0,2		83,0	3,7	4,6
1-2	20.06.12	0,3	0,7	0,4	1,7	1,2	20,5	0,3		67,0	3,5	5,1
1-3	11.09.12	0,3	1,4	0,2	1,8	0,8	34,2	0,8		60,2	6,6	5,4
1-4	11.12.12	0,3	1,4	0,3	2,3	1,0	83,2	0,6		80,4	6,7	5,9
	Min	0,3	0,7	0,2	1,7	0,8	16,5	0,2		60,2	3,5	4,6
	Max	0,3	1,4	0,4	2,3	1,2	83,2	0,8		83,0	6,7	5,9
	Mittelwert	0,3	1,1	0,3	1,9	1,0	38,6	0,5		72,6	5,1	5,2
	Median	0,3	1,1	0,3	1,8	1,0	27,4	0,4		73,7	5,2	5,3

Tabelle 38: Platingruppenelemente [µg/kg] der Anlage 1

Probe		Rh	Pd	Pt
1-1	13.03.12	25	111	38

11.3.2 Anlage 2

Tabelle 39: Hauptelemente [%], Wassergehalt (RF) [%], Glühverlust (GV) [%] der Anlage 2

Probe		Al	Ca	Fe	K	Mg	Na	Р	S	Si	Ti	RF	GV
2-1	Mai 2012	3,8	11,5	17,8	1,0	1,5	0,4	11,2	1,0	9,0	0,4	0,3	0,8
2-2	Juni 2012	3,2	10,8	18,8	0,9	1,4	0,4	11,2	0,9	8,8	0,4	0,2	0,7
2-3	Juli 2012	3,9	9,7	19,0	1,0	1,5	0,4	10,0	1,0	9,8	0,4	0,3	0,7
2-4	August 2012	3,8	10,3	17,7	1,0	1,7	0,4	9,8	1,1	9,7	0,4	0,3	0,7
2-5	September 2012	3,6	10,8	19,1	0,9	1,4	0,4	10,4	1,1	9,5	0,4	0,3	0,7
2-6	Oktober 2012	3,3	9,8	17,1	0,8	1,2	0,4	9,3	0,9	12,0	0,4	0,2	0,8
2-7	November 2012	3,4	11,0	17,1	0,9	1,3	0,4	10,0	1,0	10,2	0,4	0,2	0,9
2-8	Dezember 2012	3,0	9,1	14,0	0,9	1,5	0,4	8,9	0,7	14,0	0,4	0,2	0,4
2-9	Januar 2013	3,1	9,8	17,0	1,1	1,3	0,4	10,0	0,8	10,5	0,3	0,2	0,6
2-10	Februar 2013	3,4	9,2	16,0	1,3	1,1	0,5	9,5	0,7	12,7	0,4	0,2	0,7
2-11	März 2013	2,9	9,1	15,7	1,1	1,0	0,5	9,2	0,6	14,4	0,4	0,1	0,5
2-12	April 2013	3,7	11,5	16,8	1,3	1,4	0,5	10,2	0,8	8,8	0,4	0,1	0,8
	Min	2,9	9,1	14,0	0,8	1,0	0,4	8,9	0,6	8,8	0,3		
	Max	3,9	11,5	19,1	1,3	1,7	0,5	11,2	1,1	14,4	0,4		
	Mittelwert	3,4	10,2	17,2	1,0	1,4	0,4	10,0	0,9	10,8	0,4		
	Median	3,4	10,1	17,1	1,0	1,4	0,4	10,0	0,9	10,0	0,4		

Tabelle 40: Spurenelemente 1 [mg/kg] der Anlage 2

Probe		Sc	V	Cr	Mn	Со	Ni	Cu	Zn	Ga	Ge	As
2-1	Mai 2012	2,0	36,5	98,3	5475	15,4	47,5	2477	3073	5,6	5,4	18,3
2-2	Juni 2012	1,2	37,0	79,2	5996	15,2	42,3	2074	3032	5,2	5,5	18,2
2-3	Juli 2012	2,2	47,6	90,5	4154	18,3	55,8	2191	3311	6,2	5,6	19,7
2-4	August 2012	2,0	44,6	144,5	2710	18,9	54,9	2277	3073	6,1	5,1	17,5
2-5	September 2012	1,6	41,1	90,3	2879	16,8	47,3	2323	2823	5,1	5,2	18,9
2-6	Oktober 2012	1,4	35,9	92,1	2950	17,6	42,6	2040	2480	4,6	4,6	16,0
2-7	November 2012	1,9	34,3	86,1	4125	16,8	53,0	2390	2969	4,9	4,8	17,9
2-8	Dezember 2012	1,5	30,3	79,8	3222	12,0	52,0	1831	2754	4,4	3,9	13,3
2-9	Januar 2013	1,6	33,4	84,0	3309	11,5	39,1	1973	2796	4,6	4,4	14,9

Probe		Sc	V	Cr	Mn	Со	Ni	Cu	Zn	Ga	Ge	As
2-10	Februar 2013	2,4	39,7	104,2	2650	13,8	41,1	2035	2995	5,2	4,5	17,8
2-11	März 2013	1,4	34,5	84,3	2234	11,5	42,0	1952	2808	4,5	4,3	19,7
2-12	April 2013	2,5	42,1	102,9	2323	12,6	45,9	2155	3161	5,7	4,7	21,6
	Min	1,2	30,3	79,2	2234	11,5	39,1	1831	2480	4,4	3,9	13,3
	Max	2,5	47,6	144,5	5996	18,9	55,8	2477	3311	6,2	5,6	21,6
	Mittelwert	1,8	38,1	94,7	3502,2	15,0	47,0	2143	2939	5,2	4,8	17,8
	Median	1,8	36,8	90,4	3086	15,3	46,6	2115	2982	5,1	4,7	18,0

Tabelle 41: Spurenelemente 2 [mg/kg] der Anlage 2

Probe		Se	Sr	Υ	Zr	Nb	Мо	Ag	Cd	Sn	Sb	Ва
2-1	Mai 2012	1,4	576	6,0	148	4,8	24,8	10,5	2,7	93,5	7,6	895
2-2	Juni 2012	1,2	555	3,7	138	4,0	21,4	9,2	2,4	79,4	7,9	773
2-3	Juli 2012	1,3	458	6,7	313	5,1	22,6	9,6	2,4	82,3	10,5	909
2-4	August 2012	1,8	486	5,2	133	5,2	24,5	9,9	2,6	81,8	9,6	931
2-5	September 2012	1,3	501	4,2	170	4,6	22,9	10,1	2,4	79,0	7,6	1160
2-6	Oktober 2012	1,2	482	3,7	148	4,2	19,5	8,3	2,4	72,2	7,2	1430
2-7	November 2012	1,1	546	5,3	186	4,0	22,6	8,9	2,4	84,7	6,8	836
2-8	Dezember 2012	1,0	442	4,4	143	3,9	18,3	8,3	2,4	81,0	7,4	701
2-9	Januar 2013	1,3	461	4,3	122	4,3	20,6	7,9	2,5	81,4	7,7	786
2-10	Februar 2013	1,2	435	5,6	164	4,3	19,0	8,0	2,6	85,2	9,2	818
2-11	März 2013	0,8	435	3,3	152	4,0	16,9	10,5	3,1	82,0	8,1	765
2-12	April 2013	1,2	540	5,9	180	5,6	19,4	9,2	2,0	83,7	10,5	2050
	Min	0,8	435	3,3	122	3,9	16,9	7,9	2,0	72,2	6,8	701
	Max	1,8	576	6,7	313	5,6	24,8	10,5	3,1	93,5	10,5	2050
	Mittelwert	1,2	493	4,8	166	4,5	21,0	9,2	2,5	82,2	8,3	1005
	Median	1,2	484	4,8	150	4,3	21,0	9,2	2,4	81,9	7,8	865

Tabelle 42: Spurenelemente 3 [mg/kg] der Anlage 2

Probe		La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er
2-1	Mai 2012	32,6	41,6	3,0	10,1	1,5	0,4	2,6	0,2	1,1	0,2	0,5
2-2	Juni 2012	34,4	44,7	3,3	11,4	1,6	0,3	2,5	0,2	0,9	0,1	0,5
2-3	Juli 2012	36,2	52,7	3,5	12,1	2,0	0,4	2,6	0,2	1,3	0,2	0,7
2-4	August 2012	31,8	46,5	2,8	9,9	1,7	0,4	2,8	0,2	1,6	0,2	0,6
2-5	September 2012	26,0	34,3	2,7	9,4	1,5	0,3	2,9	0,2	1,0	0,2	0,5

Probe		La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er
2-6	Oktober 2012	23,6	30,8	2,4	8,4	1,4	0,3	2,9	0,1	0,9	0,1	0,5
2-7	November 2012	28,4	35,9	2,9	9,8	1,5	0,3	3,3	0,2	0,9	0,2	0,5
2-8	Dezember 2012	26,4	36,4	2,5	8,1	1,3	0,3	2,1	0,1	0,8	0,1	0,5
2-9	Januar 2013	25,2	32,8	2,5	8,5	1,3	0,3	2,0	0,1	0,9	0,2	0,5
2-10	Februar 2013	22,9	28,4	2,5	8,9	1,5	0,3	2,4	0,2	1,0	0,2	0,6
2-11	März 2013	21,2	23,8	2,1	7,5	1,2	0,3	1,9	0,1	0,8	0,1	0,5
2-12	April 2013	27,4	33,8	3,0	10,1	1,6	0,4	2,2	0,2	1,1	0,2	0,6
	Min	21,2	23,8	2,1	7,5	1,2	0,3	1,9	0,1	0,8	0,1	0,5
	Max	36,2	52,7	3,5	12,1	2,0	0,4	3,3	0,2	1,6	0,2	0,7
	Mittelwert	28,0	36,8	2,8	9,5	1,5	0,4	2,5	0,2	1,0	0,2	0,5
	Median	26,9	35,1	2,8	9,6	1,5	0,3	2,5	0,2	1,0	0,2	0,5

Tabelle 43: Spurenelemente 4 [mg/kg] der Anlage 2

Probe		Tm	Yb	Lu	Hf	Та	W	Au	Hg	Pb	Th	U
2-1	Mai 2012	0,1	0,6	0,1	3,7	0,4	27,4	1,0	1,4	122	1,7	3,7
2-2	Juni 2012	0,1	0,5	0,1	3,8	0,3	29,4	0,8	1,5	116	1,5	3,6
2-3	Juli 2012	0,1	0,7	0,1	3,5	0,8	48,5	2,4	2,0	157	2,5	4,1
2-4	August 2012	0,1	0,7	0,1	4,9	0,4	52,6	1,2	2,1	153	2,4	4,0
2-5	September 2012	0,1	0,5	0,1	4,7	0,4	41,6	0,7	1,9	128	2,2	3,9
2-6	Oktober 2012	0,1	0,5	0,1	4,6	0,4	48,0	2,3	1,8	124	1,8	3,3
2-7	November 2012	0,1	0,6	0,1	4,8	0,4	40,7	0,9	1,9	124	2,0	3,7
2-8	Dezember 2012	0,1	0,5	0,1	3,7	0,4	29,0	0,5	1,4	123	1,5	3,2
2-9	Januar 2013	0,1	0,5	0,1	3,4	0,4	24,5	0,8	1,4	105	1,8	3,4
2-10	Februar 2013	0,1	0,6	0,1	4,2	0,4	40,2	0,6	1,4	132	2,4	3,7
2-11	März 2013	0,1	0,5	0,1	4,7	0,4	30,2	0,9	1,3	100	1,6	4,0
2-12	April 2013	0,1	0,6	0,1	5,1	0,4	32,7	0,6	1,9	123	2,3	3,9
	Min	0,1	0,5	0,1	3,4	0,3	24,5	0,5	1,3	100	1,5	3,2
	Max	0,1	0,7	0,1	5,1	0,8	52,6	2,4	2,1	157	2,5	4,1
	Mittelwert	0,1	0,6	0,1	4,3	0,4	37,1	1,1	1,6	126	2,0	3,7
	Median	0,1	0,5	0,1	4,4	0,4	36,4	0,9	1,6	124	1,9	3,7

Tabelle 44: Platingruppenelemente [µg/kg] der Anlage 2

Probe		Rh	Pd	Pt
2-1	Mai 2012	5	91	103

11.3.3 Anlage 3

Tabelle 45: Hauptelemente [%], Wassergehalt (RF) [%], Glühverlust (GV) [%] der Anlage 3

Probe		Al	Ca	Fe	K	Mg	Na	P	S	Si	Τï	RF	GV
3-1	07.04.10- 09.04.10	4,0	24,4	14,2		2,9	0,8	5,5	3,2	8,9	0,3	0,5	0,1
3-2	29.08.10- 22.09.10	2,6	35,4	7,5		2,5	0,7	4,2	3,2	10,4	0,2	0,4	-2,0
3-3	15.11.11- 02.12.11	2,9	30,7	7,7		2,0	1,0	4,6	3,3	8,0	0,2	0,3	-1,2
3-4	05.12.11- 30.12.11	3,4	26,7	8,6		3,1	1,0	5,4	2,7	12,4	0,2	0,4	-0,5
3-5	02.01.12- 26.01.12	2,7	29,1	8,9		3,3	8,0	4,8	2,6	9,3	0,2	0,3	-1,0
3-6	30.01.12- 08.02.12	3,0	28,7	9,5		2,7	0,9	5,0	3,0	10,6	0,2	0,4	-0,3
3-7	06.02 27.02.2012	2,7	29,1	11,3	0,5	1,7	1,2	5,3	3,3	6,6	0,2	0,1	0,1
3-8	02.03 29.03.2012	2,7	37,2	11,1	0,7	1,8	1,3	5,2	3,7	5,9	0,2	0,1	0,1
3-9	03.04 13.04.2012	2,7	31,5	10,2	0,8	2,0	1,3	5,9	3,7	4,9	0,2	0,1	0,2
3-10	29.05 31.05.2012	2,3	35,1	8,7	0,9	2,6	1,8	5,8	4,0	5,9	0,2	0,1	-0,2
3-11	04.06 29.06.2012	2,5	34,2	8,8	0,8	2,0	1,6	5,8	3,5	4,5	0,2	0,2	0,4
3-12	02.07 31.07.2012	2,4	30,0	8,1	0,6	1,3	1,1	4,3	3,3	7,5	0,2	0,1	0,2
3-13	01.08 31.08.2012	2,2	33,6	7,7	0,6	1,4	1,1	3,7	3,4	4,3	0,1	0,1	0,6
3-14	03.09 28.09.2012	2,2	35,2	8,1	0,6	1,3	1,1	4,0	4,0	5,7	0,1	0,1	0,3
3-15	01.10 29.10.2012	2,3	37,7	8,7	0,6	1,6	1,2	4,8	4,3	5,7	0,2	0,1	0,2
3-16	01.11 29.11.2012	2,2	37,8	9,0	0,6	1,7	1,1	4,8	3,9	5,5	0,2	0,1	0,2
3-17	03.12 21.12.2012	2,6	28,8	10,1	0,6	1,5	0,9	4,9	3,6	2,4	0,2	0,2	0,1
3-18	02.01 30.01.2013	2,1	28,6	11,5	0,6	1,4	0,9	5,1	3,7	4,0	0,2	0,1	0,1
	Min	2,1	24,4	7,5	0,5	1,3	0,7	3,7	2,6	2,4	0,1	_	

Probe		Al	Ca	Fe	K	Mg	Na	Р	S	Si	Ti	RF	GV
	Max	4,0	37,8	14,2	0,9	3,3	1,8	5,9	4,3	12,4	0,3		
	Mittelwert	2,6	31,9	9,4	0,7	2,0	1,1	4,9	3,5	6,8	0,2		
	Median	2,6	31,1	8,9	0,6	1,9	1,1	4,9	3,5	5,9	0,2		

Tabelle 46: Spurenelemente 1 [mg/kg] der Anlage 3

Probe		Sc	V	Cr	Mn	Со	Ni	Cu	Zn	Ga	Ge	As
3-1	07.04.10- 09.04.10	11,9	124,7	199,9	1385		78,9	537	1447	8,37	9,58	10,01
3-2	29.08.10- 22.09.10	8,2	75,6	177,7	1418		52,4	549	950	6,77	6,17	10,47
3-3	15.11.11- 02.12.11	4,4	84,4	131,4	1562		39,6	589	904	6,45	6,19	11,84
3-4	05.12.11- 30.12.11	14,3	220,8	224,5	1941		51,9	654	1057	7,49	6,79	13,83
3-5	02.01.12- 26.01.12	10,0	120,3	148,0	1623		42,1	637	1036	7,45	6,99	11,86
3-6	30.01.12- 08.02.12	8,2	107,0	150,9	1422		44,1	613	1164	6,80	7,16	10,24
3-7	06.02 27.02.2012	6,5	92,6	125,4	1368	26,0	57,1	598	872	5,3	5,2	10,7
3-8	02.03 29.03.2012	4,5	59,2	147,2	1424	21,0	44,7	567	874	5,1	4,0	9,9
3-9	03.04 13.04.2012	4,9	99,5	92,8	1420	35,4	44,9	562	825	6,1	4,1	12,0
3-10	29.05 31.05.2012	6,3	93,9	120,4	1454	23,8	86,1	688	729	4,7	3,7	8,4
3-11	04.06 29.06.2012	5,5	82,5	110,0	1423	58,8	59,9	561	766	4,6	3,9	9,3
3-12	02.07 31.07.2012	3,5	40,2	65,8	1318	15,2	38,6	467	651	3,9	3,1	7,9
3-13	01.08 31.08.2012	2,7	37,7	59,9	1291	24,7	41,4	443	588	3,4	2,8	8,2
3-14	03.09 28.09.2012	2,0	23,6	58,0	1395	52,6	40,1	517	669	3,2	2,4	8,6
3-15	01.10 29.10.2012	2,9	32,0	63,8	1324	37,5	43,6	500	764	3,8	2,8	9,6
3-16	01.11 29.11.2012	7,3	106,5	112,2	1321	14,6	54,9	511	699	4,2	3,6	10,2
3-17	03.12 21.12.2012	6,0	102,1	105,7	1468	18,6	50,5	528	783	4,8	3,9	11,7
3-18	02.01 30.01.2013	3,4	59,9	67,5	1395	45,7	44,3	647	834	4,5	3,7	11,5
	Min	2,0	23,6	58,0	1291	14,6	38,6	443	588	3,2	2,4	7,9
	Max	14,3	220,8	224,5	1941	58,8	86,1	688	1447	8,4	9,6	13,8
	Mittelwert	6,3	86,8	120,1	1442	31,2	50,8	565	867	5,4	4,8	10,3
	Median	5,7	88,5	116,3	1419	25,4	44,8	561	830	5,0	4,0	10,2

Tabelle 47: Spurenelemente 2 [mg/kg] der Anlage 3

Probe		Se	Sr	Υ	Zr	Nb	Мо	Ag	Cd	Sn	Sb	Ва
3-1	07.04.10- 09.04.10		467	11,63	264	46,2	52,5	91,9	2,39	51,7	45,83	526
3-2	29.08.10- 22.09.10		439	6,17	169	30,1	48,3	85,8	2,13	56,4	34,88	365
3-3	15.11.11- 02.12.11		476	4,57	139	23,1	44,5	74,3	2,60	74,9	16,45	1375
3-4	05.12.11- 30.12.11		417	11,91	245	32,7	43,9	133,1	2,20	103,2	11,75	459
3-5	02.01.12- 26.01.12		410	11,67	179	32,5	60,0	111,8	2,68	92,9	10,24	424
3-6	30.01.12- 08.02.12		410	11,12		29,0	52,1	40,7	2,88	187,4	8,00	478
3-7	06.02 27.02.2012		375	9,7	140	22,3	82,3	21,1	2,0	140,5	6,4	382
3-8	02.03 29.03.2012		447	8,6	155	13,4	51,7	14,1	1,9	73,48	5,1	546
3-9	03.04 13.04.2012		421	8,4	100	13,1	57,0	11,1	1,8	53,97	4,7	399
3-10	29.05 31.05.2012		521	8,3	150	21,2	51,1	19,4	2,1	46,87	3,5	385
3-11	04.06 29.06.2012		469	8,6	152	17,0	40,2	23,4	2,0	51,06	5,3	480
3-12	02.07 31.07.2012		403	7,8	64	9,0	34,9	23,9	3,3	33,96	14,7	320
3-13	01.08 31.08.2012		435	7,4	52	7,5	59,1	16,9	1,8	32,15	4,6	386
3-14	03.09 28.09.2012		466	7,4	63	4,3	55,6	12,7	1,4	37,4	3,7	309
3-15	01.10 29.10.2012		563	7,8	84	6,5	57,0	22,5	1,2	37,87	3,4	350
3-16	01.11 29.11.2012		490	9,4	179	23,2	61,3	16,4	1,1	33,43	3,6	486
3-17	03.12 21.12.2012		405	9,1	124	19,2	66,8	39,0	1,3	49,59	6,4	369
3-18	02.01 30.01.2013		423	8,6	82	9,7	55,9	22,3	1,3	49,16	5,1	417
	Min		375	4,57	52	4,3	34,9	11,1	1,1	32,15	3,4	309
	Max		563	11,9	264	46,2	82,3	133,1	3,3	187,4	45,83	1375
	Mittelwert		446	8,8	138	20,0	54,1	43,3	2,0	67,0	10,7	470
	Median		437	8,6	140	20,2	54,1	22,9	2,0	51,4	5,8	408

Tabelle 48: Spurenelemente 3 [mg/kg] der Anlage 3

Probe		La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er
3-1	07.04.10- 09.04.10	19,7	30,1	3,4	12,0	2,3	0,4	2,4	0,6	1,8	0,6	1,1

Probe		La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er
3-2	29.08.10- 22.09.10	17,0	27,1	3,0	10,4	1,9	0,4	2,0	0,5	1,4	0,5	0,8
3-3	15.11.11- 02.12.11	15,8	24,7	2,7	9,4	2,0	0,4	2,2	0,5	1,2	0,5	0,7
3-4	05.12.11- 30.12.11	18,8	29,8	2,9	10,1	1,8	0,3	1,8	0,5	1,3	0,5	0,7
3-5	02.01.12- 26.01.12	19,0	30,7	3,2	11,4	2,2	0,4	2,3	0,6	1,8	0,6	1,1
3-6	30.01.12- 08.02.12	17,2	28,5	2,9	10,6	2,0	0,8	2,2	0,3	1,7	0,3	1,0
3-7	06.02 27.02.2012	15,5	25,0	2,4	8,7	1,7	0,3	1,8	0,2	1,4	0,3	0,8
3-8	02.03 29.03.2012	14,0	21,6	2,1	7,7	1,5	0,3	1,6	0,2	1,3	0,3	0,8
3-9	03.04 13.04.2012	14,5	22,4	2,1	7,6	1,5	0,3	1,5	0,2	1,2	0,2	0,7
3-10	29.05 31.05.2012	16,5	26,2	2,3	8,3	1,5	0,3	1,6	0,2	1,3	0,3	0,7
3-11	04.06 29.06.2012	15,4	24,9	2,3	8,3	1,6	0,3	1,7	0,2	1,3	0,3	0,8
3-12	02.07 31.07.2012	12,6	18,6	1,9	7,2	1,4	0,3	1,5	0,2	1,2	0,2	0,7
3-13	01.08 31.08.2012	11,9	16,0	1,7	6,4	1,2	0,3	1,4	0,2	1,1	0,2	0,7
3-14	03.09 28.09.2012	10,8	15,7	1,7	6,4	1,2	0,3	1,4	0,2	1,1	0,2	0,6
3-15	01.10 29.10.2012	11,8	17,7	1,8	6,7	1,3	0,3	1,5	0,2	1,2	0,2	0,7
3-16	01.11 29.11.2012	16,1	26,3	2,7	10,0	1,8	0,3	1,9	0,3	1,5	0,3	0,9
3-17	03.12 21.12.2012	15,5	24,4	2,5	9,1	1,7	0,3	1,8	0,2	1,4	0,3	0,8
3-18	02.01 30.01.2013	14,0	20,1	2,1	7,9	1,5	0,3	1,6	0,2	1,3	0,3	0,7
	Min	10,8	15,7	1,7	6,4	1,2	0,3	1,4	0,2	1,1	0,2	0,6
-	Max	19,7	30,7	3,4	12,0	2,3	0,8	2,4	0,6	1,8	0,6	1,1
	Mittelwert	15,4	23,9	2,4	8,8	1,7	0,4	1,8	0,3	1,4	0,3	0,8
	Median	15,5	24,8	2,4	8,5	1,6	0,3	1,7	0,2	1,3	0,3	0,8

Tabelle 49: Spurenelemente 4 [mg/kg] der Anlage 3

Probe		Tm	Yb	Lu	Hf	Ta	W	Au	Hg	Pb	Th	U
3-1	07.04.10- 09.04.10	0,3	1,1	0,5	6,3	2,8	179	0,2		49,7	5,17	4,26
3-2	29.08.10- 22.09.10	0,3	0,7	0,4	4,2	1,8	90	<0,145		27,7	3,47	3,15

Probe		Tm	Yb	Lu	Hf	Та	W	Au	Hg	Pb	Th	U
3-3	15.11.11- 02.12.11	0,3	1,1	0,4	3,4	1,5	79	<0,145		22,6	4,30	3,46
3-4	05.12.11- 30.12.11	0,3	0,8	0,4	5,2	2,1	123	<0,145		22,4	6,29	4,15
3-5	02.01.12- 26.01.12	0,3	1,2	0,5	4,6	2,1	185	<0,145		25,7	4,25	3,62
3-6	30.01.12- 08.02.12	0,1	1,2	0,2	4,4	2,3	190	0,4		29,3	4,15	3,72
3-7	06.02 27.02.2012	0,1	1,0	0,1	3,2	1,4	169	0,5		66,3	2,8	2,8
3-8	02.03 29.03.2012	0,1	0,9	0,1	2,3	1,0	151	0,5		64,2	2,4	2,9
3-9	03.04 13.04.2012	0,1	0,7	0,1	2,9	0,9	137	0,5		51,8	2,8	3,3
3-10	29.05 31.05.2012	0,1	8,0	0,1	3,4	1,3	112	0,5		47,8	2,7	2,8
3-11	04.06 29.06.2012	0,1	0,8	0,1	3,3	1,1	114	0,4		46,2	2,8	2,8
3-12	02.07 31.07.2012	0,1	0,6	0,1	1,6	0,7	94	0,4		43,7	2,1	2,7
3-13	01.08 31.08.2012	0,1	0,6	0,1	1,5	0,6	106	0,4		38,0	2,0	2,8
3-14	03.09 28.09.2012	0,1	0,6	0,1	1,3	0,5	100	0,4		41,4	1,7	2,8
3-15	01.10 29.10.2012	0,1	0,6	0,1	2,3	0,6	92	0,7		45,3	2,0	2,9
3-16	01.11 29.11.2012	0,1	0,9	0,1	4,5	1,4	80	0,6		38,8	3,7	3,2
3-17	03.12 21.12.2012	0,1	0,8	0,1	3,4	1,3	106	0,4		43,8	3,5	3,6
3-18	02.01 30.01.2013	0,1	0,7	0,1	2,0	0,8	105	0,3		37,1	3,0	3,4
	Min	0,1	0,6	0,1	1,3	0,5	79	<0,145		22,4	1,7	2,7
	Max	0,3	1,2	0,5	6,3	2,8	190	0,7		66,3	6,3	4,3
	Mittelwert	0,2	0,8	0,2	3,3	1,4	123	0,4		41,2	3,3	3,2
	Median	0,1	0,8	0,1	3,3	1,3	109	0,4		42,5	2,9	3,2

11.3.4 Anlage 4

Tabelle 50: Hauptelemente [%], Wassergehalt (RF) [%], Glühverlust (GV) [%] der Anlage 4

Probe		Al	Ca	Fe	K	Mg	Na	Р	S	Si	Ti	RF	GV
4-1	06.09.2012	5,5	8,0	7,0	0,5	0,3	0,5	8,5	0,7	15,6	0,1	0,3	0,1
4-2	26.09.2012	6,2	8,3	7,1	0,9	0,9	0,8	9,1	0,7	13,5	0,4		
4-3	11.10.2012	5,5	7,9	6,6	0,9	0,8	0,9	9,2	0,7	14,6	0,4		
4-4	11.2012	6,1	7,5	5,7	0,8	0,8	0,8	10,5	0,6	11,6	0,4		

Probe		Al	Ca	Fe	K	Mg	Na	Р	S	Si	Ti	RF	GV
4-5	12.2012	5,3	7,3	5,1	0,7	0,7	0,8	10,9	0,6	11,1	0,4		
4-6	01.2013	6,0	7,7	4,1	0,9	0,8	0,9	10,3	0,5	12,9	0,4		
4-7	02.2013	7,5	7,7	5,0	1,0	0,9	1,1	9,9	0,5	13,3	0,4		
4-8	03.2013	7,4	8,8	4,6	0,9	0,9	0,9	10,2	0,6	12,0	0,4		
4-9	04.2013	7,1	8,7	4,1	0,9	0,9	1,0	10,4	0,8	12,4	0,4		
4-10	05.2013	7,7	9,5	4,8	0,9	0,9	0,9	10,0	0,9	13,5	0,4		
4-11	06.2013	6,6	10,7	7,0	1,0	1,0	0,7	8,4	1,0	12,4	0,4		
4-12	07.2013	6,3	7,6	9,3	1,1	1,1	0,8	7,5	0,6	15,3	0,4		
	Min	5,3	7,3	4,1	0,5	0,3	0,5	7,5	0,5	11,1	0,1		
	Max	7,7	10,7	9,3	1,1	1,1	1,1	10,9	1,0	15,6	0,4		
	Mittelwert	6,4	8,3	5,9	0,9	0,8	0,8	9,6	0,7	13,2	0,4		
	Median	6,2	7,9	5,4	0,9	0,9	0,8	9,9	0,6	13,1	0,4		

Tabelle 51: Spurenelemente 1 [mg/kg] der Anlage 4

Probe		Sc	V	Cr	Mn	Со	Ni	Cu	Zn	Ga	Ge	As
4-1	06.09.2012	7,3	10,0	500	729		8,2	225	844	18,7	9,6	10,0
4-2	26.09.2012	3,0	53,4	143	4579	22,1	85,9	712	2970	12,4	4,1	8,2
4-3	11.10.2012	3,2	47,3	121	4932	16,3	70,3	698	2924	12,1	4,0	12,0
4-4	11.2012	2,8	47,3	112	4697	18,2	70,8	748	3750	12,4	3,3	12,8
4-5	12.2012	2,5	42,9	109	3682	16,6	66,8	744	3427	11,5	2,9	7,1
4-6	01.2013	2,8	54,0	122	3228	17,5	72,4	760	4263	12,2	3,1	14,6
4-7	02.2013	3,6	64,6	135	2097	17,4	75,9	807	4028	13,4	3,8	47,1
4-8	03.2013	3,1	60,5	144	2121	15,8	77,9	765	4195	12,6	3,4	9,4
4-9	04.2013	3,0	56,4	142	1872	14,8	74,0	782	3969	12,9	3,7	8,6
4-10	05.2013	3,0	52,2	154	1984	14,6	66,7	725	3482	12,1	3,7	7,1
4-11	06.2013	3,9	58,5	140	2310	15,1	75,8	665	3184	13,3	6,3	12,3
4-12	07.2013	5,5	70,3	151	2423	17,1	72,4	624	2923	13,8	6,9	9,8
	Min	2,5	10,0	109	729	14,6	8,2	225	844	11,5	2,9	7,1
	Max	7,3	70,3	500	4932	22,1	85,9	807	4263	18,7	9,6	47,1
	Mittelwert	3,6	51,4	164	2888	16,9	68,1	688	3330	13,1	4,6	13,3
	Median	3,1	53,7	141	2366	16,6	72,4	735	3454	12,5	3,7	9,9

Tabelle 52: Spurenelemente 2 [mg/kg] der Anlage 4

Probe		Se	Sr	Υ	Zr	Nb	Мо	Ag	Cd	Sn	Sb	Ва
4-1	06.09.2012		67	16,7	24	14,5	17,3	9,0	3,9	16,7	15,3	128
4-2	26.09.2012	1,4	437	7,5	149	11,2	16,4	8,8	3,6	76,8	12,8	
4-3	11.10.2012	1,6	420	7,3	198	10,5	15,9	8,1	3,1	75,2	12,3	
4-4	11.2012	1,5	426	5,8	190	9,6	17,3	10,6	3,1	85,0	12,4	
4-5	12.2012	1,4	421	4,5	152	9,0	17,5	7,8	2,7	84,0	11,0	
4-6	01.2013	1,4	440	5,7	172	12,0	17,7	8,4	5,7	94,8	23,5	
4-7	02.2013	1,4	494	7,3	134	14,8	16,7	9,7	3,8	93,1	17,4	
4-8	03.2013	1,7	490	6,4	152	13,7	16,9	8,6	3,7	94,7	16,7	

Probe		Se	Sr	Υ	Zr	Nb	Мо	Ag	Cd	Sn	Sb	Ва
4-9	04.2013	1,7	492	7,4	148	13,0	17,7	8,6	3,1	95,6	16,5	
4-10	05.2013	1,3	479	6,5	140	11,9	15,7	6,4	2,7	91,3	13,7	
4-11	06.2013	1,8	519	10,3	116	12,5	15,4	11,8	2,3	79,6	14,2	
4-12	07.2013	1,7	406	13,0	121	14,3	13,1	6,7	2,6	69,9	11,8	
	Min	1,3	67	4,5	24	9,0	13,1	6,4	2,3	16,7	11,0	128
	Max	1,8	519	16,7	198	14,8	17,7	11,8	5,7	95,6	23,5	
	Mittelwert	1,5	424	8,2	141	12,3	16,4	8,7	3,4	79,7	14,8	128
	Median	1,5	439	7,3	148	12,2	16,8	8,6	3,1	84,5	13,9	128

Tabelle 53: Spurenelemente 3 [mg/kg] der Anlage 4

Probe		La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er
4-1	06.09.2012	45,6	63,7	6,7	24,6	4,2	1,0	4,5	0,8	2,8	0,8	1,7
4-2	26.09.2012	15,6	26,6	2,6	10,0	1,9	0,4	2,2	0,2	1,5	0,3	0,9
4-3	11.10.2012	15,8	26,7	2,6	9,9	1,8	0,4	2,1	0,2	1,4	0,3	0,8
4-4	11.2012	11,3	19,1	1,9	7,8	1,5	0,3	1,8	0,2	1,2	0,2	0,8
4-5	12.2012	9,8	16,0	1,5	5,8	1,1	0,3	1,3	0,2	0,9	0,2	0,6
4-6	01.2013	10,7	18,8	1,8	7,2	1,4	0,3	1,6	0,2	1,2	0,2	0,7
4-7	02.2013	11,9	22,1	2,3	9,3	1,8	0,5	2,0	0,3	1,6	0,3	0,9
4-8	03.2013	11,0	19,3	1,9	7,7	1,6	0,4	1,8	0,2	1,3	0,2	0,8
4-9	04.2013	14,7	24,5	2,5	9,8	1,8	0,5	2,0	0,2	1,4	0,3	0,8
4-10	05.2013	17,5	28,0	2,6	9,8	1,7	0,4	1,8	0,2	1,2	0,2	0,7
4-11	06.2013	36,3	52,9	5,2	19,3	3,0	0,6	3,0	0,3	1,9	0,3	1,0
4-12	07.2013	32,6	55,7	5,3	19,9	3,4	0,7	3,4	0,4	2,3	0,4	1,3
	Min	9,8	16,0	1,5	5,8	1,1	0,3	1,3	0,2	0,9	0,2	0,6
	Max	45,6	63,7	6,7	24,6	4,2	1,0	4,5	0,8	2,8	0,8	1,7
	Mittelwert	19,4	31,1	3,1	11,8	2,1	0,5	2,3	0,3	1,6	0,3	0,9
	Median	15,1	25,6	2,5	9,8	1,8	0,4	2,0	0,2	1,4	0,3	0,8

Tabelle 54: Spurenelemente 4 [mg/kg] der Anlage 4

Probe		Tm	Yb	Lu	Hf	Та	W	Au	Hg	Pb	Th	U
4-1	06.09.2012	0,5	1,6	0,4	4,3	1,4	< 6,0	4,3		54	5,7	3,9
4-2	26.09.2012	0,1	0,9	0,1	3,6	0,7	54,5	1,2	0,6	293	1,4	2,7
4-3	11.10.2012	0,1	0,8	0,1	4,7	0,6	18,4	1,3	0,2	268	1,3	2,6
4-4	11.2012	0,1	0,8	0,1	4,7	0,6	42,0	1,5	0,4	295	1,0	2,7
4-5	12.2012	0,1	0,6	0,1	4,4	0,6	31,6	1,6	0,3	254	1,0	2,7
4-6	01.2013	0,1	0,7	0,1	4,1	0,7	20,4	1,4	0,2	363	1,2	3,0
4-7	02.2013	0,1	0,9	0,1	3,5	0,8	22,0	1,2	0,2	328	1,4	3,7
4-8	03.2013	0,1	0,8	0,1	3,4	0,7	16,7	1,1	0,2	319	1,3	3,6
4-9	04.2013	0,1	0,8	0,1	3,8	0,7	19,6	1,2	0,2	285	1,8	3,7
4-10	05.2013	0,1	0,7	0,1	3,1	0,7	11,4	1,3	0,1	274	1,9	3,3
4-11	06.2013	0,1	1,0	0,1	3,2	0,7	12,0	1,2	0,2	286	2,9	3,0
4-12	07.2013	0,2	1,3	0,2	3,0	0,8	14,5	0,9	0,1	304	3,1	3,3

Probe		Tm	Yb	Lu	Hf	Та	W	Au	Hg	Pb	Th	U
	Min	0,1	0,6	0,1	3,0	0,6	< 6,0	0,9	0,1	54	1,0	2,6
	Max	0,5	1,6	0,4	4,7	1,4	54,5	4,3	0,6	363	5,7	3,9
	Mittelwert	0,1	0,9	0,1	3,8	0,8	22,4	1,5	0,3	277	2,0	3,2
	Median	0,1	0,8	0,1	3,7	0,7	19,0	1,2	0,2	289	1,4	3,1

11.3.5 Anlage 5

Tabelle 55: Hauptelemente [%], Wassergehalt (RF) [%], Glühverlust (GV) [%] der Anlage 5

Probe		Al	Ca	Fe	K	Mg	Na	Р	S	Si	Ti	RF	GV
5-1	27.03.12	5,8	7,7	8,6	0,9	0,5	0,9	4,4	0,9	18,8	0,1	0,2	2,2
5-2	27.04.12	5,3	7,3	8,5	1,0	0,5	0,8	4,5	0,8	17,7	0,1	0,2	1,8
5-3	03.05.12	5,6	7,3	9,0	1,0	0,5	0,9	4,8	0,7	19,0	0,1	0,1	2,1
5-4	11.06.12	5,5	7,2	8,6	0,9	0,5	1,0	4,5	0,7	18,8	0,1	0,1	1,7
5-5	16.07.12	5,5	6,5	8,0	1,0	0,5	0,8	3,9	0,7	19,2	0,1	0,1	1,8
5-6	14.08.12	5,5	6,1	7,6	1,0	0,5	0,8	3,6	0,7	21,4	0,1	0,1	1,7
5-7	05.09.2012	6,8	7,7	9,5	1,1	1,6	0,8	4,7	0,7	23,7	0,5	0,1	1,7
5-8	25.10.2012	6,7	8,2	10,3	1,1	1,7	0,9	5,7	0,6	21,5	0,5	0,1	2,3
5-9	25.11.2012	6,8	9,8	10,5	1,2	1,7	0,9	5,8	0,7	21,1	0,5	0,2	3,2
5-10	07.12.2012	6,6	8,2	10,1	1,0	1,7	0,7	5,5	0,6	22,4	0,5	0,1	2,3
5-11	11.01.2013	7,0	8,9	10,8	1,1	1,8	0,8	5,9	0,6	20,2	0,5	0,1	2,1
5-12	13.03.2013	7,1	8,7	10,8	1,1	1,8	0,8	5,8	0,6	21,3	0,5	0,1	2,9
	Min	5,3	6,1	7,6	0,9	0,5	0,7	3,6	0,6	17,7	0,1		
	Max	7,1	9,8	10,8	1,2	1,8	1,0	5,9	0,9	23,7	0,5		
	Mittelwert	6,2	7,8	9,3	1,0	1,1	0,8	4,9	0,7	20,4	0,3		
	Median	6,2	7,7	9,3	1,0	1,1	0,8	4,7	0,7	20,6	0,3		

Tabelle 56: Spurenelemente 1 [mg/kg] der Anlage 5

Probe		Sc	V	Cr	Mn	Со	Ni	Cu	Zn	Ga	Ge	As
5-1	27.03.12	10,7	244	252	1994		163	852	2671	18,9	12,0	24,0
5-2	27.04.12	11,2	274	202	1672		151	837	2446	19,5	12,5	26,0
5-3	03.05.12	11,7	314	181	1416		186	932	2527	19,5	12,8	27,0
5-4	11.06.12	10,9	311	185	1307		140	963	2426	18,4	11,6	29,2
5-5	16.07.12	10,9	244	183	1252		125	786	2340	18,6	11,7	23,0
5-6	14.08.12	11,2	221	180	1205		130	618	2268	18,3	11,6	21,8
5-7	05.09.2012	8,6	244	184	1216	22,6	204	1521	2103	15,7	7,6	19,7
5-8	25.10.2012	8,2	276	169	1499	21,5	153	842	2286	16,0	7,7	22,8
5-9	25.11.2012	8,4	265	172	1541	22,6	137	653	2362	16,3	8,2	22,5
5-10	07.12.2012	8,3	679	160	1080	25,1	153	670	2370	15,8	7,8	23,2
5-11	11.01.2013	8,6	622	169	1129	22,0	272	663	2452	16,7	8,7	20,7
5-12	13.03.2013	8,6	652	174	1122	22,2	161	722	2461	16,3	7,8	22,3
	Min	8,2	221	160	1080	21,5	125	618	2103	15,7	7,6	19,7
	Max	11,7	679	252	1994	25,1	272	1521	2671	19,5	12,8	29,2

Probe		Sc	٧	Cr	Mn	Со	Ni	Cu	Zn	Ga	Ge	As
	Mittelwert	9,8	362	184	1369	22,7	164	838	2393	17,5	10,0	23,5
	Median	9,7	275	180	1280	22,4	153	812	2398	17,5	10,2	22,9

Tabelle 57: Spurenelemente 2 [mg/kg] der Anlage 5

Probe		Se	Sr	Υ	Zr	Nb	Мо	Ag	Cd	Sn	Sb	Ва
5-1	27.03.12		2291	20,2	107	12,3	27,9	6,3	5,0	77,9	26,1	10380
5-2	27.04.12		2031	21,9	103	12,7	29,1	7,2	5,3	67,4	21,8	8991
5-3	03.05.12		2340	21,8	112	12,7	31,1	5,4	5,2	74,4	25,7	10280
5-4	11.06.12		2301	21,0	116	12,7	27,7	4,7	4,9	71,8	24,1	10170
5-5	16.07.12		2140	21,4	99	12,6	27,5	4,9	4,4	59,8	18,4	9718
5-6	14.08.12		1958	21,7	106	12,4	24,5	3,2	3,9	60,4	15,8	9119
5-7	05.09.2012		1495	16,9	114	10,7	22,6	6,6	5,2	63,1	20,3	9936
5-8	25.10.2012		1920	17,0	105	10,4	27,4	7,1	3,9	80,3	13,7	12540
5-9	25.11.2012		2072	18,2	110	10,7	29,2	7,2	3,6	73,4	12,0	13650
5-10	07.12.2012		1661	17,3	105	10,8	23,4	5,2	3,5	86,2	19,3	11630
5-11	11.01.2013		1848	17,4	110	10,7	22,6	4,6	3,5	90,2	20,0	13110
5-12	13.03.2013		1710	17,3	113	10,5	23,7	5,1	3,7	71,6	20,0	12150
	Min		1495	16,9	99	10,4	22,6	3,2	3,5	59,8	12,0	8991
	Max		2340	21,9	116	12,7	31,1	7,2	5,3	90,2	26,1	13650
	Mittelwert		1981	19,3	108	11,6	26,4	5,6	4,4	73,0	19,8	10973
	Median		1995	19,2	108	11,5	27,5	5,3	4,2	72,6	20,0	10330

Tabelle 58: Spurenelemente 3 [mg/kg] der Anlage 5

Probe		La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er
5-1	27.03.12	47,0	75,2	7,4	26,7	5,7	2,0	5,3	1,0	3,8	1,0	2,2
5-2	27.04.12	45,3	67,8	7,3	26,5	5,9	1,9	5,3	1,0	4,0	1,0	2,3
5-3	03.05.12	44,5	72,7	7,7	29,0	6,2	2,1	5,7	1,1	4,2	1,1	2,4
5-4	11.06.12	44,3	71,7	7,5	27,5	5,9	2,0	5,4	1,0	4,0	1,0	2,3
5-5	16.07.12	42,4	71,9	7,6	28,0	6,0	2,0	5,4	1,0	4,1	1,1	2,4
5-6	14.08.12	40,0	69,2	7,5	27,6	6,1	1,9	5,5	1,0	4,2	1,1	2,4
5-7	05.09.2012	37,7	62,4	6,5	24,4	5,1	1,3	4,4	0,6	3,3	0,6	1,8
5-8	25.10.2012	37,4	62,1	6,4	24,0	5,1	1,4	4,3	0,6	3,3	0,6	1,8
5-9	25.11.2012	37,6	62,9	6,3	23,9	5,1	1,4	4,5	0,7	3,4	0,7	1,9
5-10	07.12.2012	33,8	58,7	6,2	23,2	4,9	1,3	4,3	0,6	3,5	0,7	1,9
5-11	11.01.2013	35,3	61,8	6,5	24,7	5,3	1,4	4,5	0,6	3,5	0,7	1,9
5-12	13.03.2013	34,5	59,3	6,3	24,0	5,4	1,3	4,4	0,6	3,4	0,7	1,8
	Min	33,8	58,7	6,2	23,2	4,9	1,3	4,3	0,6	3,3	0,6	1,8
	Max	47,0	75,2	7,7	29,0	6,2	2,1	5,7	1,1	4,2	1,1	2,4
	Mittelwert	40,0	66,3	6,9	25,8	5,6	1,7	4,9	0,8	3,7	0,9	2,1
	Median	38,8	65,3	6,9	25,6	5,5	1,7	4,9	0,8	3,7	0,8	2,0

Tabelle 59: Spurenelemente 4 [mg/kg] der Anlage 5

Probe		Tm	Yb	Lu	Hf	Та	W	Au	Hg	Pb	Th	U
5-1	27.03.12	0,6	2,0	0,5	3,2	3,4	24,6	0,6		274	8,6	5,5
5-2	27.04.12	0,6	2,1	0,5	3,4	2,4	19,2	1,5		259	9,1	5,8
5-3	03.05.12	0,6	2,2	0,5	3,6	2,9	17,8	0,8		265	9,8	5,9
5-4	11.06.12	0,6	2,1	0,5	3,6	2,5	24,3	0,6		259	9,1	5,6
5-5	16.07.12	0,6	2,2	0,5	3,4	2,6	21,1	0,6		242	9,2	5,1
5-6	14.08.12	0,6	2,2	0,5	3,3	2,1	16,8	0,6		212	9,6	5,0
5-7	05.09.2012	0,2	1,6	0,2	2,7	2,9	45,0	0,5	1,6	268	8,2	4,3
5-8	25.10.2012	0,2	1,6	0,2	2,6	1,4	46,4	0,5	3,0	250	8,1	4,8
5-9	25.11.2012	0,3	1,7	0,3	2,9	1,3	48,9	1,1	3,6	245	8,3	4,9
5-10	07.12.2012	0,3	1,8	0,3	2,9	1,3	73,4	5,7	2,6	231	8,2	5,3
5-11	11.01.2013	0,3	1,7	0,3	2,9	1,3	51,5	0,4	1,7	232	8,4	5,2
5-12	13.03.2013	0,3	1,7	0,2	2,7	1,2	57,5	0,3	2,9	250	8,2	5,1
	Min	0,2	1,6	0,2	2,6	1,2	16,8	0,3	1,6	212	8,1	4,3
	Max	0,6	2,2	0,5	3,6	3,4	73,4	5,7	3,6	274	9,8	5,9
	Mittelwert	0,4	1,9	0,4	3,1	2,1	37,2	1,1	2,6	249	8,7	5,2
	Median	0,4	1,9	0,4	3,1	2,3	34,8	0,6	2,7	250	8,5	5,2

Tabelle 60: Platingruppenelemente [µg/kg] der Anlage 5

Probe		Rh	Pd	Pt
5-1	27.03.12	15	60	73

11.3.6 Anlage 6

Tabelle 61: Hauptelemente [%], Wassergehalt (RF) [%], Glühverlust (GV) [%] der Anlage 6

Probe		Al	Ca	Fe	K	Mg	Na	Р	S	Si	Ti	RF	GV
6-1	14.02.12	7,6	8,6	5,6		1,6	0,2	4,0	0,5	13,7	1,5	49,2	0,6
6-2	06.03.12	7,5	9,0	5,0		1,4	0,3	4,0	0,6	12,0	1,5	49,3	0,6
6-3	12.04.12	7,7	9,6	5,3		1,5	0,2	4,0	0,7	10,1	1,2	46,8	0,5
6-4	22.05.12	6,9	9,2	5,2		1,4	0,2	4,0	0,7	8,5	0,9	45,8	0,6
6-5	05.06.12	6,5	9,6	5,1		1,4	0,2	4,0	0,7	10,3	0,9	48,4	0,6
6-6	04.07.12	7,2	8,8	4,6		1,4	0,2	4,1	0,5	10,4	0,9	46,3	1,4
6-7	10.08.2012	8,6	9,9	5,9	0,5	0,9	0,3	4,0	0,5	18,5	0,7	44,3	0,5
6-8	05.09.2012	9,4	11,7	5,3	0,6	1,0	0,3	4,2	0,8	21,3	1,1	44,2	0,6
6-9	09.10.2012	8,8	13,6	5,0	0,5	1,0	0,3	3,7	0,9	20,5	1,0	35,4	0,5
6-10	06.11.2012	9,1	10,5	6,4	0,6	0,9	0,4	4,0	0,5	21,8	1,0	43,0	0,4
6-11	04.12.2012	9,0	10,0	5,6	0,6	1,1	0,4	4,3	0,4	13,7	1,0	43,1	0,5
6-12	21.01.2013	8,4	12,1	7,5	0,5	1,1	0,4	4,7	0,6	20,9	0,8	43,5	0,4
	Min	6,5	8,6	4,6	0,5	0,9	0,2	3,7	0,4	8,5	0,7		
	Max	9,4	13,6	7,5	0,6	1,6	0,4	4,7	0,9	21,8	1,5		
	Mittelwert	8,1	10,2	5,5	0,6	1,2	0,3	4,1	0,6	15,1	1,0		
	Median	8,1	9,8	5,3	0,5	1,2	0,3	4,0	0,6	13,7	1,0		

Tabelle 62: Spurenelemente 1 [mg/kg] der Anlage 6

Probe		Sc	V	Cr	Mn	Со	Ni	Cu	Zn	Ga	Ge	As
6-1	14.02.12	7,5	38,9	127	6488		41,4	364	1255	21,3	7,9	19,3
6-2	06.03.12	7,7	39,9	121	6418			944	1232	20,8	7,2	20,7
6-3	12.04.12	8,0	36,1	133	5646		48,5	370	1309	21,6	7,1	17,2
6-4	22.05.12	7,1	31,2	120	5110		47,7	382	1249	18,8	6,7	14,3
6-5	05.06.12	7,2	31,5	112	4980		40,2	380	1238	21,0	7,2	43,7
6-6	04.07.12	6,9	30,8	127	5229		50,1	379	1283	20,1	6,4	17,6
6-7	10.08.2012	4,3	30,3	105	4735		46,0	344	1247	17,6	4,3	15,6
6-8	05.09.2012	4,5	30,5	95	5040		62,9	347	1345	18,5	4,1	15,7
6-9	09.10.2012	4,2	26,8	78	5018		77,4	290	1131	16,7	3,9	11,0
6-10	06.11.2012	4,4	32,3	84	5209		96,9	287	1240	17,2	3,8	12,4
6-11	04.12.2012	4,8	34,1	82	5324		83,2	302	1230	17,1	4,1	13,6
6-12	21.01.2013	5,6	40,3	109	5747	39,7	81,9	320	1217	18,4	5,4	15,4
	Min	4,2	26,8	78	4735	39,7	40,24	287	1131	16,7	3,8	11,0
	Max	8,0	40,3	133	6488		96,92	944	1345	21,6	7,9	43,7
	Mittelwert	6,0	33,5	108	5412	39,7	61,5	392	1248	19,1	5,7	18,0
	Median	6,3	31,9	111	5219	39,7	50,1	356	1244	18,7	5,9	15,7

Tabelle 63: Spurenelemente 2 [mg/kg] der Anlage 6

Probe		Se	Sr	Υ	Zr	Nb	Мо	Ag	Cd	Sn	Sb	Ва
6-1	14.02.12		243	8,6	462	12,8	9,4	3,0	1,6	31,5	10,6	2099
6-2	06.03.12		243	8,8	537	13,9	10,1	4,1	1,5	31,3	9,2	1648
6-3	12.04.12		259	8,5	641	12,5	12,8	3,7	1,5	34,2	13,9	2086
6-4	22.05.12		258	7,6	489	10,8	13,7	3,2	1,5	32,7	9,4	1838
6-5	05.06.12		261	8,3	463	11,1	13,9	3,3	1,6	32,9	12,6	1608
6-6	04.07.12		242	7,9	418	11,8	13,7	3,3	1,6	32,2	10,6	1840
6-7	10.08.2012		240	8,8	239	9,8	11,5	13,0	1,6	30,2	6,1	1210
6-8	05.09.2012		273	8,5	280	11,1	13,8	13,2	1,9	31,5	8,4	1759
6-9	09.10.2012		283	8,1	325	10,2	13,1	14,0	1,3	27,2	9,4	1702
6-10	06.11.2012		244	8,5	271	10,5	11,9	12,5	1,4	30,8	11,9	1627
6-11	04.12.2012		241	8,7	384	10,4	12,7	12,6	1,6	30,0	11,7	2238
6-12	21.01.2013		276	9,2	327	10,4	10,4	11,4	3,1	31,3	7,7	1821
	Min		240	7,6	239	9,8	9,4	3,0	1,3	27,2	6,1	1210
	Max		283	9,2	641	13,9	13,9	14,0	3,1	34,2	13,9	2238
	Mittelwert		255	8,5	403	11,3	12,2	8,1	1,7	31,3	10,1	1790
	Median		251	8,5	401	10,9	12,7	7,7	1,6	31,4	10,0	1790

Tabelle 64: Spurenelemente 3 [mg/kg] der Anlage 6

Probe		La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er
6-1	14.02.12	31,8	65,6	4,8	16,7	2,8	0,6	2,6	0,6	1,6	0,5	0,8
6-2	06.03.12	30,7	60,0	4,7	16,5	2,8	0,5	2,6	0,6	1,6	0,5	0,8
6-3	12.04.12	37,9	74,7	4,8	16,3	2,7	0,6	2,6	0,5	1,5	0,5	0,8

Probe		La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er
6-4	22.05.12	30,6	60,7	4,3	14,4	2,4	0,5	2,3	0,5	1,4	0,5	0,7
6-5	05.06.12	36,6	70,7	5,1	17,0	2,8	0,6	2,6	0,6	1,5	0,5	0,8
6-6	04.07.12	30,3	59,2	4,5	15,3	2,6	0,6	2,4	0,5	1,5	0,5	0,8
6-7	10.08.2012	41,6	76,2	5,6	18,9	3,1	0,6	2,9	0,5	1,8	0,4	1,0
6-8	05.09.2012	38,6	69,7	5,4	18,3	3,0	0,6	2,8	0,5	1,8	0,4	1,0
6-9	09.10.2012	35,2	65,0	5,0	16,7	2,8	0,6	2,6	0,5	1,7	0,4	1,0
6-10	06.11.2012	35,0	63,7	5,1	17,2	2,9	0,6	2,8	0,5	1,8	0,4	1,0
6-11	04.12.2012	34,6	63,5	5,4	18,8	3,2	0,6	2,9	0,5	1,9	0,5	1,1
6-12	21.01.2013	39,9	73,6	5,0	17,0	2,9	0,6	2,6	0,3	1,7	0,3	0,9
	Min	30,3	59,2	4,3	14,4	2,4	0,5	2,3	0,3	1,4	0,3	0,7
	Max	41,6	76,2	5,6	18,9	3,2	0,6	2,9	0,6	1,9	0,5	1,1
	Mittelwert	35,2	66,9	5,0	16,9	2,8	0,6	2,6	0,5	1,7	0,5	0,9
	Median	35,1	65,3	5,0	16,8	2,8	0,6	2,6	0,5	1,6	0,5	0,9

Tabelle 65: Spurenelemente 4 [mg/kg] der Anlage 6

Probe		Tm	Yb	Lu	Hf	Та	W	Au	Hg	Pb	Th	U
6-1	14.02.12	0,3	0,7	0,4	11,2	1,5	32,1	<0,145		63,4	4,9	3,7
6-2	06.03.12	0,3	0,7	0,4	13,1	1,5	32,5	4,1		51,4	4,9	3,9
6-3	12.04.12	0,3	0,7	0,4	15,3	1,4	29,0	0,4		52,2	5,1	3,7
6-4	22.05.12	0,3	0,7	0,4	11,7	1,3	27,0	<0,145		61,4	5,1	3,4
6-5	05.06.12	0,3	0,7	0,4	11,2	1,3	28,8	0,2		62,1	5,6	3,7
6-6	04.07.12	0,3	0,7	0,4	10,3	1,3	36,8	0,2		59,5	5,2	3,8
6-7	10.08.2012	0,3	0,9	0,2	7,4	1,1	33,5	0,5		74,4	6,6	4,5
6-8	05.09.2012	0,2	0,9	0,2	8,7	1,2	38,1	0,8		81,7	6,7	5,1
6-9	09.10.2012	0,3	0,9	0,2	10,3	1,3	39,7	1,6		45,2	6,2	5,0
6-10	06.11.2012	0,3	0,9	0,2	8,5	1,2	52,8	0,5		46,1	6,7	5,0
6-11	04.12.2012	0,3	1,0	0,2	12,3	1,3	39,5	0,6		50,8	7,0	5,2
6-12	21.01.2013	0,1	0,8	0,1	8,6	1,3	39,8	0,4	0,9	87,0	5,5	4,0
	Min	0,1	0,7	0,1	7,4	1,1	27,0	<0,145	0,9	45,2	4,9	3,4
	Max	0,3	1,0	0,4	15,3	1,5	52,8	4,1		87,0	7,0	5,2
	Mittelwert	0,2	0,8	0,3	10,7	1,3	35,8	0,8	0,9	61,3	5,8	4,3
	Median	0,3	0,8	0,3	10,8	1,3	35,2	0,4	0,9	60,4	5,5	3,9

Tabelle 66: Platingruppenelemente [µg/kg] der Anlage 6

Probe		Rh	Pd	Pt
6-1	14.02.12	1,1	21	1036

11.3.7 Anlage 7

Tabelle 67: Hauptelemente [%], Wassergehalt (RF) [%], Glühverlust (GV) [%] der Anlage 7

Probe	Al	Ca	Fe	K	Mg	Na	Р	S	Si	Ti	RF	GV

Probe		Al	Ca	Fe	K	Ma	Na	Р	S	Si	Ti	RF	GV
Probe		Al	Ca	re	r	Mg	Na	P	0	ા		KF	9
7-1	Februar 12	5,2	8,3	8,1		1,9	0,5	5,4	1,0	19,1	0,6	0,4	0,3
7-2	März 12	5,4	9,4	8,7		2,0	0,4	6,3	1,1	17,6	0,5	0,8	0,8
7-3	April 12	5,3	8,0	7,9		1,7	0,5	5,8	1,0	21,2	0,5	0,4	0,8
7-4	Juni 2012	7,9	9,7	8,2	0,9	1,6	0,5	6,1	1,2	17,0	0,4	0,3	0,5
7-5	September 2012	8,1	8,4	9,0	0,9	1,7	0,5	6,1	1,0	18,6	0,4	0,2	0,2
7-6	Oktober 2012	7,7	8,8	9,4	0,9	1,6	0,6	6,4	1,0	17,8	0,4	0,3	0,3
7-7	November 2012	6,8	8,8	10,5	1,2	1,9	0,8	6,7	1,0	16,6	0,5	0,2	0,3
7-8	Dezember 2012	7,1	9,5	10,6	0,8	1,7	0,7	6,6	1,1	14,9	0,6	0,5	0,7
7-9	Januar 2013	7,6	9,8	10,8	0,6	1,8	0,7	7,2	1,1	17,5	0,6	2,0	1,3
7-10	März 2013	8,5	8,2	10,1	1,1	1,5	0,8	6,5	1,0	13,7	0,4	6,3	1,1
7-11	Mai 2013	8,2	8,6	10,5	0,9	1,5	0,8	6,2	1,1	13,4	0,4	5,5	1,4
7-12	Juni 2013	8,0	9,5	9,4	1,1	1,4	0,6	5,7	1,2	14,2	0,4	9,8	1,5
7-13	Juli 2013	5,1	9,4	8,8	1,2	1,2	0,8	5,8	1,2	16,8	0,4	12,5	1,4
7-14	August 2013	4,9	8,6	8,2	1,2	1,2	0,8	5,2	1,1	17,1	0,4	7,5	1,4
7-15	September 2013	3,9	8,5	8,6	1,1	1,1	0,7	5,2	1,1	16,6	0,4	14,0	1,7
	Min	3,9	8,0	7,9	0,6	1,1	0,4	5,2	1,0	13,4	0,4		
	Max	8,5	9,8	10,8	1,2	2,0	0,8	7,2	1,2	21,2	0,6		
	Mittelwert	6,6	8,9	9,2	1,0	1,6	0,7	6,1	1,1	16,8	0,5		
	Median	7,1	8,8	9,0	1,0	1,6	0,7	6,1	1,1	17,0	0,4		

Tabelle 68: Spurenelemente 1 [mg/kg] der Anlage 7

Probe		Sc	V	Cr	Mn	Со	Ni	Cu	Zn	Ga	Ge	As
7-1	Februar 12	12,1	212	409	1500		166	1448	3042	24,7	11,5	25,4
7-2	März 12	7,8	176	573	1655		247	1244	3574	18,3	8,4	17,3
7-3	April 12	8,6	148	559	1583		236	1277	3018	23,1	9,0	21,3
7-4	Juni 2012	7,0	94	423	1202		211	914	3020	16,1	5,7	15,4
7-5	September 2012	6,8	75	294	1273		147	889	2822	14,4	5,6	11,4
7-6	Oktober 2012	6,8	94	317	1426		171	954	2735	13,6	5,2	15,1
7-7	November 2012	5,7	127	325	1542	24,6	130	1419	2601	12,8	4,8	10,3
7-8	Dezember 2012	6,3	123	458	1438	59,1	291	1938	3451	14,3	5,7	15,7
7-9	Januar 2013	5,6	118	437	1290	57,3	229	1912	3423	12,8	5,3	11,5
7-10	März 2013	7,0	164	403	1227	37,4	239	1598	3788	13,5	6,0	14,1
7-11	Mai 2013	7,0	144	404	1257	53,2	321	2092	4567	14,2	6,8	14,8

Probe		Sc	V	Cr	Mn	Со	Ni	Cu	Zn	Ga	Ge	As
7-12	Juni 2013	7,3	123	411	1182	68,9	208	3069	4209	17,0	6,7	15,1
7-13	Juli 2013	5,3	117	443	1139	30,8	197	1209	3970	13,2	4,2	15,8
7-14	August 2013	4,5	151	734	1157	27,2	286	1674	4156	13,2	4,1	16,2
7-15	September 2013	4,5	127	446	1192	28,8	191	1118	3053	15,0	4,1	13,7
	Min	4,5	75	294	1139	24,6	130	889	2601	12,8	4,1	10,3
	Max	12,1	212	734	1655	68,9	321	3069	4567	24,7	11,5	25,4
	Mittelwert	6,8	133	442	1337	43,0	218	1517	3429	15,7	6,2	15,5
	Median	6,8	127	423	1273	37,4	211	1419	3423	14,3	5,7	15,1

Tabelle 69: Spurenelemente 2 [mg/kg] der Anlage 7

Probe		Se	Sr	Υ	Zr	Nb	Мо	Ag	Cd	Sn	Sb	Ва
7-1	Februar 12		538	20,6	226	23,7	37,4	7,3	8,1	121,6	65,6	2267
7-2	März 12		553	13,2	149	16,5	26,6	7,6	7,8	130,5	35,5	2884
7-3	April 12		542	15,4	176	14,4	26,5	8,3	7,8	123,7	48,6	2076
7-4	Juni 2012		472	14,0	143	14,1	20,8	11,2	7,1	97,5	37,6	1644
7-5	September 2012		406	15,0	122	11,4	20,9	9,5	5,8	80,5	33,2	1005
7-6	Oktober 2012		448	13,6	136	13,4	22,8	9,7	6,0	88,1	43,4	1057
7-7	November 2012		454	12,9	132	11,8	21,5	0,5	5,6	89,9	59,2	1413
7-8	Dezember 2012		578	13,3	124	17,6	46,8	11,4	80,3	179,7	50,4	3241
7-9	Januar 2013		556	12,2	131	12,2	37,1	10,2	7,3	157,7	42,9	2959
7-10	März 2013	3,1	598	12,6	109	14,6	32,4	15,4	6,5	150,8	60,2	
7-11	Mai 2013	3,3	641	12,5	109	13,5	69,2	5,7	8,3	161,8	61,3	
7-12	Juni 2013	3,2	559	12,9	106	13,3	37,1	7,6	6,1	131,0	32,2	
7-13	Juli 2013	3,4	566	12,4	120	11,9	27,5	6,2	5,5	124,1	27,0	5347
7-14	August 2013	2,9	514	11,5	108	11,8	25,8	7,4	10,0	152,7	27,0	5282
7-15	September 2013	2,9	526	11,6	122	12,1	26,8	5,9	5,9	122,7	25,9	4610
	Min	2,9	406	11,5	106	11,4	20,8	0,5	5,5	80,5	25,9	1005
	Max	3,4	641	20,6	226	23,7	69,2	15,4	80,3	179,7	65,6	
	Mittelwert	3,1	530	13,6	134	14,2	31,9	8,3	11,9	127,5	43,3	2815
	Median	3,1	542	12,9	124	13,4	26,8	7,6	7,1	124,1	42,9	2576

Tabelle 70: Spurenelemente 3 [mg/kg] der Anlage 7

Probe		La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er
7-1	Februar 12	101,3	79,9	10,7	24,9	4,6	1,2	5,9	0,9	3,3	0,8	1,9
7-2	März 12	34,5	56,6	4,7	15,9	3,1	0,8	4,4	0,7	2,3	0,7	1,3

Probe		La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er
7-3	April 12	35,8	65,4	5,0	18,0	3,5	0,8	4,1	0,7	2,6	0,7	1,5
7-4	Juni 2012	34,8	63,2	5,3	19,0	3,8	1,0	3,9	0,6	2,7	0,7	1,5
7-5	September 2012	31,3	56,7	5,2	18,8	3,8	1,0	3,7	0,6	2,6	0,7	1,5
7-6	Oktober 2012	34,3	61,9	5,3	18,4	3,7	1,0	3,8	0,6	2,6	0,7	1,5
7-7	November 2012	50,9	56,7	7,0	20,0	3,6	0,8	4,5	0,5	2,7	0,5	1,5
7-8	Dezember 2012	94,1	56,4	10,4	17,8	3,2	0,8	7,5	0,4	2,2	0,4	1,2
7-9	Januar 2013	72,7	54,1	8,5	16,6	3,1	0,7	5,8	0,4	2,1	0,4	1,2
7-10	März 2013	51,4	53,8	6,0	16,4	3,1	0,8	4,0	0,4	2,1	0,4	1,2
7-11	Mai 2013	88,2	55,5	9,2	17,2	3,1	0,8	4,8	0,4	1,9	0,3	1,1
7-12	Juni 2013	50,2	57,8	6,1	17,0	3,2	0,8	4,8	0,4	2,0	0,4	1,1
7-13	Juli 2013	24,9	49,4	4,1	15,6	3,2	0,7	3,2	0,4	2,4	0,5	1,4
7-14	August 2013	23,7	44,1	4,0	14,3	2,9	0,7	3,4	0,4	2,4	0,5	1,4
7-15	September 2013	21,6	45,2	3,7	14,3	3,0	0,7	4,8	0,4	2,4	0,5	1,4
	Min	21,6	44,1	3,7	14,3	2,9	0,7	3,2	0,4	1,9	0,3	1,1
	Max	101,3	79,9	10,7	24,9	4,6	1,2	7,5	0,9	3,3	0,8	1,9
	Mittelwert	50,0	57,1	6,3	17,6	3,4	0,8	4,6	0,5	2,4	0,5	1,4
	Median	35,8	56,6	5,3	17,2	3,2	0,8	4,4	0,4	2,4	0,5	1,4

Tabelle 71: Spurenelemente 4 [mg/kg] der Anlage 7

Probe		Tm	Yb	Lu	Hf	Та	W	Au	Hg	Pb	Th	U
7-1	Februar 12	0,4	1,8	0,6	4,9	2,0	68,1	0,3		335	7,2	6,1
7-2	März 12	0,3	1,2	0,5	3,3	1,5	30,6	0,4		266	4,4	4,8
7-3	April 12	0,4	1,4	0,5	3,5	1,6	36,8	0,9		272	5,3	4,9
7-4	Juni 2012	0,4	1,5	0,4	4,0	1,4	43,3	1,1		208	6,7	5,4
7-5	September 2012	0,3	1,5	0,4	3,5	1,2	41,7	0,9		227	6,5	5,5
7-6	Oktober 2012	0,4	1,5	0,4	3,9	1,4	54,8	0,8		256	6,5	5,5
7-7	November 2012	0,1	1,4	0,2	3,0	1,2	72,3	1,0		289	6,8	5,2
7-8	Dezember 2012	0,2	1,2	0,2	3,8	1,3	150,1	1,9	1,5	352	5,2	4,7
7-9	Januar 2013	0,2	1,1	0,2	3,1	1,2	144,2	1,5	1,2	337	5,2	4,9
7-10	März 2013	0,2	1,2	0,2	2,9	1,1	64,5	1,5	1,1	482	4,9	4,9
7-11	Mai 2013	0,1	1,0	0,1	2,9	1,1	55,6	0,9	1,4	504	4,4	4,7
7-12	Juni 2013	0,1	1,1	0,1	2,5	1,0	78,2	0,7	1,9	383	4,7	4,0
7-13	Juli 2013	0,2	1,4	0,2	3,2	1,3	81,7	0,9	1,8	311	5,5	6,1

Probe		Tm	Yb	Lu	Hf	Та	W	Au	Hg	Pb	Th	U
7-14	August 2013	0,2	1,4	0,2	3,4	1,3	80,5	0,7	1,8	328	4,9	5,6
7-15	September 2013	0,2	1,4	0,2	3,7	1,5	98,9	1,1	2,4	293	5,1	5,6
	Min	0,1	1,0	0,1	2,5	1,0	30,6	0,3	1,1	208	4,4	4,0
	Max	0,4	1,8	0,6	4,9	2,0	150,1	1,9	2,4	504	7,2	6,1
	Mittelwert	0,3	1,3	0,3	3,4	1,3	73,4	1,0	1,6	323	5,6	5,2
	Median	0,2	1,4	0,2	3,4	1,3	68,1	0,9	1,6	311	5,2	5,2

Tabelle 72: Platingruppenelemente [µg/kg] der Anlage 7

Probe		Rh	Pd	Pt
7-1	Februar 12	19,1	96	63

11.3.8 Anlage 8

Tabelle 73: Hauptelemente [%], Wassergehalt (RF) [%], Glühverlust (GV) [%] der Anlage 8

					. , -		•						
Probe		Al	Ca	Fe	K	Mg	Na	Р	S	Si	Ti	RF	GV
8-1	09/11	8,4	8,5	2,5	0,8	0,8	0,6	10,4	0,3	14,7	0,6	0,3	1,1
8-2	10/11	15,4	11,8	2,3	1,0	1,4	0,5	11,4	0,5	5,3	0,5	0,3	1,0
8-3	11/11	7,6	10,0	2,0	0,8	0,7	0,6	11,9	0,5	12,6	0,5	0,3	0,9
8-4	12/11	8,1	9,5	2,6	0,9	0,8	0,6	9,8	0,3	14,6	0,5	0,2	0,8
8-5	01/12	16,8	11,2	2,7	1,4	1,8	0,5	10,9	0,4	4,4	0,5	0,3	0,9
8-6	02/12	20,2	12,5	2,1	1,4	1,8	0,6	12,2	0,4	6,4	0,5	0,3	1,1
8-7	03/12	7,1	9,9	1,8	0,9	0,7	0,6	11,6	0,4	12,6	0,5	0,2	0,8
8-8	04/12	7,3	9,7	2,3	1,0	0,8	0,6	11,1	0,4	14,2	0,5	0,3	0,7
8-9	05/12	8,4	10,3	2,5	1,0	0,9	0,6	10,0	0,4	14,4	0,5	0,2	0,7
8-10	06/12	8,9	9,2	2,6	0,9	0,9	0,5	9,6	0,3	14,4	0,5	0,2	0,8
8-11	07/12	9,0	9,3	2,7	0,8	0,8	0,7	9,7	0,3	15,5	0,6	0,2	0,8
8-12	08/12	9,9	11,4	2,9	1,0	1,1	0,7	9,2	0,5	15,8	0,6	0,1	0,5
	Min	7,1	8,5	1,8	0,8	0,7	0,5	9,2	0,3	4,4	0,5		
	Max	20,2	12,5	2,9	1,4	1,8	0,7	12,2	0,5	15,8	0,6		
	Mittelwert	10,6	10,3	2,4	1,0	1,1	0,6	10,6	0,4	12,1	0,5		
	Median	8,7	10,0	2,5	0,9	0,9	0,6	10,7	0,4	14,3	0,5		

Tabelle 74: Spurenelemente 1 [mg/kg] der Anlage 8

Probe		Sc	V	Cr	Mn	Со	Ni	Cu	Zn	Ga	Ge	As
8-1	09/11	4,7	53,3	287	1049		63,8	1358	3075	16,6	3,7	15,2
8-2	10/11	2,8	43,8	196	1494		110,1	1313	2773	15,6	2,8	13,6
8-3	11/11	2,5	35,6	94	1358		56,7	1241	2271	15,1	2,4	11,9
8-4	12/11	4,2	50,2	121	1087		63,4	1134	2927	17,0	3,1	11,8
8-5	01/12	3,3	51,3	119	1121		65,2	1270	3296	15,7	3,2	13,7
8-6	02/12	2,9	39,3	115	1062		71,0	1325	2821	17,1	3,0	14,3

Probe		Sc	٧	Cr	Mn	Со	Ni	Cu	Zn	Ga	Ge	As
8-7	03/12	3,5	35,9	102	993		55,7	1342	2669	18,2	3,0	11,8
8-8	04/12	3,7	42,4	108	1052		67,9	1390	3037	22,2	3,4	11,9
8-9	05/12	4,4	46,7	118	1058		65,2	1240	2864	19,9	3,2	11,1
8-10	06/12	3,3	45,7	124	1051		69,5	1202	2898	17,2	2,9	12,4
8-11	07/12	4,8	51,9	127	919		65,2	1245	3144	23,0	4,5	12,7
8-12	08/12	5,3	50,3	1032	1231		67,7	1225	2925	20,4	5,3	15,8
	Min	2,5	35,6	94	919		55,7	1134	2271	15,1	2,4	11,1
	Max	5,3	53,3	1032	1494		110,1	1390	3296	23,0	5,3	15,8
	Mittelwert	3,8	45,5	212	1123		68,4	1274	2892	18,2	3,4	13,0
	Median	3,6	46,2	120	1060		65,2	1258	2912	17,1	3,1	12,6

Tabelle 75: Spurenelemente 2 [mg/kg] der Anlage 8

Probe		Se	Sr	Υ	Zr	Nb	Мо	Ag	Cd	Sn	Sb	Ва
8-1	09/11		562	6,3	85,9	11,9	20,8	8,5	3,3	91,7	14,0	1201
8-2	10/11		632	3,8	74,3	9,0	19,8	11,3	3,1	96,4	10,7	1137
8-3	11/11		659	3,4	72,2	7,7	17,4	9,4	3,1	97,0	8,9	1117
8-4	12/11		549	9,3	73,7	10,1	19,0	8,6	3,0	85,8	15,5	1691
8-5	01/12		631	4,2	79,9	10,9	16,8	9,2	3,5	87,4	12,4	1240
8-6	02/12		679	4,5	70,9	8,4	18,9	10,3	3,1	96,2	8,2	1227
8-7	03/12		684	5,6	76,8	8,4	19,3	9,6	3,0	101,2	9,0	1195
8-8	04/12		643	6,1	76,8	10,7	19,7	9,6	3,3	103,2	12,7	1162
8-9	05/12		583	9,7	80,6	10,7	17,0	8,1	3,1	108,8	14,3	1154
8-10	06/12		545	4,7	73,9	11,4	16,0	7,7	3,6	111,7	12,4	1627
8-11	07/12		526	8,5	87,7	11,7	15,4	7,8	3,4	102,6	11,9	1133
8-12	08/12		571	10,6	97,9	11,1	15,5	9,9	3,4	105,7	11,7	1111
	Min		526	3,4	70,9	7,7	15,4	7,7	3,0	85,8	8,2	1111
	Max		684	10,6	97,9	11,9	20,8	11,3	3,6	111,7	15,5	1691
	Mittelwert		605	6,4	79,2	10,2	18,0	9,2	3,2	99,0	11,8	1250
	Median		607	5,8	76,8	10,7	18,1	9,3	3,2	99,1	12,1	1179

Tabelle 76: Spurenelemente 3 [mg/kg] der Anlage 8

Probe		La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er
8-1	09/11	24,1	49,6	2,4	8,5	1,9	0,6	2,2	0,5	1,6	0,6	1,0
8-2	10/11	22,8	50,5	1,4	5,2	1,2	0,4	1,3	0,2	0,9	0,3	0,5
8-3	11/11	25,1	58,1	1,4	4,7	1,1	0,3	1,2	0,2	0,8	0,2	0,5
8-4	12/11	57,3	95,6	3,9	14,7	2,9	0,7	3,1	0,5	2,1	0,5	1,2
8-5	01/12	19,9	44,2	1,8	6,6	1,5	0,5	1,4	0,2	1,1	0,3	0,6
8-6	02/12	20,9	42,3	1,9	6,6	1,4	0,4	1,5	0,2	1,1	0,3	0,6
8-7	03/12	27,3	59,9	1,8	6,3	1,4	0,5	1,5	0,2	1,1	0,3	0,7
8-8	04/12	32,0	81,6	2,0	7,3	1,6	0,5	1,8	0,3	1,3	0,3	1,2
8-9	05/12	51,9	89,0	4,0	15,2	3,1	0,7	3,2	0,5	2,3	0,5	1,3
8-10	06/12	16,2	33,0	1,7	6,6	1,6	0,5	1,5	0,2	1,2	0,3	0,7

Probe		La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er
8-11	07/12	36,7	68,3	3,3	12,3	2,6	0,7	2,6	0,4	1,9	0,5	1,0
8-12	08/12	52,3	81,3	3,9	14,0	2,8	0,8	3,0	0,4	2,1	0,5	1,1
	Min	16,2	33,0	1,4	4,7	1,1	0,3	1,2	0,2	0,8	0,2	0,5
	Max	57,3	95,6	4,0	15,2	3,1	0,8	3,2	0,5	2,3	0,6	1,3
	Mittelwert	32,2	62,8	2,4	9,0	1,9	0,6	2,0	0,3	1,5	0,4	0,9
	Median	26,2	59,0	1,9	6,9	1,6	0,5	1,7	0,2	1,3	0,3	0,9

Tabelle 77: Spurenelemente 4 [mg/kg] der Anlage 8

Probe		Tm	Yb	Lu	Hf	Та	W	Au	Hg	Pb	Th	U
8-1	09/11	0,4	1,0	0,4	4,3	1,5	41,2	1,4		136	3,3	10,7
8-2	10/11	0,2	0,5	0,1	3,3	1,3	39,6	3,1		108	2,0	9,3
8-3	11/11	0,2	0,5	0,1	3,9	1,1	30,0	1,5		69	2,1	9,0
8-4	12/11	0,2	1,1	0,2	2,5	1,2	46,4	1,7		122	5,9	12,6
8-5	01/12	0,2	0,6	0,1	3,6	1,3	43,8	2,5		139	2,4	10,1
8-6	02/12	0,2	0,6	0,1	4,4	1,1	35,5	1,2		91	2,8	10,1
8-7	03/12	0,2	0,7	0,1	4,7	1,0	32,9	2,8		84	2,2	8,8
8-8	04/12	0,2	0,8	0,1	4,8	1,3	42,2	2,0		106	2,4	8,3
8-9	05/12	0,2	1,3	0,2	3,6	1,3	46,7			116	6,0	13,3
8-10	06/12	0,2	0,7	0,1	3,7	1,3	41,7	1,5		133	2,2	9,0
8-11	07/12	0,2	1,0	0,1	2,3	1,3	32,2	1,3		133	4,3	9,2
8-12	08/12	0,2	1,1	0,2	2,4	1,2	31,0	2,2		132	4,8	8,0
	Min	0,2	0,5	0,1	2,3	1,0	30,0	1,2		69	2,0	8,0
	Max	0,4	1,3	0,4	4,8	1,5	46,7	3,1		139	6,0	13,3
	Mittelwert	0,2	0,8	0,1	3,6	1,2	38,6	1,9		114	3,4	9,9
	Median	0,2	0,8	0,1	3,6	1,3	40,4	1,7		119	2,6	9,2

Tabelle 78: Platingruppenelemente [µg/kg] der Anlage 8

Probe		Rh	Pd	Pt
8-1	09/11	7,1	168	192

11.3.9 Anlage 9

Tabelle 79: Hauptelemente [%], Wassergehalt (RF) [%], Glühverlust (GV) [%] der Anlage 9

Probe		Al	Ca	Fe	K	Mg	Na	Р	S	Si	Ti	RF	GV
9-1	16.05.12	4,2	11,4	14,8	0,8	1,3	0,4	11,6	0,4	8,7	0,5	0,2	0,0
9-2	22.06.12	3,6	10,8	17,3	0,3	0,5	0,6	10,0	0,9	5,0	0,1	0,2	0,0
9-3	18.07.12	4,6	11,3	14,7	0,3	0,5	0,6	9,4	1,2	10,4	0,1	0,2	0,0
9-4	22.08.12	4,3	11,6	15,6	0,6	0,5	0,6	9,3	1,2	10,0	0,1	0,1	-0,1
9-5	15.08.2012	3,3	8,2	15,5	1,0	0,9	0,5	9,2	0,5	7,3	0,4	0,8	7,3
9-6	19.09.2012	3,5	9,3	12,8	0,9	1,1	0,4	8,4	6,9	6,6	0,4	0,7	8,4
9-7	17.10.2012	3,5	9,4	12,9	0,8	1,1	0,4	8,6	6,7	6,0	0,4	0,7	8,7

Probe		Al	Ca	Fe	K	Mg	Na	Р	S	Si	Ti	RF	GV
9-8	21.11.2012	3,7	9,7	12,3	0,9	1,1	0,4	8,8	6,0	6,2	0,4	0,7	7,7
9-9	19.12.2012	3,6	9,5	12,7	0,8	1,1	0,3	8,9	6,6	6,2	0,4	0,7	7,8
	Min	3,3	8,2	12,3	0,3	0,5	0,3	8,4	0,4	5,0	0,1		
	Max	4,6	11,6	17,3	1,0	1,3	0,6	11,6	6,9	10,4	0,5		
	Mittelwert	3,8	10,1	14,3	0,7	0,9	0,5	9,3	3,4	7,4	0,3		
	Median	3,6	9,7	14,7	0,8	1,1	0,4	9,2	1,2	6,6	0,4		

Tabelle 80: Spurenelemente 1 [mg/kg] der Anlage 9

Probe		Sc	V	Cr	Mn	Со	Ni	Cu	Zn	Ga	Ge	As
9-1	16.05.12	1,1	40,9	105	1453		40,4	1973	1882	7,1	4,4	11,3
9-2	22.06.12	3,2	38,2	151	1935		63,7	2120	2087	7,4	7,2	12,1
9-3	18.07.12	1,3	37,7	114	1534		50,9	1973	2312	8,4	4,7	11,8
9-4	22.08.12	0,7	40,4	119	1596		46,2	1835	2036	7,5	4,0	124,0
9-5	15.08.2012	2,0	46,1	208	3669	57,2	76,9	780	3324	7,7	5,2	14,0
9-6	19.09.2012	2,3	45,8	123	1244	21,8	53,5	1765	2141	6,8	5,3	71,2
9-7	17.10.2012	2,4	45,7	124	1236	16,5	53,0	1773	2145	7,0	5,7	84,9
9-8	21.11.2012	2,5	47,2	128	1244	16,1	54,5	1871	2238	7,4	5,4	84,2
9-9	19.12.2012	2,5	46,5	123	1250	16,2	53,8	1816	2263	7,1	5,0	70,0
	Min	0,7	37,7	105	1236	16,1	40,4	780	1882	6,8	4,0	11,3
	Max	3,2	47,2	208	3669	57,2	76,9	2120	3324	8,4	7,2	124,0
	Mittelwert	2,0	43,2	133	1684	25,5	54,8	1767	2270	7,4	5,2	53,7
	Median	2,3	45,7	123	1453	16,5	53,5	1835	2145	7,4	5,2	70,0

Tabelle 81: Spurenelemente 2 [mg/kg] der Anlage 9

Probe		Se	Sr	Υ	Zr	Nb	Мо	Ag	Cd	Sn	Sb	Ва
9-1	16.05.12		542	2,1	91,8	5,6	19,7	27,6	3,3	73,1	10,0	708
9-2	22.06.12		779	7,5	58,5	5,9	20,4	35,1	3,0	72,1	11,3	800
9-3	18.07.12		829	3,0	70,7	6,8	23,7	20,9	2,9	74,7	13,5	861
9-4	22.08.12		857	1,1	62,9	5,8	18,5	22,4	2,6	65,2	12,5	797
9-5	15.08.2012	1,9	533	5,3	65,5	10,7	17,1	12,2	2,7	75,1	11,9	1464
9-6	19.09.2012	7,5	477	6,3	58,4	5,1	25,1	19,2	2,6	75,9	13,2	648
9-7	17.10.2012	7,2	485	6,4	56,4	4,9	24,9	19,3	2,7	76,4	13,4	645
9-8	21.11.2012	7,9	498	6,6	59,3	6,0	26,6	20,9	2,8	80,2	14,5	669
9-9	19.12.2012	9,9	479	6,2	58,7	7,2	25,5	11,6	2,8	79,2	14,6	656
	Min	1,9	477	1,1	56,4	4,9	17,1	11,6	2,6	65,2	10,0	645
	Max	9,9	857	7,5	91,8	10,7	26,6	35,1	3,3	80,2	14,6	1464
	Mittelwert	6,9	609	4,9	64,7	6,4	22,4	21,0	2,8	74,7	12,8	805
	Median	7,5	533	6,2	59,3	5,9	23,7	20,9	2,8	75,1	13,2	708

Tabelle 82: Spurenelemente 3 [mg/kg] der Anlage 9

Probe	La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er

Probe		La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er
9-1	16.05.12	22,0	23,4	2,7	9,5	1,8	0,5	1,9	0,4	1,3	0,4	0,7
9-2	22.06.12	21,9	23,9	2,5	9,1	1,7	0,5	2,0	0,5	1,3	0,5	0,9
9-3	18.07.12	22,6	27,2	3,0	10,8	2,1	0,7	2,1	0,4	1,5	0,5	0,8
9-4	22.08.12	18,8	22,3	2,5	8,7	1,6	0,6	1,6	0,3	1,1	0,4	0,6
9-5	15.08.2012	15,4	28,8	2,7	11,6	2,0	0,5	2,1	0,2	1,6	0,2	0,8
9-6	19.09.2012	20,1	19,6	2,0	7,8	1,3	0,4	1,6	0,2	1,0	0,2	0,6
9-7	17.10.2012	20,6	19,7	2,1	7,8	1,4	0,4	1,6	0,2	1,1	0,2	0,6
9-8	21.11.2012	22,4	21,1	2,2	8,4	1,5	0,4	1,7	0,2	1,1	0,2	0,6
9-9	19.12.2012	21,6	21,6	2,1	8,2	1,5	0,4	1,7	0,2	1,1	0,2	0,6
	Min	15,4	19,6	2,0	7,8	1,3	0,4	1,6	0,2	1,0	0,2	0,6
	Max	22,6	28,8	3,0	11,6	2,1	0,7	2,1	0,5	1,6	0,5	0,9
	Mittelwert	20,6	23,1	2,4	9,1	1,7	0,5	1,8	0,3	1,2	0,3	0,7
	Median	21,6	22,3	2,5	8,7	1,6	0,5	1,7	0,2	1,1	0,2	0,6

Tabelle 83: Spurenelemente 4 [mg/kg] der Anlage 9

Probe		Tm	Yb	Lu	Hf	Та	W	Au	Hg	Pb	Th	U
9-1	16.05.12	0,3	0,7	0,3	3,7	0,7	34,8	1,5		129	2,9	4,3
9-2	22.06.12	0,3	0,8	0,3	1,7	0,9	20,8	1,4		149	2,6	3,2
9-3	18.07.12	0,3	0,8	0,3	2,9	0,8	23,0	1,4		166	3,1	3,9
9-4	22.08.12	0,2	0,5	0,3	2,1	0,8	17,4	1,5		156	1,8	3,6
9-5	15.08.2012	0,1	0,8	0,1	1,9	0,8	44,0	1,4	0,7	145	2,9	5,2
9-6	19.09.2012	0,1	0,6	0,1	1,6	3,0	40,3	0,7	1,1	163	1,8	2,2
9-7	17.10.2012	0,1	0,6	0,1	1,4	30,5	31,6	1,3	0,9	162	1,8	2,3
9-8	21.11.2012	0,1	0,6	0,1	1,6	0,6	24,8	0,8	0,7	169	1,9	2,5
9-9	19.12.2012	0,1	0,6	0,1	1,7	6,8	20,8	1,1	0,8	169	1,9	2,5
	Min	0,1	0,5	0,1	1,4	0,6	17,4	0,7	0,7	129	1,8	2,2
	Max	0,3	8,0	0,3	3,7	30,5	44,0	1,5	1,1	169	3,1	5,2
	Mittelwert	0,2	0,7	0,2	2,1	5,0	28,6	1,2	0,8	156	2,3	3,3
	Median	0,1	0,6	0,1	1,7	0,8	24,8	1,4	0,8	162	1,9	3,2

Tabelle 84: Platingruppenelemente [µg/kg] der Anlage 9

Probe		Rh	Pd	Pt
9-1	16.05.12	4,4	109	151

11.3.10 Anlage 11

Tabelle 85: Hauptelemente [%], Wassergehalt (RF) [%], Glühverlust (GV) [%] der Anlage 11

Probe		Al	Ca	Fe	K	Mg	Na	Р	S	Si	Ti	RF	GV
11-1	24.01.12	5,1	10,1	18,2		2,1	0,4	10,4	0,6	15,9	0,5	0,3	-0,2
11-2	02/12	2,6	7,7	17,8	0,8	0,3	0,6	9,6	0,7	14,8	0,1	0,3	-0,1
11-3	03/12	2,5	8,5	18,3	0,6	0,3	0,5	9,5	0,8	12,3	0,1	0,2	-0,1

Probe		Al	Ca	Fe	K	Mg	Na	Р	S	Si	Ti	RF	GV
11-4	04/12	2,3	8,6	17,1	0,6	0,3	0,6	9,0	1,0	14,7	0,1	0,2	-0,3
11-5	05/12	2,7	7,9	14,5	0,7	0,3	0,5	8,2	0,9	14,5	0,1	0,2	-0,3
11-6	06/12	2,6	7,7	14,7	0,7	0,3	0,4	7,6	1,0	13,8	0,1	0,2	-0,3
11-7	07/12	5,1	9,9	15,3	0,7	0,4	0,4	7,5	1,1	11,0	0,1	0,1	-0,3
11-8	08 / 2012	5,5	10,9	15,8	0,8	1,2	0,5	9,0	0,9	13,4	0,5	0,2	0,0
11-9	09 / 2012	5,0	10,5	17,1	0,7	1,1	0,4	9,1	0,8	10,6	0,5	0,1	-0,1
11-10	10 / 2012	5,2	11,3	17,4	0,8	1,2	0,4	9,7	1,0	6,5	0,6	0,2	-0,1
11-11	11 / 2012	5,3	10,8	17,3	0,8	1,2	0,4	10,2	0,9	13,0	0,6	0,2	-0,2
11-12	12 / 2012	5,3	11,4	18,1	0,9	1,2	0,4	10,3	0,9	13,6	0,6	0,2	-0,3
11-13	01 / 2013	5,2	11,4	19,5	0,9	1,2	0,4	10,6	0,8	13,0	0,6	0,2	-0,2
	Min	2,3	7,7	14,5	0,6	0,3	0,4	7,5	0,6	6,5	0,1		
	Max	5,5	11,4	19,5	0,9	2,1	0,6	10,6	1,1	15,9	0,6		
	Mittelwert	4,2	9,7	17,0	0,8	0,9	0,5	9,3	0,9	12,9	0,3		
	Median	5,1	10,1	17,3	0,8	1,1	0,4	9,5	0,9	13,4	0,5		

Tabelle 86: Spurenelemente 1 [mg/kg] der Anlage 11

Probe		Sc	V	Cr	Mn	Со	Ni	Cu	Zn	Ga	Ge	As
11-1	24.01.12	3,7	47,0	185	5367	37,4	107,1	834	3154	11,6	11,9	15,7
11-2	02/12	2,1	43,3	347	3862	62,4	85,8	887	3970	8,9	5,4	14,1
11-3	03/12	3,0	39,7	332	3344	42,8	89,9	862	4044	9,1	5,7	15,3
11-4	04/12	0,9	32,9	339	1970	32,6	83,2	798	3286	8,5	4,9	13,1
11-5	05/12	2,4	29,9	293	1200	27,7	84,1	720	2962	9,3	4,1	13,6
11-6	06/12	3,7	19,2	276	894	28,2	78,4	524	2187	9,2	4,5	12,9
11-7	07/12	4,1	17,5	296	847	30,8	77,9	463	2044	9,4	4,5	81,9
11-8	08 / 2012	3,7	37,5	140	2614	27,0	64,6	746	2350	9,9	5,8	16,4
11-9	09 / 2012	3,3	33,4	158	3735	26,4	52,4	742	2356	9,5	6,3	13,8
11-10	10 / 2012	3,5	36,4	160	4195	27,1	62,8	775	1829	9,8	6,0	13,8
11-11	11 / 2012	3,4	38,6	161	3760	28,0	71,3	832	2884	9,4	5,5	16,1
11-12	12 / 2012	3,6	40,8	180	3038	24,7	79,2	855	2970	9,2	5,4	13,0
11-13	01 / 2013	3,4	41,9	194	4002	21,1	63,1	823	2994	9,1	5,9	13,5
	Min	0,9	17,5	140	847	21,1	52,4	463	1829	8,5	4,1	12,9
	Max	4,1	47,0	347	5367	62,4	107,1	887	4044	11,6	11,9	81,9
	Mittelwert	3,1	35,2	235	2987	32,0	76,9	758	2848	9,5	5,9	19,5
	Median	3,4	37,5	194	3344	28,0	78,4	798	2962	9,3	5,5	13,8

Tabelle 87: Spurenelemente 2 [mg/kg] der Anlage 11

Probe		Se	Sr	Υ	Zr	Nb	Мо	Ag	Cd	Sn	Sb	Ва
11-1	24.01.12		514	8,8	70,1	11,9	16,2	8,7	2,1	65,7	13,3	1551
11-2	02/12	2,3	896	2,4	84,8	10,9	16,7	12,1	2,6	75,8	11,5	1528
11-3	03/12	2,5	909	2,8	78,4	11,7	17,5	13,2	2,6	84,4	12,2	1464
11-4	04/12	1,8	812	1,8	75,4	11,8	17,5	12,9	2,7	74,8	15,5	1179
11-5	05/12	2,2	564	1,6	54,4	13,0	18,8	11,6	2,9	59,3	15,3	839

Probe		Se	Sr	Υ	Zr	Nb	Мо	Ag	Cd	Sn	Sb	Ва
11-6	06/12	2,2	347	2,2	34,2	13,5	18,6	9,9	3,2	42,7	16,4	740
11-7	07/12	2,5	314	2,5	37,0	13,5	16,4	9,1	2,9	35,6	16,5	487
11-8	08 / 2012	2,0	442	9,2	59,5	12,0	15,6	11,8	2,2	61,6	13,5	1070
11-9	09 / 2012		443	9,1	58,0	12,0	14,1	11,2	2,8	63,3	13,7	1115
11-10	10 / 2012		419	9,5	50,3	13,6	15,3	12,7	5,1	50,3	15,0	1198
11-11	11 / 2012		457	9,1	62,3	13,5	15,8	14,9	2,3	72,1	13,6	1191
11-12	12 / 2012		453	8,8	59,5	14,5	15,1	11,4	2,1	68,5	13,0	1192
11-13	01 / 2013		459	9,9	59,5	14,0	14,1	10,9	2,0	67,0	12,4	1287
	Min	1,8	314	1,6	34,2	10,9	14,1	8,7	2,0	35,6	11,5	487
	Max	2,5	909	9,9	84,8	14,5	18,8	14,9	5,1	84,4	16,5	1551
	Mittelwert	2,2	541	6,0	60,3	12,8	16,3	11,6	2,7	63,2	14,0	1142
	Median	2,2	457	8,8	59,5	13,0	16,2	11,6	2,6	65,7	13,6	1191

Tabelle 88: Spurenelemente 3 [mg/kg] der Anlage 11

Probe		La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er
11-1	24.01.12	25,1	40,8	4,2	16,4	2,8	0,6	2,8	0,6	1,9	0,5	0,9
11-2	02/12	21,2	32,0	3,5	13,8	2,4	0,6	2,1	0,4	1,6	0,5	0,8
11-3	03/12	23,4	41,1	3,8	15,1	2,5	0,6	2,3	0,4	1,8	0,5	0,8
11-4	04/12	20,7	29,3	3,2	13,2	2,1	0,6	1,8	0,4	1,4	0,4	0,7
11-5	05/12	18,0	28,1	3,1	12,2	2,1	0,6	1,8	0,4	1,4	0,4	0,6
11-6	06/12	21,3	33,9	3,7	14,0	2,5	0,6	2,2	0,4	1,7	0,5	0,8
11-7	07/12	20,4	33,1	3,7	14,1	2,6	0,7	2,3	0,4	1,7	0,5	0,8
11-8	08 / 2012	23,4	36,2	3,8	15,2	2,6	0,5	2,5	0,3	1,8	0,3	0,9
11-9	09 / 2012	26,5	40,4	4,3	16,5	2,7	0,5	2,5	0,3	1,8	0,3	0,9
11-10	10 / 2012	27,9	40,8	4,2	16,5	2,7	0,5	2,6	0,3	1,8	0,3	0,9
11-11	11 / 2012	24,7	37,5	3,9	15,8	2,7	0,5	2,5	0,3	1,8	0,3	0,9
11-12	12 / 2012	22,6	34,6	3,7	15,0	2,5	0,5	2,4	0,3	1,8	0,3	0,8
11-13	01 / 2013	26,0	40,2	4,2	16,8	2,8	0,5	2,7	0,3	1,9	0,3	0,9
	Min	18,0	28,1	3,1	12,2	2,1	0,5	1,8	0,3	1,4	0,3	0,6
	Max	27,9	41,1	4,3	16,8	2,8	0,7	2,8	0,6	1,9	0,5	0,9
	Mittelwert	23,2	36,0	3,8	15,0	2,5	0,5	2,3	0,4	1,7	0,4	0,8
	Median	23,4	36,2	3,8	15,1	2,6	0,6	2,4	0,4	1,8	0,4	0,8

Tabelle 89: Spurenelemente 4 [mg/kg] der Anlage 11

Probe		Tm	Yb	Lu	Hf	Та	W	Au	Hg	Pb	Th	U
11-1	24.01.12	0,3	0,8	0,5	1,8	1,2	40,7	0,5	0,7	121	4,5	4,7
11-2	02/12	0,3	0,7	0,3	2,4	1,2	58,2	1,3	0,7	130	3,5	6,0
11-3	03/12	0,3	0,8	0,3	2,6	1,3	57,6	1,6	0,7	130	4,0	6,3
11-4	04/12	0,2	0,6	0,3	2,6	1,3	55,4	3,9	0,7	122	3,7	5,6
11-5	05/12	0,3	0,6	0,3	2,6	1,4	40,0	5,0	0,7	114	3,0	6,0
11-6	06/12	0,3	0,7	0,3	2,6	1,5	30,1	1,7	0,7	122	4,1	5,9
11-7	07/12	0,3	0,8	0,3	2,1	1,6	28,3	1,9	0,7	94	6,4	5,6

Probe		Tm	Yb	Lu	Hf	Та	W	Au	Hg	Pb	Th	U
11-8	08 / 2012	0,1	1,0	0,1	1,5	1,2	89,9	1,6	0,5	149	5,6	5,2
11-9	09 / 2012	0,1	0,8	0,1	1,4	1,1	87,6	2,9	0,4	142	5,5	4,3
11-10	10 / 2012	0,1	0,9	0,1	1,6	1,3	56,5	1,6	0,5	85	5,9	4,8
11-11	11 / 2012	0,1	0,9	0,1	1,5	1,3	55,2	1,5	0,5	144	5,8	5,3
11-12	12 / 2012	0,1	0,9	0,1	1,5	1,3	57,5	1,5	0,5	136	6,0	5,0
11-13	01 / 2013	0,1	0,9	0,1	1,5	1,3	54,6	1,4	0,4	133	6,0	5,4
	Min	0,1	0,6	0,1	1,4	1,1	28,3	0,5	0,4	85	3,0	4,3
	Max	0,3	1,0	0,5	2,6	1,6	89,9	5,0	0,7	149	6,4	6,3
	Mittelwert	0,2	0,8	0,2	2,0	1,3	54,7	2,0	0,6	125	4,9	5,4
	Median	0,2	0,8	0,3	1,8	1,3	55,4	1,6	0,7	130	5,5	5,4

Tabelle 90: Platingruppenelemente [µg/kg] der Anlage 11

Probe		Rh	Pd	Pt
11-2	02/12	5,2	108	104

11.3.11 Anlage 12

Tabelle 91: Hauptelemente [%], Wassergehalt (RF) [%], Glühverlust (GV) [%] der Anlage 12

Probe		Al	Ca	Fe	K	Mg	Na	Р	S	Si	Ti	RF	GV
12-1	27.03.12	2,9	11,5	11,7	0,8	0,5	1,6	3,3	2,5	15,9	0,2	0,1	0,4
12-2	19.04.12	3,1	9,2	10,9	0,6	0,4	1,4	2,9	2,2	17,8	0,1	0,1	0,5
12-3	04.06.12	5,3	11,2	9,8	0,7	0,4	1,1	3,2	2,2	9,6	0,2	0,2	0,7
12-4	02.07.12	1,9	8,0	9,1	0,7	0,4	0,9	2,8	2,2	15,7	0,2	0,1	0,4
12-5	27.08.12	5,4	12,1	9,9	0,7	0,5	1,0	2,8	4,0	6,9	0,2	0,5	2,1
12-6	24.10.2012.	6,4	15,0	10,1	1,0	1,9	1,3	3,2	2,6	17,0	0,9	0,2	0,8
12-7	12.11.2012	6,3	15,7	10,0	0,9	1,7	1,3	3,9	2,6	16,4	1,1	0,2	1,2
12-8	06.12.2012	6,4	14,8	10,9	1,3	1,6	1,4	3,8	2,4	15,9	0,6	0,2	0,9
12-9	10.01.2013	6,1	12,5	9,9	0,9	1,7	1,2	3,9	2,1	20,0	0,7	0,2	0,8
12-10	07.02.2013	6,3	14,2	11,9	1,0	2,1	1,6	3,9	2,1	17,8	1,0	0,1	0,7
12-11	11.03.2013	5,4	18,3	11,3	0,9	1,8	1,3	3,6	2,6	15,0	1,0	0,2	0,6
12-12	10.04.2013	6,0	14,4	12,9	1,0	1,8	1,4	4,6	2,1	16,0	0,6	0,2	0,8
	Min	1,9	8,0	9,1	0,6	0,4	0,9	2,8	2,1	6,9	0,1		
	Max	6,4	18,3	12,9	1,3	2,1	1,6	4,6	4,0	20,0	1,1		
	Mittelwert	5,1	13,1	10,7	0,9	1,2	1,3	3,5	2,5	15,3	0,6		
	Median	5,7	13,4	10,5	0,9	1,6	1,3	3,5	2,3	16,0	0,6		

Tabelle 92: Spurenelemente 1 [mg/kg] der Anlage 12

Probe		Sc	V	Cr	Mn	Со	Ni	Cu	Zn	Ga	Ge	As
12-1	27.03.12	8,2	289	594	859	51,4	369	816	2893	13,3	5,0	12,5
12-2	19.04.12	6,1	138	592	900	41,1	454	438	2549	16,0	4,8	17,6
12-3	04.06.12	2,8	65	377	445		159	633	2220	16,6	7,6	17,9

Probe		Sc	V	Cr	Mn	Co	Ni	Cu	Zn	Ga	Ge	As
12-4	02.07.12	4,5	54	590	334	30,2	501	1044	1543	13,4	4,8	16,9
12-5	27.08.12	5,7	84	506	423	39,3	362	740	2642	15,8	5,8	97,0
12-6	24.10.2012.	5,1	238	752	1580	57,1	291	2032	5515	14,3	5,8	18,8
12-7	12.11.2012	6,6	242	773	1468	83,5	472	1733	3922	15,7	6,4	18,4
12-8	06.12.2012	6,9	264	748	1355	40,6	248	1471	2919	14,8	5,6	16,1
12-9	10.01.2013	6,0	253	594	1261	83,4	344	1817	4387	16,3	6,2	20,0
12-10	07.02.2013	6,1	418	677	1358	64,2	372	2331	3945	15,1	6,6	18,7
12-11	11.03.2013	6,7	861	579	1452	67,2	460	1593	4365	12,1	4,8	16,5
12-12	10.04.2013	6,5	1111	488	1316	52,3	456	1544	3593	14,8	6,0	18,0
	Min	2,8	54	377	334	30,2	159	438	1543	12,1	4,8	12,5
	Max	8,2	1111	773	1580	83,5	501	2331	5515	16,6	7,6	97,0
	Mittelwert	5,9	335	606	1062	55,5	374	1349	3374	14,9	5,8	24,0
	Median	6,1	247	593	1289	52,3	371	1508	3256	15,0	5,8	18,0

Tabelle 93: Spurenelemente 2 [mg/kg] der Anlage 12

Probe		Se	Sr	Υ	Zr	Nb	Мо	Ag	Cd	Sn	Sb	Ва
12-1	27.03.12		294	16,1	184,7	30,8	70,6	8,7	6,9	549	81	2633
12-2	19.04.12		286	13,2	133,5	20,9	35,9	9,3	4,2	493	63	1296
12-3	04.06.12		226	2,1	68,7	17,3	63,9	7,2	8,6	284	79	1357
12-4	02.07.12		193	12,6	36,7	16,7	69,3	11,1	7,6	287	206	1217
12-5	27.08.12		225	13,9	62,8	16,0	74,5	26,3	13,8	395	171	1724
12-6	24.10.2012.		585	14,0	244,7	13,0	68,5	24,2	11,4	1022	151	8282
12-7	12.11.2012		626	12,8	199,4	19,2	112,3	31,6	6,6	580	143	5488
12-8	06.12.2012		745	11,1	194,0	16,6	45,1	23,5	9,4	341	76	6726
12-9	10.01.2013		707	13,1	214,4	15,4	63,1	15,9	11,5	417	101	8697
12-10	07.02.2013		590	14,5	194,8	22,8	83,3	28,9	12,4	262	137	6666
12-11	11.03.2013		580	10,6	330,3	20,4	87,7	16,7	9,6	977	109	6024
12-12	10.04.2013		645	11,9	268,5	14,7	73,1	24,9	8,8	794	86	5997
	Min		193	2,1	36,7	13,0	35,9	7,2	4,2	262	63	1217
	Max		745	16,1	330,3	30,8	112,3	31,6	13,8	1022	206	8697
	Mittelwert		475	12,2	177,7	18,7	70,6	19,0	9,2	533	117	4676
	Median		582	12,9	194,4	17,0	70,0	20,1	9,1	455	105	5743

Tabelle 94: Spurenelemente 3 [mg/kg] der Anlage 12

Probe		La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er
12-1	27.03.12	82,7	159,8	5,5	18,5	4,2	0,8	20,5	0,4	2,7	0,4	1,1
12-2	19.04.12	42,8	64,4	4,8	15,5	2,9	0,7	22,0	0,4	2,2	0,4	1,2
12-3	04.06.12	46,1	56,9	4,3	16,5	3,6	0,9	9,9	0,6	2,1	0,6	0,9
12-4	02.07.12	55,4	59,2	5,1	17,0	3,9	0,8	4,1	0,5	2,4	0,6	1,4
12-5	27.08.12	79,4	63,8	8,4	19,7	3,9	0,9	30,2	0,6	2,6	0,6	1,4
12-6	24.10.2012.	188,7	54,5	18,4	18,8	3,3	0,9	42,8	0,5	1,8	0,3	1,0
12-7	12.11.2012	67,6	47,5	7,4	20,4	5,6	0,8	36,4	0,4	3,2	0,4	1,2

Probe		La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er
12-8	06.12.2012	56,1	42,8	6,5	16,3	3,7	0,7	29,6	0,4	2,1	0,4	1,1
12-9	10.01.2013	111,0	50,3	11,6	18,1	3,2	0,9	26,9	0,4	2,1	0,4	1,2
12-10	07.02.2013	80,5	50,9	9,0	18,3	3,7	0,9	14,0	0,4	2,4	0,5	1,3
12-11	11.03.2013	57,8	37,2	6,1	14,0	2,7	0,6	59,1	0,3	1,8	0,3	1,0
12-12	10.04.2013	116,9	40,9	6,9	17,1	5,8	0,7	49,8	0,4	2,3	0,4	1,1
	Min	42,8	37,2	4,3	14,0	2,7	0,6	4,1	0,3	1,8	0,3	0,9
	Max	188,7	159,8	18,4	20,4	5,8	0,9	59,1	0,6	3,2	0,6	1,4
	Mittelwert	82,1	60,7	7,8	17,5	3,9	0,8	28,8	0,4	2,3	0,4	1,2
	Median	73,5	52,7	6,7	17,6	3,7	0,8	28,2	0,4	2,3	0,4	1,2

Tabelle 95: Spurenelemente 4 [mg/kg] der Anlage 12

Probe		Tm	Yb	Lu	Hf	Та	W	Au	Hg	Pb	Th	U
12-1	27.03.12	0,2	2,2	0,2	8,2	2,5	59,5	0,4		228	5,2	2,8
12-2	19.04.12	0,2	1,3	0,2	5,2	1,6	104,1	0,3		155	4,8	2,8
12-3	04.06.12	0,4	0,8	0,3	4,8	2,0	34,9	0,4		146	2,3	3,5
12-4	02.07.12	0,2	1,4	0,2	3,9	1,4	30,8	0,2	1,5	183	6,2	3,6
12-5	27.08.12	0,2	1,5	0,2	5,5	2,0	33,0	0,7	1,6	285	6,0	3,9
12-6	24.10.2012.	0,1	1,0	0,3	5,0	1,7	172,0	0,2	1,9	1112	4,1	2,7
12-7	12.11.2012	0,2	1,2	0,2	4,5	2,1	199,1	0,5	3,0	458	5,3	3,1
12-8	06.12.2012	0,2	1,1	0,2	3,9	1,7	89,3	0,2	1,5	418	5,1	3,2
12-9	10.01.2013	0,2	1,3	0,2	4,3	2,8	148,0	0,2	2,0	490	4,9	3,4
12-10	07.02.2013	0,2	1,2	0,2	4,4	3,7	135,6	0,3	2,0	513	5,3	4,0
12-11	11.03.2013	0,1	1,1	0,2	6,3	2,5	124,5	0,4	1,1	472	4,3	2,9
12-12	10.04.2013	0,2	1,1	0,2	5,3	2,2	94,1	0,6	1,4	387	4,5	3,3
	Min	0,1	0,8	0,2	3,9	1,4	30,8	0,2	1,1	146	2,3	2,7
	Max	0,4	2,2	0,3	8,2	3,7	199,1	0,7	3,0	1112	6,2	4,0
	Mittelwert	0,2	1,3	0,2	5,1	2,2	102,1	0,4	1,8	404	4,9	3,3
	Median	0,2	1,2	0,2	4,9	2,1	99,1	0,3	1,6	403	5,0	3,3

Tabelle 96: Platingruppenelemente [µg/kg] der Anlage 12

Probe		Rh	Pd	Pt
12-1	27.03.12	23,3	311	183

11.3.12 Anlage 13

Tabelle 97: Hauptelemente [%], Wassergehalt (RF) [%], Glühverlust (GV) [%] der Anlage 13

Probe		Al	Ca	Fe	K	Mg	Na	Р	S	Si	Ti	RF	GV
13-1	07.03.12	3,9	12,4	4,6	0,7	1,0	0,4	13,1	0,6	9,6	0,4	24,9	0,6
13-2	11.04.12	3,7	12,6	4,5	0,6	1,1	0,4	12,9	0,8	8,9	0,4	22,2	0,6
13-3	07.05.12	3,6	11,3	4,2	0,6	1,2	0,4	12,7	0,7	9,1	0,4	20,4	0,7
13-4	01.06.12	10,7	17,7	5,0	0,7	2,5	0,4	12,5	1,0	5,7	0,4	24,2	0,9

Probe		Al	Ca	Fe	K	Mg	Na	Р	S	Si	Ti	RF	GV
13-5	09.07.12	3,7	11,6	4,2	0,6	1,1	0,4	10,5	1,2	10,7	0,4	12,4	1,3
13-6	03.08.12	4,6	13,3	4,5	0,7	1,3	0,3	11,1	1,3	11,5	0,4	26,6	1,1
13-7	06.09.12	4,8	13,8	4,8	0,6	1,1	0,4	11,4	0,8	13,2	0,5	23,2	1,0
13-8	08.10.12	4,6	14,0	4,9	0,5	1,0	0,5	12,6	0,7	9,1	0,4	23,5	0,7
13-9	05.11.2012	8,6	15,5	4,8	0,5	2,1	0,2	11,7	0,8	7,3	0,4	31,1	0,8
13-10	06.12.2012	9,2	16,2	4,9	0,6	2,2	0,2	12,0	0,6	10,2	0,4	30,0	0,7
13-11	10.01.2013	3,4	9,8	4,1	0,6	1,2	0,3	11,2	0,6	6,8	0,3	23,9	0,5
13-12	04.02.2013	3,7	9,9	4,5	0,5	1,1	0,5	11,7	0,4	6,5	0,3	26,0	0,4
	Min	3,4	9,8	4,1	0,5	1,0	0,2	10,5	0,4	5,7	0,3		
	Max	10,7	17,7	5,0	0,7	2,5	0,5	13,1	1,3	13,2	0,5		
	Mittelwert	5,4	13,2	4,6	0,6	1,4	0,4	11,9	0,8	9,0	0,4	_	
	Median	4,2	13,0	4,6	0,6	1,2	0,4	11,8	0,8	9,1	0,4		

Tabelle 98: Spurenelemente 1 [mg/kg] der Anlage 13

Probe		Sc	٧	Cr	Mn	Co	Ni	Cu	Zn	Ga	Ge	As
13-1	07.03.12	1,4	29,3	135	592		49,2	785	3246	18,1	7,2	10,8
13-2	11.04.12	1,6	27,3	340	547		67,2	816	3243	18,9	7,1	66,8
13-3	07.05.12	1,3	28,4	102	510		46,7	835	3338	17,5	6,6	10,5
13-4	01.06.12	2,2	23,4	106	525		53,9	802	3207	19,0	7,6	10,6
13-5	09.07.12	1,6	31,9	111	476		55,6	840	2971	16,1	6,6	10,6
13-6	03.08.12	2,1	30,0	125	518		60,8	894	3164	16,2	6,2	12,4
13-7	06.09.12	1,9	35,1	119	569		64,2	963	3346	17,5	7,3	13,6
13-8	08.10.12	1,5	33,3	116	591		62,0	951	3505	18,6	7,9	39,0
13-9	05.11.2012	10,4	41,5	136	552	19,7	47,0	928	3448	20,5	10,1	13,7
13-10	06.12.2012	10,3	41,2	135	504	14,5	47,1	830	3437	21,4	10,0	14,6
13-11	10.01.2013	3,6	43,0	129	455	12,8	48,9	836	3710	17,3	6,5	13,4
13-12	04.02.2013	3,5	40,3	133	435	11,1	47,7	839	3640	17,2	6,4	13,5
	Min	1,3	23,4	102	435	11,1	46,7	785	2971	16,1	6,2	10,5
	Max	10,4	43,0	340	592	19,7	67,2	963	3710	21,4	10,1	66,8
	Mittelwert	3,5	33,7	141	523	14,5	54,2	860	3355	18,2	7,5	19,1
	Median	2,0	32,6	127	522	13,7	51,6	838	3342	17,8	7,2	13,5

Tabelle 99: Spurenelemente 2 [mg/kg] der Anlage 13

Probe		Se	Sr	Υ	Zr	Nb	Мо	Ag	Cd	Sn	Sb	Ba
13-1	07.03.12		892	7,7	62,7	5,2	15,8	19,1	2,9	92,4	10,9	748
13-2	11.04.12		912	9,2	55,4	5,2	14,1	22,7	3,0	94,5	10,5	1636
13-3	07.05.12		943	7,3	61,0	4,9	16,8	4,3	3,1	91,9	12,1	702
13-4	01.06.12		959	12,3	66,1	4,9	15,9	18,2	2,9	93,8	11,8	727
13-5	09.07.12		780	9,0	62,3	5,3	17,2	9,0	3,1	86,5	14,9	661
13-6	03.08.12		747	9,2	64,3	5,9	17,5	7,8	3,2	91,9	14,5	699
13-7	06.09.12		764	11,3	74,8	5,4	16,8	18,2	3,2	97,7	13,6	829
13-8	08.10.12		821	11,1	65,8	4,8	15,9	20,3	3,1	102,4	11,2	1380

Probe		Se	Sr	Υ	Zr	Nb	Мо	Ag	Cd	Sn	Sb	Ba
13-9	05.11.2012	8,0	788	53,0	64,5	4,6	17,4	15,6	3,0	98,0	10,9	732
13-10	06.12.2012	8,2	952	51,0	61,1	4,3	17,3	14,1	3,1	99,4	10,6	758
13-11	10.01.2013	4,6	816	22,7	56,9	4,4	15,0	12,7	2,8	102,5	13,3	623
13-12	04.02.2013	4,9	905	22,1	59,7	4,1	14,3	17,4	3,1	116,8	10,5	892
	Min	4,6	747	7,3	55,4	4,1	14,1	4,3	2,8	86,5	10,5	623
	Max	8,2	959	53,0	74,8	5,9	17,5	22,7	3,2	116,8	14,9	1636
	Mittelwert	6,4	856	18,8	62,9	4,9	16,2	14,9	3,1	97,3	12,1	866
	Median	6,5	856	11,2	62,5	4,9	16,3	16,5	3,1	96,1	11,5	740

Tabelle 100: Spurenelemente 3 [mg/kg] der Anlage 13

Probe		La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er
13-1	07.03.12	49,1	106	10,1	37,3	7,0	1,0	6,3	1,0	5,2	1,1	2,6
13-2	11.04.12	51,1	111	10,6	39,3	7,5	1,1	6,6	1,0	5,4	1,1	2,8
13-3	07.05.12	46,1	103	9,3	33,8	6,2	0,9	5,5	0,9	4,5	0,9	2,3
13-4	01.06.12	51,7	112	11,1	41,4	8,0	1,2	7,4	1,1	6,3	1,3	3,3
13-5	09.07.12	45,7	104	9,3	34,6	6,7	1,0	6,2	1,0	5,2	1,1	2,7
13-6	03.08.12	45,8	107	9,1	34,1	6,6	1,0	6,2	1,0	5,2	1,1	2,7
13-7	06.09.12	50,4	110	10,4	38,5	7,4	1,1	6,9	1,1	5,9	1,2	3,1
13-8	08.10.12	52,7	112	11,3	43,0	8,2	1,2	7,6	1,2	6,5	1,3	3,4
13-9	05.11.2012	89,7	169	16,1	60,9	12,3	1,9	13,0	1,6	11,1	1,9	6,1
13-10	06.12.2012	75,4	167	15,8	60,0	12,3	1,9	12,9	1,6	11,1	1,9	6,1
13-11	10.01.2013	56,9	139	12,2	45,3	8,8	1,4	8,6	1,1	7,3	1,2	3,9
13-12	04.02.2013	55,4	138	12,4	46,5	9,1	1,4	8,9	1,1	7,5	1,3	4,0
	Min	45,7	103	9,1	33,8	6,2	0,9	5,5	0,9	4,5	0,9	2,3
	Max	89,7	169	16,1	60,9	12,3	1,9	13,0	1,6	11,1	1,9	6,1
	Mittelwert	55,8	123	11,5	42,9	8,3	1,3	8,0	1,1	6,8	1,3	3,6
	Median	51,4	111	10,9	40,4	7,7	1,1	7,1	1,1	6,1	1,2	3,2

Tabelle 101: Spurenelemente 4 [mg/kg] der Anlage 13

Probe		Tm	Yb	Lu	Hf	Та	W	Au	Hg	Pb	Th	U
13-1	07.03.12	0,3	2,1	0,3	1,7	40,5	32,8	8,4		82,1	8,3	12,8
13-2	11.04.12	0,4	2,2	0,3	1,5	49,3	32,7	1,8		87,1	9,9	12,0
13-3	07.05.12	0,3	1,8	0,2	1,8	60,2	33,1	5,6		86,0	8,8	13,1
13-4	01.06.12	0,4	2,7	0,4	1,8	58,2	35,8	2,2		102,3	11,3	13,0
13-5	09.07.12	0,4	2,1	0,3	1,8	29,4	35,2	2,0		99,2	8,5	12,3
13-6	03.08.12	0,3	2,1	0,3	1,7	41,2	32,9	5,0		104,6	8,6	11,9
13-7	06.09.12	0,4	2,6	0,3	1,9	41,3	33,7	3,1		111,0	10,4	12,3
13-8	08.10.12	0,4	2,8	0,4	1,8	52,6	40,3	3,2		107,7	10,0	12,3
13-9	05.11.2012	0,7	5,7	0,7	1,8	98,7	30,1	2,4	0,2	141,5	19,2	7,5
13-10	06.12.2012	0,7	5,7	0,7	1,7	63,9	30,8	2,0	0,2	135,9	19,0	8,6
13-11	10.01.2013	0,5	3,6	0,4	1,9	82,2	33,7	3,4	0,3	123,1	11,5	10,3
13-12	04.02.2013	0,5	3,6	0,4	1,7	74,3	30,7	2,8	0,4	117,2	10,8	11,4

Probe		Tm	Yb	Lu	Hf	Та	W	Au	Hg	Pb	Th	U
	Min	0,3	1,8	0,2	1,5	29,4	30,1	1,8	0,2	82,1	8,3	7,5
	Max	0,7	5,7	0,7	1,9	98,7	40,3	8,4	0,4	141,5	19,2	13,1
	Mittelwert	0,5	3,1	0,4	1,8	57,6	33,5	3,5	0,3	108,1	11,3	11,5
	Median	0,4	2,6	0,3	1,8	55,4	33,0	2,9	0,3	106,2	10,2	12,1

Tabelle 102: Platingruppenelemente [µg/kg] der Anlage 13

Probe		Rh	Pd	Pt
13-1	07.03.12	6,9	161	155

11.3.13 Anlage 14

Tabelle 103: Hauptelemente [%], Wassergehalt (RF) [%], Glühverlust (GV) [%] der Anlage 14

Probe		Al	Ca	Fe	K	Mg	Na	Р	S	Si	Ti	RF	GV
14-1	15.03.12	8,0	11,4	7,9	1,2	0,7	0,7	10,0	1,0	11,8	0,1	0,3	0,2
14-2	17.04.12	7,1	13,2	5,8	1,2	0,6	0,5	8,5	1,2	13,4	0,1	0,3	0,0
14-3	16.05.12	7,4	12,1	6,2	1,2	0,6	0,5	7,7	1,2	14,4	0,1	0,2	0,0
14-4	26.06.12	6,4	12,9	6,2	1,1	0,6	0,5	7,3	1,3	14,9	0,1	0,2	-0,3
14-5	31.07.12	7,9	12,2	6,0	1,1	2,3	0,6	9,2	1,0	20,7	0,4	0,2	0,0
14-6	30.08.12	7,8	13,1	5,3	1,1	1,7	0,5	7,7	1,3	10,3	0,4	0,2	-0,1
14-7	19.09.2012	7,4	12,5	8,2	1,0	1,8	0,4	8,9	1,1	17,5	0,4	0,3	-0,1
14-8	18.10.2012	7,6	12,9	8,9	0,9	2,1	0,4	10,5	1,1	15,7	0,4	0,3	0,0
14-9	27.11.2012	7,7	13,8	7,3	1,0	2,0	0,4	10,0	1,1	16,4	0,4	0,3	-0,1
14-10	20.12.2012	9,0	13,6	6,3	1,3	2,3	0,4	9,9	1,1	16,9	0,4	0,2	-0,1
14-11	17.01.2013	8,3	14,2	6,3	1,3	2,4	0,4	9,5	1,1	16,7	0,4	0,1	-0,1
14-12	18.02.2013	7,7	11,5	7,7	1,2	2,4	0,5	11,1	0,8	17,0	0,4	0,3	-0,1
	Min	6,4	11,4	5,3	0,9	0,6	0,4	7,3	0,8	10,3	0,1		
	Max	9,0	14,2	8,9	1,3	2,4	0,7	11,1	1,3	20,7	0,4		
	Mittelwert	7,7	12,8	6,8	1,1	1,6	0,5	9,2	1,1	15,5	0,3		
	Median	7,7	12,9	6,3	1,1	1,9	0,5	9,4	1,1	16,0	0,4		

Tabelle 104: Spurenelemente 1 [mg/kg] der Anlage 14

Probe		Sc	V	Cr	Mn	Со	Ni	Cu	Zn	Ga	Ge	As
14-1	15.03.12	6,2	65,8	207	831		47,2	731	2787	12,9	6,1	11,7
14-2	17.04.12	7,7	73,3	257	861		80,1	851	2849	12,7	6,4	10,8
14-3	16.05.12	7,9	76,5	273	857		78,0	861	2960	14,2	6,6	11,9
14-4	26.06.12	6,7	57,3	258	728		76,6	802	3021	13,9	6,7	17,8
14-5	31.07.12	7,5	54,9	129	783		61,0	737	2670	15,2	6,9	11,8
14-6	30.08.12	3,9	76,1	147	873		66,2	742	2419	11,3	4,1	11,0
14-7	19.09.2012	7,0	75,0	136	838	20,3	72,3	763	2209	14,8	5,6	11,3
14-8	18.10.2012	7,6	98,9	169	1021	17,3	81,3	819	2441	11,9	5,1	11,2
14-9	27.11.2012	10,7	139,3	202	1350	18,8	86,1	767	2305	11,7	5,3	13,9

Probe		Sc	V	Cr	Mn	Со	Ni	Cu	Zn	Ga	Ge	As
14-10	20.12.2012	6,6	73,4	157	790	14,8	77,0	772	2388	12,4	4,5	11,7
14-11	17.01.2013	5,9	54,1	109	611	14,5	67,4	785	2189	13,7	4,6	10,5
14-12	18.02.2013	5,4	57,0	126	779	15,3	65,2	748	2276	11,4	4,5	11,5
	Min	3,9	54,1	109	611	14,5	47,2	731	2189	11,3	4,1	10,5
	Max	10,7	139,3	273	1350	20,3	86,1	861	3021	15,2	6,9	17,8
	Mittelwert	6,9	75,1	181	860	16,8	71,5	781	2543	13,0	5,5	12,1
	Median	6,9	73,4	163	835	16,3	74,5	769	2430	12,8	5,4	11,6

Tabelle 105: Spurenelemente 2 [mg/kg] der Anlage 14

Probe		Se	Sr	Υ	Zr	Nb	Мо	Ag	Cd	Sn	Sb	Ва
14-1	15.03.12		745	10,7	74,1	8,5	17,5	5,0	3,0	118	10,5	872
14-2	17.04.12		677	13,2	93,0	17,3	19,7	7,9	3,1	104	14,1	865
14-3	16.05.12		683	13,5	88,1	15,4	18,7	5,5	2,7	107	12,7	932
14-4	26.06.12		634	13,8	62,0	9,5	17,6	6,0	2,8	96	13,9	821
14-5	31.07.12		428	14,2	82,2	10,8	17,3	5,3	2,6	79	11,4	873
14-6	30.08.12		448	9,7	110,5	14,8	14,8	25,1	2,9	99	11,1	817
14-7	19.09.2012		372	16,7	82,8	12,1	14,5	24,0	2,1	81	9,1	737
14-8	18.10.2012		437	13,7	119,8	16,7	14,8	8,3	2,0	113	10,1	899
14-9	27.11.2012		413	13,3	184,3	30,6	16,3	10,8	14,1	142	9,8	814
14-10	20.12.2012		374	12,0	84,9	13,1	13,7	8,3	1,9	199	10,4	871
14-11	17.01.2013		368	12,7	60,8	7,8	13,9	7,5	1,8	72	14,7	862
14-12	18.02.2013		420	11,8	62,2	8,8	14,4	8,1	2,0	76	9,9	771
	Min		368	9,7	60,8	7,8	13,7	5,0	1,8	72	9,1	737
	Max		745	16,7	184,3	30,6	19,7	25,1	14,1	199	14,7	932
	Mittelwert		500	13,0	92,1	13,8	16,1	10,1	3,4	107	11,5	844
	Median		433	13,2	83,9	12,6	15,5	8,0	2,7	101	10,8	863

Tabelle 106: Spurenelemente 3 [mg/kg] der Anlage 14

Probe		La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er
14-1	15.03.12	24,5	37,8	3,8	12,2	2,5	0,7	2,6	0,6	2,0	0,6	1,2
14-2	17.04.12	25,6	37,2	4,3	15,4	3,1	0,8	3,2	0,7	2,4	0,8	1,5
14-3	16.05.12	24,5	39,0	4,4	16,4	3,3	0,8	3,2	0,7	2,4	0,7	1,5
14-4	26.06.12	24,0	38,6	4,3	15,8	3,2	0,8	3,3	0,7	2,6	0,7	1,6
14-5	31.07.12	37,5	60,7	5,9	17,3	3,5	0,9	3,6	0,7	2,7	0,7	1,6
14-6	30.08.12	21,1	37,6	4,3	16,4	3,3	0,7	3,0	0,5	2,5	0,6	1,4
14-7	19.09.2012	26,9	79,1	5,2	19,6	3,8	0,7	3,8	0,5	3,0	0,6	1,7
14-8	18.10.2012	25,2	39,9	4,6	17,5	3,4	0,7	3,4	0,5	2,6	0,5	1,4
14-9	27.11.2012	24,5	38,8	4,5	16,9	3,3	0,6	3,2	0,4	2,5	0,5	1,4
14-10	20.12.2012	23,7	38,2	4,2	15,1	2,9	0,6	2,8	0,4	2,2	0,4	1,2
14-11	17.01.2013	31,7	49,8	5,1	16,5	3,2	0,7	3,0	0,4	2,4	0,5	1,3
14-12	18.02.2013	22,3	35,7	4,0	15,1	3,0	0,6	2,9	0,4	2,2	0,4	1,2
	Min	21,1	35,7	3,8	12,2	2,5	0,6	2,6	0,4	2,0	0,4	1,2

Probe		La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er
	Max	37,5	79,1	5,9	19,6	3,8	0,9	3,8	0,7	3,0	0,8	1,7
	Mittelwert	25,9	44,4	4,5	16,2	3,2	0,7	3,2	0,5	2,5	0,6	1,4
	Median	24,5	38,7	4,3	16,4	3,2	0,7	3,2	0,5	2,5	0,6	1,4

Tabelle 107: Spurenelemente 4 [mg/kg] der Anlage 14

Probe		Tm	Yb	Lu	Hf	Та	W	Au	Hg	Pb	Th	U
14-1	15.03.12	0,4	1,2	0,3	2,0	1,1	47,7	0,9		95,6	4,9	9,5
14-2	17.04.12	0,5	1,5	0,4	2,9	1,6	52,3	2,1		103,8	5,9	8,2
14-3	16.05.12	0,5	1,5	0,4	2,6	1,5	151,1	1,2		107,6	6,1	8,5
14-4	26.06.12	0,5	1,5	0,4	1,9	1,2	335,5	1,1		128,7	6,1	7,9
14-5	31.07.12	0,4	1,5	0,4	1,9	1,2	54,1	1,5		83,7	6,4	10,8
14-6	30.08.12	0,2	1,4	0,2	3,6	1,4	44,5	0,9		99,7	5,5	9,9
14-7	19.09.2012	0,2	1,6	0,2	2,3	0,9	173,8	0,9	1,9	103,2	7,8	9,1
14-8	18.10.2012	0,2	1,4	0,2	3,1	1,2	66,7	3,0	0,9	109,5	7,0	9,3
14-9	27.11.2012	0,2	1,5	0,2	5,2	2,0	141,5	1,0	1,7	102,5	7,6	10,2
14-10	20.12.2012	0,2	1,2	0,2	2,1	1,0	63,7	0,9	0,6	99,4	6,2	9,7
14-11	17.01.2013	0,2	1,2	0,2	1,6	0,7	52,0	0,9	0,6	100,4	6,4	7,8
14-12	18.02.2013	0,2	1,1	0,2	1,7	0,7	55,2	0,9	0,9	89,1	6,0	11,0
	Min	0,2	1,1	0,2	1,6	0,7	44,5	0,9	0,6	83,7	4,9	7,8
	Max	0,5	1,6	0,4	5,2	2,0	335,5	3,0	1,9	128,7	7,8	11,0
	Mittelwert	0,3	1,4	0,3	2,6	1,2	103,2	1,3	1,1	101,9	6,3	9,3
	Median	0,2	1,5	0,2	2,2	1,2	59,4	1,0	0,9	101,5	6,2	9,4

Tabelle 108: Platingruppenelemente [µg/kg] der Anlage 14

Probe		Rh	Pd	Pt
14-1	15.03.12	3,5	81	92

11.3.14 Anlage 15

Tabelle 109: Hauptelemente [%], Wassergehalt (RF) [%], Glühverlust (GV) [%] der Anlage 15

Probe		Al	Ca	Fe	K	Mg	Na	Р	S	Si	Ti	RF	GV
15-1	03.01.2012	6,6	10,1	11,0	1,1	2,1	0,4	9,6	0,5	13,7	0,5	0,3	0,2
15-2	07.03.2012	6,2	10,5	9,8	1,2	2,0	0,4	8,9	0,8	15,5	0,5	0,3	0,2
15-3	02.04.2012	5,6	11,8	11,8	1,3	2,1	0,4	11,2	0,7	12,0	0,4	0,3	0,1
15-4	04.05.2012	6,8	11,6	9,5	1,3	2,1	0,4	10,8	0,7	13,6	0,4	0,3	0,2
15-5	01.06.2012	6,3	10,8	9,3	1,3	2,2	0,5	10,0	0,8	13,6	0,4	0,3	0,2
15-6	06.07.2012	6,2	10,3	9,6	1,2	2,0	0,3	8,1	0,8	16,2	0,4	0,4	0,3
15-7	03.08.2012	6,4	9,5	9,0	1,1	2,0	0,4	7,9	0,8	16,5	0,5	0,3	0,1
15-8	07.09.2012	6,6	9,9	10,2	1,1	2,1	0,4	8,3	0,8	16,7	0,5	0,3	0,2
15-9	05.10.2012	7,1	10,0	9,5	1,0	1,9	0,4	8,2	0,8	17,3	0,5	0,3	0,2
15-10	02.11.2012	6,6	9,6	10,7	1,0	2,2	0,4	9,1	1,0	14,8	0,5	28,1	0,9

Probe		Al	Ca	Fe	K	Mg	Na	Р	S	Si	Ti	RF	GV
15-11	07.12.2012	6,5	10,8	10,8	1,0	2,1	0,3	10,3	0,6	14,4	0,5	0,3	0,2
	Min	5,6	9,5	9,0	1,0	1,9	0,3	7,9	0,5	12,0	0,4		
	Max	7,1	11,8	11,8	1,3	2,2	0,5	11,2	1,0	17,3	0,5		
	Mittelwert	6,5	10,4	10,1	1,1	2,1	0,4	9,3	0,7	14,9	0,5		
	Median	6,5	10,3	9,8	1,1	2,1	0,4	9,1	0,8	14,8	0,5		

Tabelle 110: Spurenelemente 1 [mg/kg] der Anlage 14

Probe		Sc	V	Cr	Mn	Со	Ni	Cu	Zn	Ga	Ge	As
15-1	03.01.2012	3,2	51,0	171	1140	21,3	81,2	965	2937	10,2	4,5	14,8
15-2	07.03.2012	4,4	43,1	205	1266	20,0	88,0	895	2830	9,4	4,3	16,1
15-3	02.04.2012	3,6	40,7	290	1082	19,7	91,9	966	3163	8,7	4,5	14,6
15-4	04.05.2012	2,3	38,1	206	947	17,9	100,5	988	3016	9,7	3,7	13,5
15-5	01.06.2012	4,2	37,3	198	985	19,6	91,5	966	2895	9,6	4,2	12,4
15-6	06.07.2012	3,0	43,8	156	958	21,0	80,6	850	2681	9,4	3,9	13,0
15-7	03.08.2012	4,8	41,6	148	852	18,1	85,4	843	2550	10,0	4,1	12,9
15-8	07.09.2012	2,5	44,6	161	905	19,1	84,9	909	2653	10,1	4,2	14,2
15-9	05.10.2012	3,1	44,9	159	1095	20,5	79,3	876	2602	10,3	4,1	11,9
15-10	02.11.2012	2,4	40,9	138	1155	22,4	75,6	869	2533	9,6	4,1	14,5
15-11	07.12.2012	2,4	45,1	143	1169	21,5	84,3	991	2946	9,5	4,0	14,9
	Min	2,3	37,3	138	852	17,9	75,6	843	2533	8,7	3,7	11,9
	Max	4,8	51,0	290	1266	22,4	100,5	991	3163	10,3	4,5	16,1
	Mittelwert	3,3	42,8	179	1050	20,1	85,7	920	2801	9,7	4,1	13,9
	Median	3,1	43,1	161	1082	20,0	84,9	909	2830	9,6	4,1	14,2

Tabelle 111: Spurenelemente 2 [mg/kg] der Anlage 15

Probe		Se	Sr	Υ	Zr	Nb	Мо	Ag	Cd	Sn	Sb	Ва
15-1	03.01.2012	1,6	848	7,2	76,1	11,6	26,8	9,9	3,3	89,9	12,9	830
15-2	07.03.2012	1,9	805	9,1	67,3	8,7	28,9	11,8	4,0	78,3	12,9	826
15-3	02.04.2012	1,6	910	7,1	68,1	8,4	33,3	15,5	5,7	92,8	12,2	945
15-4	04.05.2012	1,7	896	6,4	76,5	7,4	29,8	13,2	5,3	95,1	12,6	868
15-5	01.06.2012	1,5	824	8,3	74,2	10,6	27,8	11,0	4,0	90,1	13,4	802
15-6	06.07.2012	2,3	733	7,8	72,4	8,4	27,4	8,8	2,8	156,8	15,4	754
15-7	03.08.2012	1,6	692	9,7	70,5	8,9	22,6	8,5	2,7	75,1	13,8	714
15-8	07.09.2012	2,0	713	8,0	69,5	10,2	24,6	9,5	2,7	81,5	13,7	783
15-9	05.10.2012	2,2	734	8,4	68,6	9,0	23,5	9,5	2,5	81,7	12,1	734
15-10	02.11.2012	2,7	790	6,9	65,7	8,6	61,3	9,0	2,6	80,1	11,3	693
15-11	07.12.2012	1,7	918	6,1	72,9	10,0	28,0	9,4	2,8	88,7	11,9	809
	Min	1,5	692	6,1	65,7	7,4	22,6	8,5	2,5	75,1	11,3	693
	Max	2,7	918	9,7	76,5	11,6	61,3	15,5	5,7	156,8	15,4	945
	Mittelwert	1,9	806	7,7	71,1	9,2	30,4	10,6	3,5	91,8	12,9	796
	Median	1,7	805	7,8	70,5	8,9	27,8	9,5	2,8	88,7	12,9	802

Tabelle 112: Spurenelemente 3 [mg/kg] der Anlage 15

Probe		La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er
15-1	03.01.2012	16,6	29,3	3,1	11,9	2,3	0,6	2,4	0,3	1,7	0,3	1,0
15-2	07.03.2012	20,5	34,3	3,6	13,9	2,6	0,6	2,7	0,3	1,9	0,4	1,1
15-3	02.04.2012	17,7	26,8	2,7	10,4	1,9	0,5	2,1	0,3	1,4	0,3	0,8
15-4	04.05.2012	15,4	25,5	2,5	9,8	1,9	0,5	2,0	0,3	1,5	0,3	0,8
15-5	01.06.2012	20,7	31,2	3,2	12,2	2,3	0,5	2,5	0,3	1,7	0,3	0,9
15-6	06.07.2012	15,0	27,2	2,7	10,6	2,2	0,5	2,3	0,3	1,8	0,3	1,0
15-7	03.08.2012	22,4	37,8	4,0	15,6	2,9	0,6	3,1	0,4	2,2	0,4	1,2
15-8	07.09.2012	14,8	28,7	2,9	11,5	2,3	0,6	2,5	0,3	1,9	0,4	1,1
15-9	05.10.2012	16,1	30,1	3,1	12,2	2,4	0,6	2,5	0,3	1,9	0,4	1,1
15-10	02.11.2012	13,8	25,3	2,5	9,8	2,0	0,5	2,3	0,3	1,6	0,3	0,9
15-11	07.12.2012	14,9	26,5	2,7	10,6	2,1	0,5	2,3	0,3	1,6	0,3	0,9
	Min	13,8	25,3	2,5	9,8	1,9	0,5	2,0	0,3	1,4	0,3	0,8
	Max	22,4	37,8	4,0	15,6	2,9	0,6	3,1	0,4	2,2	0,4	1,2
	Mittelwert	17,1	29,3	3,0	11,7	2,3	0,5	2,4	0,3	1,7	0,3	1,0
	Median	16,1	28,7	2,9	11,5	2,3	0,5	2,4	0,3	1,7	0,3	1,0

Tabelle 113: Spurenelemente 4 [mg/kg] der Anlage 15

Probe		Tm	Yb	Lu	Hf	Ta	W	Au	Hg	Pb	Th	U
15-1	03.01.2012	0,2	1,0	0,1	2,3	1,0	41,1	1,7	0,2	106	4,2	12,0
15-2	07.03.2012	0,2	1,1	0,1	2,0	0,8	42,2	1,5	0,2	129	6,0	9,5
15-3	02.04.2012	0,1	0,9	0,1	2,0	0,6	44,2	1,5	0,2	152	4,4	9,2
15-4	04.05.2012	0,1	0,9	0,1	2,2	0,7	52,7	2,5	0,3	126	3,2	10,3
15-5	01.06.2012	0,2	1,0	0,1	2,1	0,9	38,8	1,6	0,3	118	5,4	9,6
15-6	06.07.2012	0,2	1,0	0,1	2,1	0,7	48,5	3,1	0,3	113	3,6	10,2
15-7	03.08.2012	0,2	1,2	0,1	2,0	0,0	48,4	1,5	0,2	95	7,0	10,2
15-8	07.09.2012	0,2	1,1	0,1	2,3	0,8	42,3	1,6	0,2	104	3,5	10,1
15-9	05.10.2012	0,2	1,1	0,1	2,3	0,8	41,1	1,4	0,4	102	4,3	9,9
15-10	02.11.2012	0,2	1,0	0,1	2,2	0,8	44,8	1,6	0,4	90	3,2	11,1
15-11	07.12.2012	0,1	0,9	0,1	2,3	0,8	40,4	2,8	0,2	95	3,4	12,4
	Min	0,1	0,9	0,1	2,0	0,0	38,8	1,4	0,2	90	3,2	9,2
	Max	0,2	1,2	0,1	2,3	1,0	52,7	3,1	0,4	152	7,0	12,4
	Mittelwert	0,2	1,0	0,1	2,2	0,7	44,1	1,9	0,3	112	4,4	10,4
	Median	0,2	1,0	0,1	2,2	0,8	42,3	1,6	0,2	106	4,2	10,2

Tabelle 114: Platingruppenelemente [µg/kg] der Anlage 15

Probe		Rh	Pd	Pt
15-1	03.01.2012	6,1	80	64

11.3.15 Anlage 16

Tabelle 115: Hauptelemente [%], Wassergehalt (RF) [%], Glühverlust (GV) [%] der Anlage 16

Probe		Al	Ca	Fe	K	Mg	Na	Р	S	Si	Ti	RF	GV
16-1	n/a	6,8	7,4	14,6		2,2	0,2	9,7	0,5	11,6	0,5	0,4	0,1
16-2	15.03.12	7,2	7,5	15,8	0,8	0,5	0,5	9,0	0,6	11,8	0,1	0,3	0,1
16-3	03.04.12	6,6	8,5	14,2	0,8	0,5	0,4	8,6	0,7	11,3	0,1	0,3	0,1
16-4	11.05.12	7,6	8,5	12,2	0,9	0,5	0,5	8,5	0,7	12,6	0,1	0,4	0,2
16-5	12.06.12	7,6	7,7	13,3	0,8	0,5	0,6	7,8	0,8	13,6	0,1	0,3	0,1
16-6	12.07.12	7,8	8,1	13,1	0,8	0,5	0,4	8,7	0,6	12,1	0,1	0,3	0,1
16-7	09.08.12	8,1	6,9	12,0	0,9	0,5	0,4	7,4	0,6	14,2	0,1	0,3	0,1
16-8	04.09.2012	6,8	7,6	11,4	1,0	1,5	0,5	8,3	0,6	13,2	0,5	0,3	0,1
16-9	04.10.2012	6,7	7,4	12,9	1,0	1,5	0,4	8,9	0,6	9,7	0,5	0,3	0,0
16-10	13.11.2012	6,8	7,5	12,3	1,1	1,6	0,5	8,9	0,6	13,9	0,4	0,3	0,1
16-11	03.12.2012	7,2	8,4	12,8	1,0	1,7	0,4	10,3	0,5	12,5	0,5	0,3	0,1
16-12	22.01.2013	7,0	7,8	13,9	1,0	1,7	0,5	10,2	0,5	12,5	0,5	0,3	0,1
16-13	19.02.2013	7,0	7,5	14,0	1,1	1,8	0,5	9,9	0,4	12,7	0,5	0,2	0,0
	Min	6,6	6,9	11,4	0,8	0,5	0,2	7,4	0,4	9,7	0,1		
	Max	8,1	8,5	15,8	1,1	2,2	0,6	10,3	0,8	14,2	0,5		
	Mittelwert	7,2	7,8	13,3	0,9	1,2	0,4	8,9	0,6	12,4	0,3		
	Median	7,0	7,6	13,1	1,0	1,5	0,5	8,9	0,6	12,5	0,4		

Tabelle 116: Spurenelemente 1 [mg/kg] der Anlage 16

Probe		Sc	٧	Cr	Mn	Со	Ni	Cu	Zn	Ga	Ge	As
16-1	n/a	6,6	67,0	274	1311		92,1	1029	3139	15,0	10,4	21,2
16-2	15.03.12	4,2	69,4	356	1302		94,5	1046	3148	11,5	7,2	16,4
16-3	03.04.12	3,4	58,0	304	1316		94,8	949	3187	11,8	7,0	15,0
16-4	11.05.12	3,6	60,2	369	1306		99,0	1013	2834	12,0	6,0	13,4
16-5	12.06.12	3,5	65,7	379	1576		103,1	962	3015	11,5	6,2	64,4
16-6	12.07.12	3,1	57,4	341	1176		87,1	957	2716	12,6	5,9	13,1
16-7	09.08.12	6,9	72,2	425	1354		122,5	987	4371	16,5	8,5	15,1
16-8	04.09.2012	5,1	76,1	338	1321	19,7	83,9	915	2688	12,0	5,2	11,7
16-9	04.10.2012	4,8	75,6	334	1363	19,4	93,8	876	2483	11,0	4,7	11,4
16-10	13.11.2012	4,1	86,3	302	1316	18,3	80,4	902	2467	9,3	4,0	11,1
16-11	03.12.2012	4,0	64,6	329	1659	21,7	145	968	3063	12,7	4,8	12,3
16-12	22.01.2013	4,5	72,8	289	1251	17,8	91,5	934	2821	11,1	4,6	12,5
16-13	19.02.2013	5,0	78,3	274	1110	16,8	107	928	2532	10,8	4,6	11,7
	Min	3,1	57,4	274	1110	16,8	80,4	876	2467	9,3	4,0	11,1
	Max	6,9	86,3	425	1659	21,7	145	1046	4371	16,5	10,4	64,4
	Mittelwert	4,5	69,5	332	1335	19,0	99,6	959	2959	12,1	6,1	17,6
	Median	4,2	69,4	334	1316	18,9	94,5	957	2834	11,8	5,9	13,1

Tabelle 117: Spurenelemente 2 [mg/kg] der Anlage 16

Probe		Se	Sr	Υ	Zr	Nb	Мо	Ag	Cd	Sn	Sb	Ва
16-1	n/a		396	14,7	86,9	14,2	34,2	8,6	4,7	92,8	21,5	1462
16-2	15.03.12		537	8,0	86,8	12,9	32,1	8,4	4,4	90,3	17,8	955
16-3	03.04.12		553	7,4	81,3	11,9	29,3	8,4	4,7	99,4	17,7	911
16-4	11.05.12		516	5,8	113,3	11,4	29,8	9,5	4,1	105,0	20,5	868
16-5	12.06.12		479	6,5	94,5	11,2	28,8	9,2	4,2	89,7	23,0	886
16-6	12.07.12		516	6,3	83,1	12,1	31,7	31,2	3,7	80,9	18,8	822
16-7	09.08.12		460	14,0	86,7	12,8	34,8	8,1	4,3	85,4	19,6	907
16-8	04.09.2012		363	11,8	87,9	11,3	24,6	3,8	3,7	75,8	15,5	818
16-9	04.10.2012		309	11,1	82,1	10,3	23,9	2,8	4,1	69,7	16,4	791
16-10	13.11.2012		313	9,0	88,6	9,1	22,6	4,1	3,6	70,8	17,9	771
16-11	03.12.2012		394	10,1	90,3	7,5	28,5	5,6	3,8	94,4	23,1	877
16-12	22.01.2013		350	10,4	85,5	10,7	26,6	1,6	3,7	84,1	19,3	800
16-13	19.02.2013		323	10,9	85,7	11,1	22,1	1,0	3,6	80,3	18,7	732
	Min		309	5,8	81,3	7,5	22,1	1,0	3,6	69,7	15,5	732
	Max		553	14,7	113,3	14,2	34,8	31,2	4,7	105,0	23,1	1462
	Mittelwert		424	9,7	88,7	11,3	28,4	7,9	4,1	86,0	19,2	892
	Median		396	10,1	86,8	11,3	28,8	8,1	4,1	85,4	18,8	868

Tabelle 118: Spurenelemente 3 [mg/kg] der Anlage 16

Probe		La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er
16-1	n/a	26,4	38,5	4,1	15,6	3,1	0,7	3,3	0,7	2,3	0,7	1,3
16-2	15.03.12	11,6	22,4	2,3	8,8	2,1	0,6	2,2	0,5	1,8	0,6	1,2
16-3	03.04.12	13,6	23,6	2,6	9,7	2,2	0,7	2,3	0,5	1,8	0,6	1,1
16-4	11.05.12	11,5	20,9	2,2	8,3	2,0	0,6	2,0	0,5	1,6	0,6	1,0
16-5	12.06.12	10,8	20,3	2,2	8,0	1,9	0,7	2,0	0,5	1,6	0,6	1,1
16-6	12.07.12	11,8	24,2	2,3	8,4	1,9	0,6	2,1	0,5	1,6	0,6	1,0
16-7	09.08.12	28,3	52,6	4,9	17,5	3,6	0,9	3,6	0,7	2,7	0,8	1,6
16-8	04.09.2012	26,4	42,7	4,5	16,9	3,6	0,7	3,1	0,4	2,4	0,5	1,3
16-9	04.10.2012	24,8	39,8	4,2	15,9	3,5	0,7	3,0	0,4	2,3	0,4	1,3
16-10	13.11.2012	23,0	34,1	3,4	13,0	3,0	0,6	2,5	0,3	1,9	0,4	1,1
16-11	03.12.2012	26,8	49,2	3,9	14,4	3,1	0,6	2,9	0,4	2,1	0,4	1,2
16-12	22.01.2013	25,7	43,9	3,9	14,8	3,1	0,7	3,0	0,4	2,2	0,4	1,2
16-13	19.02.2013	24,9	39,3	4,1	15,8	3,3	0,7	3,1	0,4	2,3	0,4	1,3
	Min	10,8	20,3	2,2	8,0	1,9	0,6	2,0	0,3	1,6	0,4	1,0
	Max	28,3	52,6	4,9	17,5	3,6	0,9	3,6	0,7	2,7	0,8	1,6
	Mittelwert	20,4	34,7	3,4	12,8	2,8	0,7	2,7	0,5	2,1	0,5	1,2
	Median	24,8	38,5	3,9	14,4	3,1	0,7	2,9	0,5	2,1	0,6	1,2

Tabelle 119: Spurenelemente 4 [mg/kg] der Anlage 16

	Probe		Tm	Yb	Lu	Hf	Та	W	Au	Hg	Pb	Th	C
ĺ	16-1	n/a	0,4	1,2	0,5	2,1	1,2	68,0	1,1		226	4,8	6,0

Probe		Tm	Yb	Lu	Hf	Та	W	Au	Hg	Pb	Th	U
16-2	15.03.12	0,5	1,1	0,4	2,7	1,4	63,1	1,2		241	2,5	6,1
16-3	03.04.12	0,5	1,1	0,4	2,5	1,4	49,1	2,4		238	2,5	5,8
16-4	11.05.12	0,4	1,0	0,4	3,4	1,4	49,5	1,9		242	2,3	5,1
16-5	12.06.12	0,4	1,0	0,4	2,6	1,4	53,7	1,2		274	2,0	4,7
16-6	12.07.12	0,4	1,0	0,4	2,6	1,4	45,0	1,6		235	2,2	5,6
16-7	09.08.12	0,6	1,5	0,4	2,7	1,5	50,3	1,4		307	5,8	5,4
16-8	04.09.2012	0,2	1,3	0,2	2,3	0,9	53,5	1,8		277	6,1	5,7
16-9	04.10.2012	0,3	1,2	0,2	2,3	0,9	49,7	1,1		262	6,0	5,0
16-10	13.11.2012	0,2	1,0	0,1	1,6	0,9	80,4	1,0		256	5,1	4,7
16-11	03.12.2012	0,2	1,1	0,2	2,1	0,8	81,7	1,9		302	5,3	5,7
16-12	22.01.2013	0,2	1,1	0,2	2,3	0,8	51,6	2,7		264	5,4	6,0
16-13	19.02.2013	0,2	1,2	0,2	2,3	0,8	46,3	1,9		235	5,8	6,3
	Min	0,2	1,0	0,1	1,6	0,8	45,0	1,0		226	2,0	4,7
	Max	0,6	1,5	0,5	3,4	1,5	81,7	2,7		307	6,1	6,3
	Mittelwert	0,4	1,1	0,3	2,4	1,1	57,0	1,6		258	4,3	5,5
	Median	0,4	1,1	0,4	2,3	1,2	51,6	1,6		256	5,1	5,7

Tabelle 120: Platingruppenelemente [µg/kg] der Anlage 16

Probe		Rh	Pd	Pt
16-2	15.03.12	5,9	134	95

11.3.16 Anlage 17

Tabelle 121: Hauptelemente [%], Wassergehalt (RF) [%], Glühverlust (GV) [%] der Anlage 17

Probe		Al	Ca	Fe	K	Mg	Na	Р	S	Si	Ti	RF	GV
17-1	02/2012	3,0	11,5	10,4	1,3	1,1	0,8	10,6	0,6	10,2	0,3	8,0	3,1
17-2	03/2012	2,6	10,5	10,2	1,2	1,2	0,9	10,6	0,6	9,5	0,3	8,0	2,8
17-3	04/2012	2,2	10,8	9,5	1,1	1,3	0,8	10,2	0,6	8,8	0,4	7,0	2,2
17-4	05/2012	2,4	10,5	10,8	1,0	1,0	0,7	10,2	0,6	10,0	0,4	8,9	2,8
17-5	06/2012	2,7	11,1	9,4	1,0	1,1	0,7	8,7	0,6	10,4	0,4	4,9	3,4
17-6	07/2012	5,4	13,6	10,2	1,0	2,1	0,5	8,7	0,7	5,7	0,4	8,1	2,4
17-7	08/2012	4,5	13,5	8,9	1,1	1,6	0,5	8,7	8,0	9,4	0,4	10,9	3,6
17-8	09/2012	2,7	11,3	8,3	1,0	1,1	0,6	8,0	0,7	10,5	0,3	2,5	3,1
17-9	11/2012	3,0	10,4	11,3	0,9	1,0	0,5	9,0	0,6	9,0	0,3	13,5	3,8
17-10	12/2012	4,2	10,6	9,7	1,0	1,5	0,4	9,0	0,6	5,7	0,3	13,4	4,5
17-11	01/2013	4,7	10,6	10,9	1,0	1,7	0,5	9,2	0,5	5,2	0,3	11,3	3,2
17-12	02/2013	3,4	10,4	9,3	1,1	1,0	0,7	9,4	0,5	8,7	0,3	15,5	3,9
17-13	03/2013	3,3	11,0	8,5	1,3	1,2	1,0	9,4	0,6	10,5	0,3	16,7	3,8
17-14	04/2013	3,8	10,6	8,4	1,1	1,2	0,5	8,8	0,6	6,8	0,3	18,3	3,9
17-15	05/2013	3,7	12,1	7,6	1,2	1,3	0,8	9,3	0,7	10,4	0,4	14,6	3,8
17-16	06/2013	3,3	11,2	7,9	1,1	1,1	0,6	8,5	0,7	9,4	0,3	17,4	3,8
17-17	07/2013	4,3	11,7	8,7	1,1	1,6	0,5	8,0	0,7	8,1	0,3	20,3	3,2

Probe		Al	Ca	Fe	K	Mg	Na	Р	S	Si	Ti	RF	GV
17-18	08/2013	2,9	11,1	8,3	1,2	1,2	0,6	7,9	0,7	11,7	0,3	18,9	3,6
	Min	2,2	10,4	7,6	0,9	1,0	0,4	7,9	0,5	5,2	0,3		
	Max	5,4	13,6	11,3	1,3	2,1	1,0	10,6	0,8	11,7	0,4		
	Mittelwert	3,4	11,3	9,4	1,1	1,3	0,6	9,1	0,6	8,9	0,3		
	Median	3,3	11,1	9,4	1,1	1,2	0,6	9,0	0,6	9,4	0,3		

Tabelle 122: Spurenelemente 1 [mg/kg] der Anlage 17

Probe		Sc	V	Cr	Mn	Со	Ni	Cu	Zn	Ga	Ge	As
17-1	02/2012	2,2	48,2	141	1092	17,7	63,0	735	2221	11,7	5,8	10,6
17-2	03/2012	2,3	42,8	146	1095	14,4	61,3	735	2155	12,0	6,3	10,0
17-3	04/2012	4,3	60,8	184	1246	15,3	60,4	740	2233	12,0	6,1	9,3
17-4	05/2012	9,2	91,4	193	1184	15,3	69,7	702	2375	11,2	6,6	8,9
17-5	06/2012	4,2	114,8	229	1133	15,1	65,7	618	1993	10,5	5,5	9,2
17-6	07/2012	3,0	69,9	170	1171	13,8	63,4	590	1962	10,6	5,5	9,1
17-7	08/2012	2,3	52,1	165	1281	15,9	58,4	804	2288	11,9	5,4	10,2
17-8	09/2012	2,5	47,5	130	1052	14,9	59,7	640	2046	11,8	5,4	9,7
17-9	11/2012	1,7	44,8	119	1160	13,9	69,4	665	1905	10,2	5,2	8,9
17-10	12/2012	5,5	44,3	130	1059	17,5	63,6	646	2070	12,0	5,6	10,8
17-11	01/2013	2,5	46,8	129	1052	15,8	65,4	640	1992	10,9	5,5	14,2
17-12	02/2013	2,8	45,7	135	1068	19,0	72,2	682	2120	12,2	5,3	10,7
17-13	03/2013	3,6	47,3	129	1102	15,3	71,3	660	2193	12,1	5,3	10,3
17-14	04/2013	5,3	44,4	136	1039	14,2	69,4	644	2030	11,8	5,8	10,5
17-15	05/2013	2,9	50,5	139	1020	14,7	62,3	669	2282	11,9	5,2	10,0
17-16	06/2013	1,3	47,8	142	1008	15,4	69,0	669	2198	11,2	4,9	10,0
17-17	07/2013	2,0	61,9	149	1096	12,7	60,0	634	1997	10,9	5,1	10,1
17-18	08/2013	4,9	53,0	134	947	14,1	70,2	641	2089	11,9	5,5	11,9
	Min	1,3	42,8	119	947	12,7	58,4	590	1905	10,2	4,9	8,9
	Max	9,2	114,8	229	1281	19,0	72,2	804	2375	12,2	6,6	14,2
	Mittelwert	3,5	56,3	150	1100	15,3	65,2	673	2119	11,5	5,6	10,3
	Median	2,9	48,0	140	1094	15,2	64,5	662	2104	11,8	5,5	10,1

Tabelle 123: Spurenelemente 2 [mg/kg] der Anlage 17

Probe		Se	Sr	Υ	Zr	Nb	Мо	Ag	Cd	Sn	Sb	Ва
17-1	02/2012	2,5	661	22,1	63,0	7,5	23,3	9,4	1,3	61,8	11,3	4537
17-2	03/2012	2,8	691	23,3	63,7	7,0	20,2	12,2	1,4	63,6	11,8	4293
17-3	04/2012	2,8	770	36,6	89,2	14,3	20,5	14,8	1,4	62,3	13,1	4134
17-4	05/2012	3,5	770	39,2	162,0	29,2	19,7	6,8	1,6	74,0	12,2	4442
17-5	06/2012	2,5	649	17,5	192,1	35,7	18,9	9,3	1,4	75,2	12,1	3801
17-6	07/2012	3,1	692	19,2	105,7	16,5	16,8	11,9	1,3	63,0	11,3	3992
17-7	08/2012	2,8	677	28,1	75,5	6,9	17,7	9,8	1,4	76,8	11,4	4152
17-8	09/2012	2,8	593	30,9	61,7	7,1	16,9	9,0	1,2	63,6	9,0	3700
17-9	11/2012	2,4	598	16,7	58,8	5,5	15,2	13,5	1,2	51,2	10,1	3929

Probe		Se	Sr	Υ	Zr	Nb	Мо	Ag	Cd	Sn	Sb	Ва
17-10	12/2012	3,5	600	35,9	47,5	6,0	20,8	12,8	1,3	55,2	10,5	3746
17-11	01/2013	2,9	613	23,9	50,4	6,5	17,7	6,8	1,3	51,3	10,4	3780
17-12	02/2013	2,3	591	27,1	59,2	6,6	22,7	6,9	1,3	60,6	9,1	3954
17-13	03/2013	2,7	624	31,8	73,8	7,2	23,2	14,9	1,6	62,7	10,3	4388
17-14	04/2013	2,7	573	36,1	54,2	7,9	18,8	13,1	1,7	59,0	12,2	3661
17-15	05/2013	2,7	593	25,0	64,2	7,2	20,0	12,8	1,7	66,9	10,6	3541
17-16	06/2013	2,3	581	17,5	55,3	7,5	27,2	8,2	1,8	70,4	11,3	4121
17-17	07/2013	2,5	585	23,9	74,7	12,0	16,4	8,8	1,7	65,9	11,0	4395
17-18	08/2013	3,0	553	38,7	56,9	7,6	20,1	14,0	1,9	65,6	11,2	4037
	Min	2,3	553	16,7	47,5	5,5	15,2	6,8	1,2	51,2	9,0	3541
	Max	3,5	770	39,2	192,1	35,7	27,2	14,9	1,9	76,8	13,1	4537
	Mittelwert	2,8	634	27,4	78,2	11,0	19,8	10,8	1,5	63,8	11,1	4034
	Median	2,7	607	26,1	63,3	7,3	19,8	10,8	1,4	63,3	11,3	4015

Tabelle 124: Spurenelemente 3 [mg/kg] der Anlage 17

Probe		La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er
17-1	02/2012	37,8	63,1	5,7	21,6	4,3	1,2	4,3	1,0	3,5	0,9	2,0
17-2	03/2012	38,8	70,1	6,3	23,8	4,6	1,4	4,6	1,2	3,7	1,2	2,0
17-3	04/2012	42,0	75,7	6,7	24,9	4,9	1,7	4,9	1,6	4,0	1,4	2,3
17-4	05/2012	42,5	69,0	6,4	23,6	4,8	1,4	4,7	1,3	3,7	1,2	2,3
17-5	06/2012	33,9	61,9	5,9	21,4	4,2	1,2	4,0	0,9	3,1	0,9	1,9
17-6	07/2012	33,3	60,9	5,9	21,9	4,3	1,2	4,1	1,0	3,3	0,8	2,0
17-7	08/2012	33,6	68,2	6,5	24,9	5,0	1,8	5,0	1,5	4,1	0,9	2,3
17-8	09/2012	36,1	70,4	6,8	25,6	5,2	1,5	5,2	1,3	4,4	1,1	2,5
17-9	11/2012	31,1	60,3	5,1	19,4	3,7	1,3	3,8	1,1	3,0	0,9	1,6
17-10	12/2012	43,6	77,6	6,7	25,4	5,1	1,7	5,4	1,4	4,4	1,2	2,5
17-11	01/2013	30,4	57,1	5,6	21,5	4,4	1,3	4,5	1,1	3,7	0,9	2,1
17-12	02/2013	32,4	66,0	6,2	23,7	4,9	1,6	5,0	1,3	4,3	1,1	2,4
17-13	03/2013	33,5	68,2	6,9	26,2	5,4	2,0	5,6	1,7	4,8	1,2	2,8
17-14	04/2013	37,6	69,6	7,0	26,7	5,4	1,8	5,5	1,5	4,6	1,1	2,8
17-15	05/2013	34,6	68,7	6,6	25,4	5,0	1,9	4,9	1,4	4,1	0,9	2,4
17-16	06/2013	33,5	66,2	6,2	23,8	4,7	1,8	4,8	1,5	3,8	0,8	2,3
17-17	07/2013	34,2	66,9	6,5	25,4	5,1	1,8	5,2	1,4	4,3	0,9	2,6
17-18	08/2013	42,2	75,5	7,2	27,4	5,6	2,1	5,8	1,8	4,8	1,0	2,9
	Min	30,4	57,1	5,1	19,4	3,7	1,2	3,8	0,9	3,0	0,8	1,6
	Max	43,6	77,6	7,2	27,4	5,6	2,1	5,8	1,8	4,8	1,4	2,9
	Mittelwert	36,2	67,5	6,3	24,0	4,8	1,6	4,8	1,3	4,0	1,0	2,3
	Median	34,4	68,2	6,5	24,4	4,9	1,6	4,9	1,3	4,0	1,0	2,3

Tabelle 125: Spurenelemente 4 [mg/kg] der Anlage 17

Probe		Tm	Yb	Lu	Hf	Та	W	Au	Hg	Pb	Th	U
17-1	02/2012	0,3	2,0	0,3	1,6	0,9	51,0	1,7	0,9	102	5,1	9,5

Probe		Tm	Yb	Lu	Hf	Та	W	Au	Hg	Pb	Th	U
17-2	03/2012	0,3	2,0	0,3	1,5	0,7	22,2	1,4	0,4	97	6,3	9,6
17-3	04/2012	0,5	2,3	0,3	2,4	1,0	37,1	1,4	0,6	91	8,2	9,3
17-4	05/2012	0,6	2,5	0,3	4,5	1,9	34,1	1,2	0,5	98	10,3	7,7
17-5	06/2012	0,4	1,8	0,2	5,7	2,3	28,1		0,4	97	7,5	8,1
17-6	07/2012	0,4	1,8	0,2	3,2	1,1	19,9	1,1	0,3	96	6,4	8,7
17-7	08/2012	0,4	2,2	0,3	2,0	0,7	25,9	1,1	0,4	120	5,8	10,7
17-8	09/2012	0,4	2,6	0,3	1,7	0,6	15,3	1,4	0,3	105	6,8	11,6
17-9	11/2012	0,3	1,5	0,2	1,8	0,6	26,5	1,6	0,4	100	4,6	10,2
17-10	12/2012	0,4	2,6	0,3	1,4	1,0	35,7	1,0	0,5	103	10,0	11,7
17-11	01/2013	0,3	2,2	0,3	1,5	0,6	21,4	1,0	0,3	88	5,0	10,8
17-12	02/2013	0,4	2,8	0,3	2,0	0,7	36,0	0,9	0,5	95	5,9	11,9
17-13	03/2013	0,5	2,7	0,3	1,6	0,8	41,2	1,6	0,5	102	7,8	11,7
17-14	04/2013	0,7	2,6	0,3	1,5	0,7	24,7	0,9	0,4	91	10,3	10,7
17-15	05/2013	0,6	2,3	0,3	1,8	0,7	33,2	3,6	0,4	108	6,7	10,3
17-16	06/2013	0,4	2,3	0,2	1,7	0,9	35,3	1,1	0,4	104	4,6	11,2
17-17	07/2013	0,5	2,5	0,3	2,3	0,9	17,3	1,2	0,3	106	5,9	10,5
17-18	08/2013	0,6	2,8	0,3	1,5	0,8	23,3	0,9	0,3	112	10,2	11,0
	Min	0,3	1,5	0,2	1,4	0,6	15,3	0,9	0,3	88	4,6	7,7
	Max	0,7	2,8	0,3	5,7	2,3	51,0	3,6	0,9	120	10,3	11,9
	Mittelwert	0,4	2,3	0,3	2,2	0,9	29,3	1,4	0,4	101	7,1	10,3
	Median	0,4	2,3	0,3	1,7	0,8	27,3	1,2	0,4	101	6,6	10,6

11.3.17 Anlage 18

Tabelle 126: Hauptelemente [%], Wassergehalt (RF) [%], Glühverlust (GV) [%] der Anlage 18

Probe	Al	Ca	Fe	K	Mg	Na	Р	S	Si	Ti	RF	GV
18-1	5,5	11,7	8,5		3,9	0,4	7,2	0,6	17,5	0,4	0,6	0,9

Tabelle 127: Spurenelemente 1 [mg/kg] der Anlage 18

Probe	Sc	V	Cr	Mn	Со	Ni	Cu	Zn	Ga	Ge	As
18-1	6,5	70,2	174	717		59,1	987	1931	17,0	8,5	11,5

Tabelle 128: Spurenelemente 2 [mg/kg] der Anlage 18

	Probe	Se	Sr	Υ	Zr	Nb	Мо	Ag	Cd	Sn	Sb	Ва
ĺ	18-1		1106	11,1	99,6	11,9	15,2	4,9	2,0	53,2	11,2	1137

Tabelle 129: Spurenelemente 3 [mg/kg] der Anlage 18

Prob	e	La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er
18-1		35,0	68,7	5,8	15,6	2,9	0,7	3,0	0,6	2,1	0,6	1,2

Tabelle 130: Spurenelemente 4 [mg/kg] der Anlage 18

Probe	Tm	Yb	Lu	Hf	Та	W	Au	Hg	Pb	Th	U
18-1	0,3	1,1	0,4	2,3	1,3	64,8	0,4		94,0	5,3	25,5

Tabelle 131: Platingruppenelemente [µg/kg] der Anlage 18

Probe	Rh	Pd	Pt
18-1	4,2	64	108

11.3.18 Anlage 19

Tabelle 132: Hauptelemente [%], Wassergehalt (RF) [%], Glühverlust (GV) [%] der Anlage 19

Probe		Al	Ca	Fe	K	Mg	Na	Р	S	Si	Ti	RF	GV
19-1	November 2012	4,9	14,2	8,9	0,7	1,6	1,3	7,3	1,2	9,6	0,2	28,5	0,5
19-2	Januar 2013	3,3	15,0	13,5	0,8	1,8	0,9	7,5	0,8	9,7	0,2	28,2	0,5
19-3	Februar 2013	4,5	13,2	6,5	0,8	1,7	1,2	6,5	1,3	10,2	0,2	29,6	1,3
19-4	Juni 2013	2,2	12,9	6,4	0,7	1,4	0,8	5,6	1,6	10,1	0,2	29,3	0,4
19-5	August 2013	2,1	16,4	8,8	0,5	1,6	1,0	4,6	1,9	8,7	0,2	26,0	0,5
	Min	2,1	12,9	6,4	0,5	1,4	0,8	4,6	0,8	8,7	0,2		
	Max	4,9	16,4	13,5	0,8	1,8	1,3	7,5	1,9	10,2	0,2		
	Mittelwert	3,4	14,3	8,8	0,7	1,6	1,0	6,3	1,4	9,6	0,2		
	Median	3,3	14,2	8,8	0,7	1,6	1,0	6,5	1,3	9,7	0,2		

Tabelle 133: Spurenelemente 1 [mg/kg] der Anlage 19

Probe		Sc	V	Cr	Mn	Со	Ni	Cu	Zn	Ga	Ge	As
19-1	November 2012	1,7	52,0	120	857	19,0	65,8	692	4413	9,2	6,2	8,2
19-2	Januar 2013	1,9	51,0	139	929	13,5	87,2	851	3834	6,8	5,3	6,2
19-3	Februar 2013	1,8	53,4	205	1189	9,1	88,0	689	2535	6,8	3,6	6,6
19-4	Juni 2013	3,1	60,2	151	797	21,5	100,7	613	3400	12,9	7,6	10,7
19-5	August 2013	1,8	100,1	112	786	20,5	100,0	407	2825	8,5	6,6	9,2
	Min	1,7	51,0	112	786	9,1	65,8	407	2535	6,8	3,6	6,2
	Max	3,1	100,1	205	1189	21,5	100,7	851	4413	12,9	7,6	10,7
	Mittelwert	2,0	63,3	146	912	16,7	88,3	651	3401	8,8	5,9	8,2
	Median	1,8	53,4	139	857	19,0	88,0	689	3400	8,5	6,2	8,2

Tabelle 134: Spurenelemente 2 [mg/kg] der Anlage 19

Probe		Se	Sr	Υ	Zr	Nb	Мо	Ag	Cd	Sn	Sb	Ва
19-1	November 2012	1,5	465	6,0	76,8	2,8	11,2	7,0	0,9	3224	5,7	
19-2	Januar 2013	1,0	445	4,4	62,2	4,0	10,4	4,3	1,0	2689	5,6	
19-3	Februar 2013	1,2	443	7,1	52,9	2,1	7,6	6,0	1,0	4789	6,1	
19-4	Juni 2013	3,6	383	15,7	44,2	5,0	15,1	6,1	1,9	4402	11,2	1534
19-5	August 2013	1,8	332	6,5	38,2	3,4	12,0	22,8	1,1	8706	9,3	787
	Min	1,0	332	4,4	38,2	2,1	7,6	4,3	0,9	2689	5,6	787
	Max	3,6	465	15,7	76,8	5,0	15,1	22,8	1,9	8706	11,2	1534
	Mittelwert	1,8	414	7,9	54,9	3,4	11,2	9,2	1,2	4762	7,6	1161
	Median	1,5	443	6,5	52,9	3,4	11,2	6,1	1,0	4402	6,1	1161

Tabelle 135: Spurenelemente 3 [mg/kg] der Anlage 19

Probe		La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er
19-1	November 2012	24,1	51,5	6,0	21,1	2,8	0,4	2,8	0,3	1,9	0,4	0,9
19-2	Januar 2013	15,8	33,3	3,6	13,0	1,9	0,3	1,8	0,2	1,1	0,2	0,6
19-3	Februar 2013	16,0	33,1	3,2	11,6	2,1	0,3	2,0	0,3	1,6	0,3	0,9
19-4	Juni 2013	42,8	99,1	11,5	42,3	6,4	0,9	6,6	0,7	5,0	0,8	2,6
19-5	August 2013	30,7	54,0	8,6	30,9	3,4	0,5	3,6	0,4	2,5	0,4	1,1
	Min	15,8	33,1	3,2	11,6	1,9	0,3	1,8	0,2	1,1	0,2	0,6
	Max	42,8	99,1	11,5	42,3	6,4	0,9	6,6	0,7	5,0	0,8	2,6
	Mittelwert	25,9	54,2	6,6	23,8	3,3	0,5	3,4	0,4	2,4	0,4	1,2
	Median	24,1	51,5	6,0	21,1	2,8	0,4	2,8	0,3	1,9	0,4	0,9

Tabelle 136: Spurenelemente 4 [mg/kg] der Anlage 19

Probe		Tm	Yb	Lu	Hf	Та	W	Au	Hg	Pb	Th	U
19-1	November 2012	0,1	0,7	0,1	1,1	0,2	29,1	0,8	0,2	220	3,0	3,6
19-2	Januar 2013	0,1	0,5	0,1	1,0	0,2	21,1	1,0	0,2	183	1,8	2,8
19-3	Februar 2013	0,1	0,8	0,1	0,8	0,2	16,3	1,6	0,1	162	2,9	2,9
19-4	Juni 2013	0,3	2,2	0,3	1,5	0,4	28,4	0,9	0,4	135	8,0	5,8
19-5	August 2013	0,1	0,9	0,1	1,5	0,3	22,6	1,5	0,3	118	3,7	4,0
	Min	0,1	0,5	0,1	0,8	0,2	16,3	0,8	0,1	118	1,8	2,8
	Max	0,3	2,2	0,3	1,5	0,4	29,1	1,6	0,4	220	8,0	5,8

Probe		Tm	Yb	Lu	Hf	Та	W	Au	Hg	Pb	Th	U
	Mittelwert	0,1	1,0	0,1	1,2	0,2	23,5	1,2	0,2	164	3,9	3,8
	Median	0,1	0,8	0,1	1,1	0,2	22,6	1,0	0,2	162	3,0	3,6

Tabelle 137: Platingruppenelemente [µg/kg] der Anlage 19

Probe		Rh	Pd	Pt
19-1	November 2012	2,9	154	134

11.3.19 Anlage 20

Tabelle 138: Hauptelemente [%], Wassergehalt (RF) [%], Glühverlust (GV) [%] der Anlage 20

Probe		Al	Ca	Fe	K	Mg	Na	Р	S	Si	Ti	RF	GV
20-1	349	0,8	33,2	5,7		3,5	1,9	2,2	0,9	10,5	0,1	0,3	-4,1
20-2	525	0,7	33,2	4,7		1,6	1,4	1,6	1,2	10,4	0,1	0,6	-1,4
20-3	656	1,0	30,6	4,8		2,0	1,8	1,5	1,4	6,9	0,1	0,6	0,8
20-4	791	1,2	31,3	4,5		1,9	0,9	1,6	1,1	5,9	0,1	0,8	0,2
20-5	891	1,1	35,5	6,4	0,6	1,2	2,1	1,8	0,9	6,8	0,1	1,0	0,4
20-6	1150	1,4	33,1	7,4	0,6	1,8	2,1	1,9	1,0	14,2	0,1	0,7	0,2
20-7	1266	1,5	32,4	6,5	0,7	1,7	2,6	2,1	1,1	23,7	0,1	0,8	0,3
20-8	1360	1,3	32,7	8,2	0,5	1,4	2,2	2,6	1,0	13,1	0,1	0,5	0,2
	Min	0,7	30,6	4,5	0,5	1,2	0,9	1,5	0,9	5,9	0,1		
	Max	1,5	35,5	8,2	0,7	3,5	2,6	2,6	1,4	23,7	0,1		
	Mittelwert	1,1	32,7	6,0	0,6	1,9	1,9	1,9	1,1	11,4	0,1		
	Median	1,2	32,9	6,0	0,6	1,8	2,0	1,8	1,0	10,4	0,1		

Tabelle 139: Spurenelemente 1 [mg/kg] der Anlage 20

Probe		Sc	V	Cr	Mn	Со	Ni	Cu	Zn	Ga	Ge	As
20-1	349	3,5	21,2	179,0	880,7		64,9	227	2500	9,3	11,9	7,3
20-2	525	4,7	12,6	124,8	751,8		46,3	184	2470	8,2	10,0	6,6
20-3	656	7,7	16,5	121,7	1008,0		57,2	182	3092	7,2	8,5	7,6
20-4	791	4,2	17,3	126,9	1268,0		50,7	192	2287	8,2	8,8	6,0
20-5	891	1,8	12,7	128,8	683,8		94,89	162	3542	5,7	4,8	4,2
20-6	1150	2,6	9,3	89,2	1025,0		77,29	203	3378	6,8	6,8	5,4
20-7	1266	1,5	27,7	113,0	820,6		63,08	185	2722	5,6	6,0	5,3
20-8	1360	4,4	65,0	85,0	911,8		59,42	210	4101	7,3	8,7	18,0
	Min	1,5	9,3	85,0	683,8		46,3	162	2287	5,6	4,8	4,2
	Max	7,7	65,0	179,0	1268,0		94,89	227	4101	9,3	11,9	18,0
	Mittelwert	3,8	22,8	121,1	918,7		64,2	193	3012	7,3	8,2	7,6
	Median	3,9	16,9	123,3	896,3		61,3	188	2907	7,2	8,6	6,3

Tabelle 140: Spurenelemente 2 [mg/kg] der Anlage 20

Probe		Se	Sr	Υ	Zr	Nb	Мо	Ag	Cd	Sn	Sb	Ва
20-1	349		760	5,5	268	1,9	21,2	2,2	0,5	15,9	3,3	366
20-2	525		556	5,1	449	1,4	14,9	1,8	0,4	7,3	3,5	259
20-3	656		503	6,3	830	1,0	9,2	2,3	1,1	7,9	3,2	280
20-4	791		423	5,5	462	1,6	12,3	2,1	0,5	30,0	3,7	287
20-5	891		378	3,1	292	0,6	9,0		0,4	31,9	1,5	245
20-6	1150		424	5,8	257	0,9	7,5		0,3	15,4	1,8	264
20-7	1266		419	3,0	268	1,4	17,1		0,4	8,1	1,5	280
20-8	1360		445	4,8	730	0,6	8,3		0,4	8,1	1,5	2082
	Min		378	3,0	257	0,6	7,5	1,8	0,3	7,3	1,5	245
	Max		760	6,3	830	1,9	21,2	2,3	1,1	31,9	3,7	2082
	Mittelwert		488	4,9	444	1,2	12,4	2,1	0,5	15,6	2,5	508
	Median		434	5,3	370	1,2	10,8	2,1	0,4	11,7	2,5	280

Tabelle 141: Spurenelemente 3 [mg/kg] der Anlage 20

Probe		La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er
20-1	349	28,6	61,9	7,6	28,2	3,8	0,3	3,5	0,7	2,1	0,5	0,9
20-2	525	21,9	53,5	6,2	23,1	3,0	0,2	2,8	0,6	1,7	0,5	0,8
20-3	656	18,6	41,8	5,2	19,0	2,6	0,2	2,4	0,6	1,6	0,5	0,8
20-4	791	21,6	52,8	5,7	21,1	2,9	0,3	2,7	0,6	1,7	0,5	0,9
20-5	891	22,1	45,8	6,0	21,9	2,9	0,2	2,6	0,4	1,6	0,4	0,7
20-6	1150	28,1	61,7	8,2	30,9	4,1	0,3	3,6	0,5	2,3	0,5	1,0
20-7	1266	25,4	54,3	7,2	26,4	3,3	0,2	2,9	0,4	1,9	0,4	0,8
20-8	1360	29,7	61,8	10,7	39,6	4,1	0,2	4,0	0,5	2,5	0,6	1,1
	Min	18,6	41,8	5,2	19,0	2,6	0,2	2,4	0,4	1,6	0,4	0,7
	Max	29,7	61,9	10,7	39,6	4,1	0,3	4,0	0,7	2,5	0,6	1,1
	Mittelwert	24,5	54,2	7,1	26,3	3,3	0,2	3,1	0,5	1,9	0,5	0,9
	Median	23,8	53,9	6,7	24,8	3,2	0,2	2,9	0,5	1,8	0,5	0,8

Tabelle 142: Spurenelemente 4 [mg/kg] der Anlage 20

Probe		Tm	Yb	Lu	Hf	Та	W	Au	Hg	Pb	Th	U
20-1	349	0,3	0,6	0,4	5,5	0,5	<6,0	<0,145		20,6	1,9	2,0
20-2	525	0,3	0,6	0,4	9,1	0,6	<6,0	<0,145		8,8	1,3	1,6
20-3	656	0,3	0,9	0,4	16,7	0,8	<6,0	<0,145		12,3	1,8	2,1
20-4	791	0,3	0,7	0,4	9,4	0,8	<6,0	<0,145		16,4	1,3	2,0
20-5	891	0,1	0,6	0,1	7,3	0,4	34,6	<0,145		<3,5	1,2	1,6
20-6	1150	0,1	0,8	0,1	6,2	0,4	31,7	<0,145		<3,5	1,7	2,4
20-7	1266	0,1	0,6	0,1	5,6	1,1	26,8	<0,145		<3,5	1,6	2,4
20-8	1360	0,1	1,1	0,2	19,5	0,5	40,4	<0,145		<3,5	1,8	2,3
	Min	0,1	0,6	0,1	5,5	0,4	<6,0	<0,145		<3,5	1,2	1,6
	Max	0,3	1,1	0,4	19,5	1,1	40,4	<0,145		20,6	1,9	2,4
	Mittelwert	0,2	0,7	0,3	9,9	0,6	19,7	0,1		9,0	1,6	2,0

Probe		Tm	Yb	Lu	Hf	Та	W	Au	Hg	Pb	Th	C
	Median	0,2	0,7	0,3	8,2	0,6	16,4	0,1		6,2	1,6	2,0

Tabelle 143: Platingruppenelemente [µg/kg] der Anlage 20

Probe		Rh	Pd	Pt
20-1	349	2,0	71	282

11.3.20 Anlage 21

Tabelle 144: Hauptelemente [%], Wassergehalt (RF) [%], Glühverlust (GV) [%] der Anlage 21

Probe	Al	Ca	Fe	K	Mg	Na	Р	S	Si	Ti	RF	GV
21-1	4,2	11,3	4,9		1,7	0,6	4,6	2,7	15,8	0,5	0,4	3,3

Tabelle 145: Spurenelemente 1 [mg/kg] der Anlage 21

Probe	Sc	V	Cr	Mn	Со	Ni	Cu	Zn	Ga	Ge	As
21-1	3,1	1206	174	787		424	3467	1914	14,6	7,7	30,3

Tabelle 146: Spurenelemente 2 [mg/kg] der Anlage 21

Probe	Se	Sr	Υ	Zr	Nb	Мо	Ag	Cd	Sn	Sb	Ba
21-1		372	9,4	214	9,9	57,4	5,1	2,2	543	20,3	848

Tabelle 147: Spurenelemente 3 [mg/kg] der Anlage 21

Probe	La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er
21-1	21,0	46,7	4,2	16,4	3,2	0,7	3,3	0,7	2,5	0,7	1,3

Tabelle 148: Spurenelemente 4 [mg/kg] der Anlage 21

Probe	Tm	Yb	Lu	Hf	Та	W	Au	Hg	Pb	Th	U
21-1	0,3	0,9	0,4	4,5	1,2	48,0	<0,145		130	3,0	5,0

Tabelle 149: Platingruppenelemente [µg/kg] der Anlage 21

Probe	Rh	Pd	Pt
21-1	42,3	228	147

11.3.21 Anlage 22

Tabelle 150: Hauptelemente [%], Wassergehalt (RF) [%], Glühverlust (GV) [%] der Anlage 22

Probe		Al	Ca	Fe	K	Mg	Na	Р	S	Si	Ti	RF	GV
22-1	04/12	4,5	27,4	9,8	0,7	1,4	1,5	4,9	3,8	12,6	0,5	0,3	-0,1
22-2	05/12	4,8	26,1	9,9	0,6	1,3	1,4	4,5	3,9	13,6	0,5	0,2	-0,7
22-3	06/12	4,7	27,3	9,9	0,5	1,3	1,3	4,4	3,9	11,0	0,4	0,2	-0,4
22-4	07/12	4,3	26,8	10,9	0,6	1,2	1,2	4,4	3,9	8,2	0,5	0,2	-0,2
22-5	08/12	4,4	26,0	9,6	0,7	1,3	1,2	5,1	3,7	9,2	0,7	0,2	-0,2
22-6	09/12	4,1	28,3	9,3	0,6	1,3	1,5	5,5	3,7	14,8	0,6	0,2	-0,5
	Min	4,1	26,0	9,3	0,5	1,2	1,2	4,4	3,7	8,2	0,4		
	Max	4,8	28,3	10,9	0,7	1,4	1,5	5,5	3,9	14,8	0,7		
	Mittelwert	4,5	27,0	9,9	0,6	1,3	1,4	4,8	3,8	11,6	0,5		
	Median	4,5	27,1	9,8	0,6	1,3	1,4	4,7	3,8	11,8	0,5		

Tabelle 151: Spurenelemente 1 [mg/kg] der Anlage 22

Probe		Sc	V	Cr	Mn	Со	Ni	Cu	Zn	Ga	Ge	As
22-1	04/12	2,7	370	523	3465		279	645	1215	6,7	4,3	22,4
22-2	05/12	2,5	349	420	3088		191	724	1258	7,1	5,1	27,9
22-3	06/12	2,7	353	337	3090		214	651	1637	6,9	4,9	26,5
22-4	07/12	3,1	314	379	3137		155	800	1818	7,5	5,9	42,8
22-5	08/12	2,7	306	351	3407		159	902	2422	7,4	5,1	25,9
22-6	09/12	3,1	317	432	3510		138	716	1476	6,9	5,1	30,7
	Min	2,5	306	337	3088		138	645	1215	6,7	4,3	22,4
	Max	3,1	370	523	3510		279	902	2422	7,5	5,9	42,8
	Mittelwert	2,8	335	407	3283		189	740	1638	7,1	5,1	29,4
	Median	2,7	333	400	3272		175	720	1557	7,0	5,1	27,2

Tabelle 152: Spurenelemente 2 [mg/kg] der Anlage 22

Probe		Se	Sr	Υ	Zr	Nb	Мо	Ag	Cd	Sn	Sb	Ва
22-1	04/12		372	1,8	284	52,8	32,1	25,9	3,9	169	52,0	1198
22-2	05/12		367	1,4	325	54,6	26,5	15,4	4,2	342	37,3	1020
22-3	06/12		355	1,5	340	52,2	29,4	9,1	3,9	202	51,6	897
22-4	07/12		415	1,7	298	56,1	30,5	17,0	3,7	131	43,8	3552
22-5	08/12		416	1,6	309	45,0	28,4	16,1	5,6	304	68,7	1592
22-6	09/12		402	1,9	331	51,5	24,3	17,8	4,1	152	45,4	1270
	Min		355	1,4	284	45,0	24,3	9,1	3,7	131	37,3	897
	Max		416	1,9	340	56,1	32,1	25,9	5,6	342	68,7	3552
	Mittelwert		388	1,6	314	52,0	28,5	16,9	4,2	217	49,8	1588
	Median		387	1,7	317	52,5	28,9	16,6	4,0	186	48,5	1234

Tabelle 153: Spurenelemente 3 [mg/kg] der Anlage 22

Probe		La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er
22-1	04/12	20,8	34,7	3,6	13,8	2,4	0,3	2,3	0,3	1,3	0,3	0,7
22-2	05/12	15,2	27,0	2,9	10,8	1,9	0,3	1,7	0,3	1,0	0,3	0,5
22-3	06/12	16,1	27,1	3,1	12,8	2,2	0,3	1,8	0,3	1,2	0,3	0,5
22-4	07/12	23,8	33,3	4,4	16,2	2,5	0,4	2,2	0,3	1,4	0,3	0,7
22-5	08/12	19,0	32,5	3,4	13,4	2,3	0,3	2,0	0,3	1,2	0,3	0,6
22-6	09/12	23,2	35,7	3,7	15,2	3,3	0,4	2,3	0,3	1,5	0,4	0,9
	Min	15,2	27,0	2,9	10,8	1,9	0,3	1,7	0,3	1,0	0,3	0,5
	Max	23,8	35,7	4,4	16,2	3,3	0,4	2,3	0,3	1,5	0,4	0,9
	Mittelwert	19,7	31,7	3,5	13,7	2,4	0,3	2,1	0,3	1,3	0,3	0,7
	Median	19,9	32,9	3,5	13,6	2,4	0,3	2,1	0,3	1,3	0,3	0,6

Tabelle 154: Spurenelemente 4 [mg/kg] der Anlage 22

Probe		Tm	Yb	Lu	Hf	Та	W	Au	Hg	Pb	Th	U
22-1	04/12	0,1	0,5	0,9	7,4	3,9	27	<0,145		150	4,8	3,7
22-2	05/12	0,1	0,5	0,3	6,8	3,4	24,1	0,153		144	3,4	3,3
22-3	06/12	0,1	0,4	0,2	7,4	3,4	28,21	<0,145		140	3,2	3,4
22-4	07/12	0,1	0,5	0,2	7,4	3,9	32,29	<0,145		159	3,9	3,4
22-5	08/12	0,1	0,4	0,2	8,1	6,0	51,83	0,147		191	3,7	3,9
22-6	09/12	0,1	0,6	0,2	7,9	3,0	35,5	0,149		337	4,5	3,7
	Min	0,1	0,4	0,2	6,8	3,0	24,1	<0,145		140	3,2	3,3
	Max	0,1	0,6	0,9	8,1	6,0	51,83	0,153		337	4,8	3,9
	Mittelwert	0,1	0,5	0,3	7,5	3,9	33,2	0,148		187	3,9	3,6
	Median	0,1	0,5	0,2	7,4	3,7	30,3	0,146		155	3,8	3,6

Tabelle 155: Platingruppenelemente [µg/kg] der Anlage 22

Probe		Rh	Pd	Pt
22-1	04/12	12,8	629	75

11.3.22 Anlage 23

Tabelle 156: Hauptelemente [%], der Anlage 23

Probe	Al	Ca	Fe	K	Mg	Na	Р	S	Si	Ti
23-1	5,1	27,9	12,2	0,08	1,9	0,6	3,8	2,2	7,4	0,2
23-2	2,5	32,6	9,1	0,04	1,5	0,4	2,4	4,0	4,3	0,1
23-3	3,8	30,8	9,7	<0,006	1,8	0,5	3,0	2,6	6,3	0,2
23-4	3,0	31,0	8,1	0,05	1,1	0,7	1,8	5,8	10,2	0,2
23-5	3,5	28,4	10,4	0,03	1,5	0,7	2,7	3,0	9,3	0,2
23-6	3,2	29,6	8,3	0,03	1,3	0,6	2,4	5,4	7,0	0,1
23-7	2,5	32,1	7,6	0,03	1,2	0,7	2,9	2,9	5,3	0,1
23-8	1,3	32,3	7,9	0,04	1,1	0,6	2,0	6,8	5,2	0,2

Probe	Al	Ca	Fe	K	Mg	Na	Р	S	Si	Ti
23-9	3,0	30,8	7,5	0,14	1,3	0,6	2,2	2,8	6,0	0,1
23-10	4,3	28,0	10,5	0,06	1,1	0,9	2,9	2,4	7,3	0,2
23-11	4,0	28,4	10,8	0,04	1,2	0,7	2,5	3,3	6,6	0,2
23-12	3,2	29,4	9,6	0,04	1,1	0,6	2,4	3,6	5,4	0,1
Min	1,3	27,9	7,5	<0,006	1,1	0,4	1,8	2,2	4,3	0,1
Max	5,1	32,6	12,2	0,14	1,9	0,9	3,8	6,8	10,2	0,2
Mittelwert	3,3	30,1	9,3	0,05	1,3	0,6	2,6	3,7	6,7	0,2
Median	3,2	30,2	9,4	0,04	1,2	0,6	2,5	3,2	6,5	0,2

Tabelle 157: Spurenelemente 1 [mg/kg] der Anlage 23

Probe	Sc	V	Cr	Mn	Со	Ni	Cu	Zn	Ga	Ge	As
23-1	48,5	1111	821	5822	10,9	169	523	1116	13,8	9,6	19,8
23-2	30,9	828	556	4687	7,3	70	189	552	7,9	5,9	10,8
23-3	17,3	1165	822	5255	16,6	172	376	815	11,8	7,4	21,0
23-4	34,1	711	935	3766	16,2	137	328	790	8,2	7,9	14,3
23-5	39,3	855	1133	5362	20,9	137	436	633	9,7	9,9	26,8
23-6	34,7	824	813	5625	12,5	83	350	1812	8,8	8,7	15,8
23-7	42,8	735	1502	4338	14,4	79	486	1084	8,5	8,5	9,4
23-8	26,4	761	1312	3264	14,2	166	489	854	5,3	6,1	15,9
23-9	36,5	584	923	3648	10,7	90	271	648	8,7	9,1	13,6
23-10	34,4	808	1005	4821	16,2	119	331	1062	8,8	8,6	14,8
23-11	42,1	852	1106	4994	12,6	484	350	996	8,6	9,2	13,1
23-12	44,9	1074	935	5780	20,9	125	407	1149	8,3	9,1	9,4
Min	17,3	584	556	3264	7,3	70	189	552	5,3	5,9	9,4
Max	48,5	1165	1502	5822	20,9	484	523	1812	13,8	9,9	26,8
Mittelwert	36,0	859	989	4780	14,4	153	378	959	9,0	8,3	15,4
Median	35,6	826	935	4908	14,3	131	363	925	8,6	8,7	14,6

Tabelle 158: Spurenelemente 2 [mg/kg] der Anlage 23

Probe	Se	Sr	Υ	Zr	Nb	Мо	Ag	Cd	Sn	Sb	Ва
23-1	2,0	170	18,3	497,4	110,1	9,1	6,5	0,5	19,6	20,6	241
23-2	3,5	235	24,3	983,8	239,7	14,5	2,3	3,8	37,3	93,5	536
23-3	1,8	147	20,6	718,2	145,8	16,4	1,6	0,8	33,9	209	577
23-4	1,8	212	26,6	952,7	138,5	25,3	5,1	0,5	46,4	454	695
23-5		221	28,7	723,1	112,3	11,8	7,6	0,8	26,5	10,6	334
23-6		133	24,6	662,4	160,8	7,8	6,0	0,6	47,8	7,6	479
23-7		184	15,8	453,5	106,9	17,2	5,7	1,3	34,5	57,7	405
23-8		167	26,5	545,4	109,4	17,3	4,7	0,5	29,0	17,6	388
23-9		196	22,8	718,8	157,4	21,9	6,0	0,6	54,0	14,9	427
23-10		147	25,4	749,5	259,2	20,2	5,0	1,1	28,3	12,3	435
23-11		146	23,8	942,4	292,7	13,5	7,1	1,2	162,1	10,9	345
23-12		133	15,8	453,5	106,9	7,8	1,6	0,5	19,6	7,6	241

Probe		Se	Sr	Υ	Zr	Nb	Мо	Ag	Cd	Sn	Sb	Ва
Min		1,8	235	29,8	983,8	292,7	26,7	7,6	3,8	162,1	454	695
Max		3,5	180	23,9	730,9	167,8	16,8	5,3	1,0	46,5	78,3	438
Mittelwert		2,3	177	24,4	720,9	151,6	16,8	5,6	0,8	35,9	19,1	416
Median	·	1,9	202	29,8	823,5	180,3	26,7	5,4	0,8	38,4	31,5	393

Tabelle 159: Spurenelemente 3 [mg/kg] der Anlage 23

Probe	La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er
23-1	44,7	85,3	10,3	38,8	7,5	1,0	7,1	0,9	5,1	1,0	3,1
23-2	28,2	49,7	6,0	22,5	4,4	0,7	4,2	0,5	3,1	0,6	1,9
23-3	269	63,8	8,2	29,7	20,8	0,8	5,6	0,7	4,1	0,8	2,6
23-4	32,3	56,9	6,0	22,4	4,5	0,6	4,3	0,5	3,1	0,6	1,9
23-5	34,5	69,9	7,6	28,4	5,4	0,8	6,0	0,7	3,9	0,8	2,4
23-6	32,2	58,8	7,1	26,7	5,2	0,9	5,8	0,7	4,0	0,8	2,4
23-7	32,4	64,1	7,3	27,5	5,2	0,6	5,8	0,6	3,5	0,7	2,2
23-8	19,6	38,0	4,2	15,8	3,0	0,5	11,5	0,4	2,2	0,4	1,4
23-9	30,2	58,2	6,8	25,3	4,9	0,9	5,4	0,6	3,6	0,7	2,3
23-10	29,8	54,0	6,3	23,5	4,4	0,7	14,0	0,5	3,1	0,6	1,9
23-11	31,8	64,0	7,0	26,2	5,0	0,8	6,8	0,6	3,5	0,7	2,2
23-12	32,0	62,3	7,1	26,4	5,0	0,6	7,5	0,6	3,5	0,7	2,2
Min	19,6	38,0	4,2	15,8	3,0	0,5	4,2	0,4	2,2	0,4	1,4
Max	269	85,3	10,3	38,8	20,8	1,0	14,0	0,9	5,1	1,0	3,1
Mittelwert	51,4	60,4	7,0	26,1	6,3	0,7	7,0	0,6	3,6	0,7	2,2
Median	32,1	60,5	7,0	26,3	5,0	0,7	5,9	0,6	3,5	0,7	2,2

Tabelle 160: Spurenelemente 4 [mg/kg] der Anlage 23

Probe	Tm	Yb	Lu	Hf	Та	W	Au	Hg	Pb	Th	U
23-1	0,5	5,4	0,7	23,6	9,0	46,2	0,3	0,3	144	19,3	4,2
23-2	0,3	2,6	0,4	12,7	5,1	18,8	0,2	0,1	107	10,9	2,1
23-3	0,4	3,7	0,6	25,2	13,1	40,4	0,4	0,3	124	14,3	5,0
23-4	0,3	2,4	0,4	18,4	5,9	35,9	0,4	0,6	124	9,6	3,0
23-5	0,4	2,9	0,5	19,5	5,0	54,2	0,4	0,5	83	11,5	2,8
23-6	0,4	2,8	0,5	14,3	4,0	31,4	0,3	0,3	121	9,8	2,3
23-7	0,3	2,7	0,5	17,9	6,3	112,8	0,3	0,6	60	11,1	2,7
23-8	0,2	1,7	0,3	11,5	3,9	28,5	0,2	0,5	94	6,6	1,8
23-9	0,3	2,6	0,4	15,1	4,1	24,7	0,3	0,4	67	11,8	2,6
23-10	0,3	2,4	0,4	15,6	5,9	51,6	0,4	0,5	109	9,1	2,6
23-11	0,3	2,7	0,5	19,8	8,7	25,4	0,5	0,3	97	10,4	3,1
23-12	0,3	2,7	0,5	20,8	9,4	27,8	0,5	0,3	107	11,2	3,5
Min	0,2	1,7	0,3	11,5	3,9	18,8	0,2	0,1	60	6,6	1,8
Max	0,5	5,4	0,7	25,2	13,1	112,8	0,5	0,6	144	19,3	5,0
Mittelwert	0,3	2,9	0,5	17,9	6,7	41,5	0,3	0,4	103	11,3	3,0
Median	0,3	2,7	0,5	18,2	5,9	33,7	0,3	0,4	107	11,0	2,8

11.3.23 Anlage 25

Tabelle 161: Hauptelemente [%], Wassergehalt (RF) [%], Glühverlust (GV) [%] der Anlage 25

Probe		Al	Ca	Fe	K	Mg	Na	Р	S	Si	Ti	RF	GV
25-1	03.09.2012	4,5	9,6	10,1	0,9	2,4	1,0	8,0	1,6	17,5	0,3	0,5	6,4
25-2	22.11.2012	4,0	8,9	9,2	0,9	2,5	1,1	9,0	1,4	6,3	0,3	0,4	3,5
25-3	06.03.2013	3,8	9,8	13,4	0,7	1,8	0,8	9,0	1,5	12,1	0,3	0,5	4,8
25-4	21.03.2013	3,5	9,6	13,8	0,8	1,7	0,9	8,5	1,5	12,1	0,3		
25-5	17.04.2013	4,2	8,6	12,7	0,9	1,2	0,7	7,5	1,4	11,8	0,4		
25-6	01.05.2013	4,1	8,6	12,4	0,9	1,2	0,7	7,3	1,6	5,0	0,4		
25-7	08.05.2013	4,2	8,7	12,3	0,9	1,2	0,7	7,1	2,0	10,7	0,4		
25-8	07.06.2013	4,5	10,8	11,5	1,1	1,3	0,7	6,9	2,0	13,0	0,4		
25-9	25.06.2013	2,2	7,9	10,6	1,1	1,1	1,0	6,0	1,8	14,6	0,4		
25-10	04.07.2013	5,1	9,5	11,2	1,2	1,3	0,8	5,9	1,7	8,4	0,4		
	Min	2,2	7,9	9,2	0,7	1,1	0,7	5,9	1,4	5,0	0,3		
	Max	5,1	10,8	13,8	1,2	2,5	1,1	9,0	2,0	17,5	0,4		
	Mittelwert	4,0	9,2	11,7	0,9	1,6	0,8	7,5	1,6	11,2	0,4		
	Median	4,1	9,2	11,9	0,9	1,3	0,8	7,4	1,6	11,9	0,4		

Tabelle 162: Spurenelemente 1 [mg/kg] der Anlage 25

Probe		Sc	٧	Cr	Mn	Со	Ni	Cu	Zn	Ga	Ge	As
25-1	03.09.2012	6,8	57	553	1209	59,6	124	757	4930	10,8	6,2	18,3
25-2	22.11.2012	5,3	49	1088	1217	54,8	125	737	4665	8,3	4,4	16,1
25-3	06.03.2013	5,2	51	531	1126	52,5	100	713	3714	8,7	6,4	18,3
25-4	21.03.2013	4,9	51	514	1074	68,8	98	710	3682	8,1	5,8	19,3
25-5	17.04.2013	5,2	51,2	538	1243	54,6	95	768	4011	7,8	5,3	20,7
25-6	01.05.2013	5,0	50,9	542	1306	53,9	103	793	4377	7,2	5,2	18,9
25-7	08.05.2013	5,2	50,6	584	1318	60,3	103	796	4141	7,5	5,4	21,6
25-8	07.06.2013	2,3	54,6	506	1408	57,6	191	823	3877	7,0	3,7	97,6
25-9	25.06.2013	6,5	60,2	465	1279	52,6	101	715	3653	10,0	8,3	21,3
25-10	04.07.2013	2,6	61,7	609	1307	54,2	101	718	3712	9,5	7,3	23,2
	Min	2,3	49	465	1074	52,5	95	710	3653	7,0	3,7	16,1
	Max	6,8	61,7	1088	1408	68,8	191	823	4930	10,8	8,3	97,6
	Mittelwert	4,9	53,6	593	1249	56,9	114	753	4076	8,5	5,8	27,5
	Median	5,2	51,1	540	1261	54,7	102	747	3944	8,2	5,6	20,0

Tabelle 163: Spurenelemente 2 [mg/kg] der Anlage 25

Probe		Se	Sr	Υ	Zr	Nb	Мо	Ag	Cd	Sn	Sb	Ва
25-1	03.09.2012		368	14,8	220	11,5	29,5	11,4	0,3	36	18,1	984
25-2	22.11.2012	2,0	324	11,9	147	9,3	30,9	9,9	0,4	54	15,3	886
25-3	06.03.2013		366	11,2	139	11,8	25,7	8,2	0,2	29	9,8	918
25-4	21.03.2013		370	10,4	138	11,1	25,2	8,6	0,2	31	10,7	872

Probe		Se	Sr	Υ	Zr	Nb	Мо	Ag	Cd	Sn	Sb	Ва
25-5	17.04.2013	1,7	366	9,6	177,1	11,2	26,0	7,9	0,1	45,4	12,9	
25-6	01.05.2013	2,0	363	9,3	187,3	10,8	25,6	8,8	0,2	68,1	15,8	
25-7	08.05.2013	1,9	378	10,9	189,0	11,2	27,1	8,3	0,2	54,0	15,3	
25-8	07.06.2013	1,2	434	2,6	228,4	11,8	25,0	7,6	0,2	45,7	12,4	
25-9	25.06.2013	3,4	429	12,9	214,7	11,8	24,0	7,4	0,1	41,4	11,8	
25-10	04.07.2013	2,7	418	4,7	232,9	11,4	23,7	6,9	0,1	34,1	10,9	
	Min	1,2	324	2,6	138	9,3	23,7	6,9	0,1	29	9,8	872
	Max	3,4	434	14,8	232,9	11,8	30,9	11,4	0,4	68,1	18,1	984
	Mittelwert	2,1	382	9,9	187,3	11,2	26,3	8,5	0,2	43,9	13,3	915
	Median	2,0	369	10,7	188,1	11,3	25,6	8,2	0,2	43,4	12,7	902

Tabelle 164: Spurenelemente 3 [mg/kg] der Anlage 25

Probe		La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er
25-1	03.09.2012	24,4	37,7	4,1	15,3	3,0	0,7	3,0	0,4	2,2	0,4	1,2
25-2	22.11.2012	19,0	28,7	3,1	11,8	2,4	0,5	2,5	0,3	1,8	0,3	1,0
25-3	06.03.2013	17,6	28,1	3,1	11,7	2,4	0,5	2,4	0,3	1,7	0,3	0,9
25-4	21.03.2013	17,4	25,6	2,8	10,4	2,1	0,4	2,1	0,3	1,6	0,3	0,9
25-5	17.04.2013	19,4	25,4	2,7	10,3	2,1	0,4	2,1	0,3	1,5	0,3	0,8
25-6	01.05.2013	20,3	25,1	2,7	10,1	2,0	0,4	2,0	0,2	1,4	0,2	0,8
25-7	08.05.2013	21,4	26,1	2,8	10,7	2,2	0,5	2,3	0,3	1,7	0,3	0,9
25-8	07.06.2013	12,8	20,9	1,5	5,3	0,9	0,3	0,8	0,1	0,5	0,1	0,3
25-9	25.06.2013	23,0	32,8	3,9	24,7	5,3	0,6	2,8	0,4	4,0	0,4	1,2
25-10	04.07.2013	18,2	27,8	3,2	21,6	4,7	0,4	2,0	0,3	3,0	0,2	0,7
	Min	12,8	20,9	1,5	5,3	0,9	0,3	0,8	0,1	0,5	0,1	0,3
	Max	24,4	37,7	4,1	24,7	5,3	0,7	3,0	0,4	4,0	0,4	1,2
	Mittelwert	19,4	27,8	3,0	13,2	2,7	0,5	2,2	0,3	1,9	0,3	0,9
	Median	19,2	27,0	3,0	11,2	2,3	0,5	2,2	0,3	1,7	0,3	0,9

Tabelle 165: Spurenelemente 4 [mg/kg] der Anlage 25

Probe		Tm	Yb	Lu	Hf	Та	W	Au	Hg	Pb	Th	U
25-1	03.09.2012	0,2	1,1	0,2	6,1	0,7	21	0,8	0,4	91	5,6	4,2
25-2	22.11.2012	0,1	1,0	0,1	4,5	0,6	32	0,8	0,51	96	4,9	4,7
25-3	06.03.2013	0,1	0,9	0,1	3,8	0,6	41	0,6	0,6	66	4,6	3,9
25-4	21.03.2013	0,1	0,8	0,1	3,7	0,6	45	1,9	0,6	63	4,1	3,7
25-5	17.04.2013	0,1	0,8	0,1	4,6	0,7	37,0	5,4	0,45	109	4,3	3,7
25-6	01.05.2013	0,1	0,7	0,1	4,5	0,7	46,3	0,7	0,56	138	4,2	3,5
25-7	08.05.2013	0,1	0,9	0,1	5,2	0,8	79,6	0,8	0,80	131	5,1	3,8
25-8	07.06.2013	0,0	0,3	0,0	4,6	0,9	66,0	1,2	0,81	116	1,5	3,9
25-9	25.06.2013	0,1	1,1	0,1	5,9	0,8	37,5	1,0	0,45	105	5,8	4,2
25-10	04.07.2013	0,1	0,6	0,1	6,3	0,9	60,0	0,7	0,71	103	2,6	4,1
	Min	0,0	0,3	0,0	3,7	0,6	21	0,6	0,4	63	1,5	3,5
	Max	0,2	1,1	0,2	6,3	0,9	79,6	5,4	0,81	138	5,8	4,7

Probe		Tm	Yb	Lu	Hf	Та	W	Au	Hg	Pb	Th	U
	Mittelwert	0,1	0,8	0,1	4,9	0,7	46,6	1,4	0,6	102	4,3	4,0
	Median	0,1	0,8	0,1	4,6	0,7	42,6	0,8	0,6	104	4,4	3,9

11.3.24 Anlage 26

Tabelle 166: Hauptelemente [%], Wassergehalt (RF) [%], Glühverlust (GV) [%] der Anlage 26

Probe		Al	Ca	Fe	K	Mg	Na	Р	S	Si	Ti	RF	GV
26-1	14.02.2012	2,6	8,3	18,7	1,1	1,3	0,8	8,9	1,6	10,5	0,3	1,2	3,3
26-2	14.03.2012	2,6	8,2	18,0	0,9	1,1	0,5	8,1	1,7	8,7	0,3	2,1	11,3
26-3	11.04.2012	3,2	9,5	20,3	1,1	1,3	0,6	9,2	1,7	10,9	0,4	0,6	0,7
26-4	10.05.2012	3,0	8,4	19,4	1,1	1,1	0,5	8,6	1,2	10,6	0,3	1,2	5,7
26-5	18.06.2012	3,3	8,0	17,0	1,2	1,1	0,7	7,9	1,2	12,1	0,4	1,4	6,7
26-6	18.07.2012	3,6	7,4	14,2	1,3	1,1	0,8	6,9	1,0	12,3	0,5	1,4	8,7
26-7	22.08.2012	4,2	8,3	16,5	1,3	1,2	0,5	7,6	1,2	5,6	0,4	1,8	7,3
26-8	13.09.2012	3,2	8,3	16,0	1,2	1,1	0,6	7,5	1,3	10,9	0,4	4,6	13,1
26-9	30.10.2012	3,1	9,0	15,7	1,3	1,2	0,8	8,1	1,5	11,4	0,4	1,5	7,2
26-10	20.11.2012	3,2	7,6	15,5	1,3	1,3	0,7	7,7	1,2	12,1	0,4	1,6	5,1
26-11	21.12.2012	3,2	7,1	14,5	1,4	1,1	1,0	7,3	1,2	14,5	0,4	21,9	12,2
26-12	10.10.2013	4,0	9,0	11,7	1,7	1,5	1,1	7,9	1,6	17,2	0,4	0,7	0,8
	Min	2,6	7,1	11,7	0,9	1,1	0,5	6,9	1,0	5,6	0,3		
	Max	4,2	9,5	20,3	1,7	1,5	1,1	9,2	1,7	17,2	0,5		
	Mittelwert	3,3	8,3	16,5	1,2	1,2	0,7	8,0	1,4	11,4	0,4		
	Median	3,2	8,3	16,2	1,2	1,2	0,7	7,9	1,3	11,1	0,4		

Tabelle 167: Spurenelemente 1 [mg/kg] der Anlage 26

Probe		Sc	V	Cr	Mn	Со	Ni	Cu	Zn	Ga	Ge	As
26-1	14.02.2012	2,8	52,4	110	1302	37,6	75,2	572	2299	7,6	5,7	5,5
26-2	14.03.2012	3,0	47,8	113	1268	25,1	56,6	522	2071	6,4	5,1	4,4
26-3	11.04.2012	3,3	53,5	118	2019	30,3	67,8	582	2263	8,0	5,9	5,6
26-4	10.05.2012	2,4	64,1	135	2542	41,4	66,1	565	2270	8,7	5,8	6,8
26-5	18.06.2012	4,2	59,9	163	3119	56,3	72,8	608	2163	9,6	5,3	7,2
26-6	18.07.2012	5,8	75,9	180	2528	64,8	77,4	804	2457	11,8	5,3	5,7
26-7	22.08.2012	4,3	58,7	157	3042	57,3	72,0	635	2151	9,9	5,0	6,9
26-8	13.09.2012	4,4	56,7	157	2028	57,8	73,2	573	2016	8,9	4,9	5,9
26-9	30.10.2012	3,9	52,7	144	1502	40,8	68,6	608	2226	8,1	4,9	5,4
26-10	20.11.2012	3,9	66,2	142	2616	40,8	74,8	571	2047	9,9	4,7	8,6
26-11	21.12.2012	4,1	64,7	153	2252	35,7	61,0	608	1966	9,9	4,8	5,9
26-12	10.10.2013	3,7	63,2	187	2862	62,9	70,7	615	2660	13,7	5,2	9,8
	Min	2,4	47,8	110	1268	25,1	56,6	522	1966	6,4	4,7	4,4
	Max	5,8	75,9	187	3119	64,8	77,4	804	2660	13,7	5,9	9,8
	Mittelwert	3,8	59,6	147	2257	45,9	69,7	605	2216	9,4	5,2	6,5
	Median	3,9	59,3	149	2390	41,1	71,4	595	2194	9,3	5,2	5,9

Tabelle 168: Spurenelemente 2 [mg/kg] der Anlage 26

Probe		Se	Sr	Υ	Zr	Nb	Мо	Ag	Cd	Sn	Sb	Ва
26-1	14.02.2012	2,0	476	6,6	82,9	6,8	12,1	7,4	0,8	40,7	7,7	4617
26-2	14.03.2012	1,8	439	6,7	51,6	6,1	10,9	8,9	0,9	37,3	6,6	3944
26-3	11.04.2012	3,3	575	7,2	71,8	7,9	12,4	5,2	0,7	49,2	6,9	4228
26-4	10.05.2012	1,5	531	4,9	78,7	7,8	13,3	4,5	0,9	56,2	8,6	4192
26-5	18.06.2012	1,8	521	8,1	111,3	8,9	13,1	4,3	1,0	50,1	7,4	4150
26-6	18.07.2012	2,0	466	12,4	134,3	10,6	12,2	8,9	0,5	50,9	6,7	4773
26-7	22.08.2012	1,8	541	9,0	96,5	9,1	13,1	3,9	0,7	49,8	7,5	3991
26-8	13.09.2012	1,6	505	8,8	118,6	8,3	12,4	7,0	0,8	40,4	8,1	4272
26-9	30.10.2012	1,9	546	7,9	83,2	7,9	13,0	7,6	0,9	45,2	6,1	4189
26-10	20.11.2012	1,8	480	7,6	82,1	8,5	12,9	8,6	1,0	43,0	5,8	4623
26-11	21.12.2012	1,6	447	7,9	83,6	8,4	12,0	7,3	0,5	45,3	5,4	4652
26-12	10.10.2013	1,4	507	9,4	135,7	9,8	12,2	6,0	1,6	63,7	8,5	4974
	Min	1,4	439	4,9	51,6	6,1	10,9	3,9	0,5	37,3	5,4	3944
	Max	3,3	575	12,4	135,7	10,6	13,3	8,9	1,6	63,7	8,6	4974
	Mittelwert	1,9	503	8,0	94,2	8,3	12,5	6,6	0,9	47,7	7,1	4384
	Median	1,8	506	7,9	83,4	8,3	12,4	7,2	0,9	47,3	7,2	4250

Tabelle 169: Spurenelemente 3 [mg/kg] der Anlage 26

Probe		La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er
26-1	14.02.2012	17,2	27,5	3,1	11,9	2,2	0,5	2,1	0,3	1,4	0,3	0,8
26-2	14.03.2012	16,4	26,0	3,0	11,1	2,1	0,5	2,0	0,3	1,3	0,3	0,7
26-3	11.04.2012	16,6	28,5	3,1	11,9	2,2	0,5	2,2	0,3	1,5	0,3	0,8
26-4	10.05.2012	13,6	26,2	2,7	10,5	2,0	0,5	1,9	0,3	1,4	0,3	0,7
26-5	18.06.2012	19,1	32,2	3,6	13,5	2,5	0,6	2,4	0,3	1,7	0,3	0,9
26-6	18.07.2012	25,1	42,7	5,0	18,8	3,6	0,8	3,4	0,5	2,5	0,5	1,4
26-7	22.08.2012	18,8	33,0	3,6	13,8	2,7	0,6	2,5	0,3	1,9	0,4	1,0
26-8	13.09.2012	18,7	32,3	3,7	14,0	2,6	0,5	2,5	0,3	1,8	0,3	0,9
26-9	30.10.2012	16,3	28,8	3,3	12,3	2,3	0,5	2,3	0,3	1,5	0,3	0,8
26-10	20.11.2012	11,1	25,4	2,6	10,4	2,2	0,5	2,2	0,3	1,7	0,3	1,0
26-11	21.12.2012	14,4	28,4	3,2	12,0	2,4	0,5	2,4	0,3	1,8	0,3	1,0
26-12	10.10.2013	16,3	34,3	3,7	14,2	2,9	0,7	2,8	0,4	2,1	0,4	1,2
	Min	11,1	25,4	2,6	10,4	2,0	0,5	1,9	0,3	1,3	0,3	0,7
	Max	25,1	42,7	5,0	18,8	3,6	0,8	3,4	0,5	2,5	0,5	1,4
	Mittelwert	17,0	30,4	3,4	12,9	2,5	0,6	2,4	0,3	1,7	0,3	0,9
	Median	16,5	28,6	3,2	12,2	2,4	0,5	2,3	0,3	1,7	0,3	0,9

Tabelle 170: Spurenelemente 4 [mg/kg] der Anlage 26

Probe		Tm	Yb	Lu	Hf	Та	W	Au	Hg	Pb	Th	U
26-1	14.02.2012	0,1	0,7	0,1	2,2	0,8	66,1	1,0	0,7	83,0	4,1	5,5
26-2	14.03.2012	0,1	0,7	0,1	1,2	0,5	31,8	1,1	0,4	74,2	4,7	4,9
26-3	11.04.2012	0,1	0,8	0,1	2,0	0,8	47,2	0,7	0,5	88,8	4,2	5,8

Probe		Tm	Yb	Lu	Hf	Та	W	Au	Hg	Pb	Th	U
26-4	10.05.2012	0,1	0,6	0,1	2,0	0,8	33,2	0,6	0,4	80,4	3,4	5,7
26-5	18.06.2012	0,1	0,9	0,1	3,0	2,3	58,9	0,5	0,6	92,1	5,5	6,3
26-6	18.07.2012	0,2	1,3	0,2	3,5	1,1	84,7	0,8	0,9	93,7	8,2	6,7
26-7	22.08.2012	0,2	1,0	0,1	3,0	1,0	69,6	0,7	0,7	81,3	6,0	6,5
26-8	13.09.2012	0,2	0,9	0,1	3,1	0,9	61,0	0,6	0,6	80,9	6,5	6,3
26-9	30.10.2012	0,1	0,8	0,1	2,1		50,6	1,5	0,5	84,9	5,4	6,4
26-10	20.11.2012	0,2	0,9	0,1	2,0	0,9	48,1	0,6	0,5	82,0	3,7	6,5
26-11	21.12.2012	0,2	0,9	0,1	2,1	0,9	62,0	0,7	0,7	93,1	5,1	6,6
26-12	10.10.2013	0,2	1,1	0,2	3,5	1,0	39,5	0,7	0,4	139,6	5,2	8,1
	Min	0,1	0,6	0,1	1,2	0,5	31,8	0,5	0,4	74,2	3,4	4,9
	Max	0,2	1,3	0,2	3,5	2,3	84,7	1,5	0,9	139,6	8,2	8,1
	Mittelwert	0,2	0,9	0,1	2,5	1,0	54,4	0,8	0,6	89,5	5,2	6,3
	Median	0,1	0,9	0,1	2,1	0,9	54,8	0,7	0,5	83,9	5,1	6,3

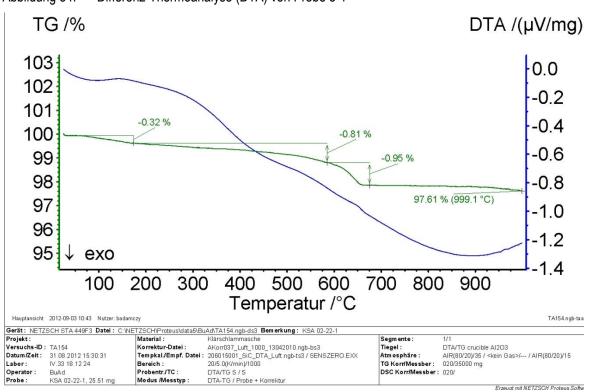
11.4 Thermische Analytik

Tabelle 171: Einzelwerte für Wassergehalt, Glühverlust und Gesamt organischer Kohlenstoff (TOC)

Probenummer	Тур	Wassergehalt [%]	Glühverlust [%]	TOC [%]
1-1	WS-Vergaser	0,8	7,7	11,5
1-2	WS-Vergaser	0,4	3,3	6,5
1-3	WS-Vergaser	2,6	5,4	7,0
1-4	WS-Vergaser	2,7	7,6	7,2
2-1	stat. WS	0,3	0,8	0,5
2-2	stat. WS	0,2	0,7	0,5
2-3	stat. WS	0,3	0,7	0,5
2-4	stat. WS	0,3	0,7	0,4
2-5	stat. WS	0,3	0,7	0,5
2-6	stat. WS	0,2	0,8	0,5
2-7	stat. WS	0,2	0,9	0,5
2-8	stat. WS	0,2	0,4	0,3
2-9	stat. WS	0,2	0,6	0,4
2-10	stat. WS	0,2	0,7	0,5
2-11	stat. WS	0,1	0,5	0,4
2-12	stat. WS	0,1	0,8	0,6
3-1	stat. WS	0,5	0,1	0,5
3-2	stat. WS	0,4	-2,0	1,3
3-3	stat. WS	0,3	-1,2	0,6
3-4	stat. WS	0,4	-0,5	0,6
3-5	stat. WS	0,3	-1,0	0,9
3-6	stat. WS	0,4	-0,3	0,6
3-7	stat. WS	0,1	0,1	0,4
3-8	stat. WS	0,1	0,1	0,4
3-9	stat. WS	0,1	0,2	0,5

Probenummer	Тур	Wassergehalt [%]	Glühverlust [%]	TOC [%]
3-10	stat. WS	0,1	-0,2	0,5
3-11	stat. WS	0,2	0,4	1,1
3-12	stat. WS	0,1	0,2	1,4
3-13	stat. WS	0,1	0,6	2,5
3-14	stat. WS	0,1	0,3	2,1
3-15	stat. WS	0,1	0,2	1,6
3-16	stat. WS	0,1	0,2	1,5
3-17	stat. WS	0,2	0,1	1,6
3-18	stat. WS	0,1	0,1	1,4
4-1	stat. WS	0,3	0,1	0,2
4-2	stat. WS			0,2
4-3	stat. WS			0,2
4-4	stat. WS			0,3
4-5	stat. WS			0,3
4-6	stat. WS			0,3
4-7	stat. WS			0,2
4-8	stat. WS			0,2
4-9	stat. WS			0,2
4-10	stat. WS			0,2
4-11	stat. WS			0,2
4-12	stat. WS			0,1
5-2	stat. WS	0,2	2,2	2,0
5-3	stat. WS	0,2	1,8	1,8
5-4	stat. WS	0,1	2,1	2,0
5-5	stat. WS	0,1	1,7	1,7
5-6	stat. WS	0,1	1,8	1,8
5-7	stat. WS	0,1	1,7	1,8
5-7	stat. WS	0,1	1,7	1,5
5-8	stat. WS	0,1	2,3	2,2
5-9	stat. WS	0,2	3,2	2,9
5-10	stat. WS	0,1	2,3	2,6
5-11	stat. WS	0,1	2,1	2,0
5-12	stat. WS	0,1	2,9	2,6
6-1	stat. WS	49,2	0,6	0,1
6-2	stat. WS	49,3	0,6	0,1
6-3	stat. WS	46,8	0,5	0,1
6-4	stat. WS	45,8	0,6	0,1
6-5	stat. WS	48,4	0,6	0,1
6-6	stat. WS	46,3	1,4	0,2
6-7	stat. WS	44,3	0,5	0,1
6-8	stat. WS	44,2	0,6	0,1
6-9	stat. WS	35,4	0,5	0,1
6-10	stat. WS	43,0	0,4	0,1

Probenummer	Тур	Wassergehalt [%]	Glühverlust [%]	TOC [%]
6-11	stat. WS	43,1	0,5	0,1
6-12	stat. WS	43,5	0,4	0,1
7-1	stat. WS	0,4	0,3	0,5
7-2	stat. WS	0,8	0,8	0,7
7-3	stat. WS	0,4	0,8	0,9
7-4	stat. WS	0,3	0,5	0,7
7-5	stat. WS	0,2	0,2	0,3
7-6	stat. WS	0,3	0,3	0,4
7-7	stat. WS	0,2	0,3	0,5
7-8	stat. WS	0,5	0,7	0,5
7-9	stat. WS	2,0	1,3	0,4
7-10	stat. WS	6,3	1,1	
7-11	stat. WS	5,5	1,4	
7-12	stat. WS	9,8	1,5	
7-13	stat. WS	12,5	1,4	0,6
7-14	stat. WS	7,5	1,4	0,7
7-15	stat. WS	14,0	1,7	1,0
8-1	Etagenwirbler	0,3	1,1	1,2
8-2	Etagenwirbler	0,3	1,0	1,1
8-3	Etagenwirbler	0,3	0,9	1,1
8-4	Etagenwirbler	0,2	0,8	0,9
8-5	Etagenwirbler	0,3	0,9	1,0
8-6	Etagenwirbler	0,3	1,1	1,3
8-7	Etagenwirbler	0,2	0,8	1,1
8-8	Etagenwirbler	0,3	0,7	1,0
8-9	Etagenwirbler	0,2	0,7	0,9
8-10	Etagenwirbler	0,2	0,8	1,0
8-11	Etagenwirbler	0,2	0,8	1,0
8-12	Etagenwirbler	0,1	0,5	0,8
9-1	stat. WS	0,2	0,0	0,0
9-2	stat. WS	0,2	0,0	0,0
9-3	stat. WS	0,2	0,0	0,1
9-4	stat. WS	0,1	-0,1	0,1
9-5	stat. WS	0,8	7,3	
9-6	stat. WS	0,7	8,4	
9-7	stat. WS	0,7	8,7	
9-8	stat. WS	0,7	7,7	
9-9	stat. WS	0,7	7,8	
11-1	stat. WS	0,3	-0,2	
11-2	stat. WS	0,3	-0,1	0,1
11-3	stat. WS	0,2	-0,1	0,1
11-4	stat. WS	0,2	-0,3	0,1
11-5	stat. WS	0,2	-0,3	0,1


Probenummer	Тур	Wassergehalt [%]	Glühverlust [%]	TOC [%]
11-6	stat. WS	0,2	-0,3	0,1
11-7	stat. WS	0,1	-0,3	0,1
11-8	stat. WS	0,2	0,0	0,1
11-9	stat. WS	0,1	-0,1	0,1
11-10	stat. WS	0,2	-0,1	0,1
11-11	stat. WS	0,2	-0,2	0,2
11-12	stat. WS	0,2	-0,3	0,2
11-13	stat. WS	0,2	-0,2	0,2
12-1	WS	0,1	0,4	0,3
12-2	WS	0,1	0,5	0,3
12-3	WS	0,2	0,7	0,5
12-4	WS	0,1	0,4	0,3
12-5	WS	0,5	2,1	0,8
12-6	WS	0,2	0,8	0,5
12-7	WS	0,2	1,2	0,6
12-8	WS	0,2	0,9	0,6
12-9	WS	0,2	0,8	0,7
12-10	WS	0,1	0,7	0,5
12-11	WS	0,2	0,6	0,2
12-12	WS	0,2	0,8	0,6
13-1	stat. WS	24,9	0,6	0,0
13-2	stat. WS	22,2	0,6	0,0
13-3	stat. WS	20,4	0,7	0,0
13-4	stat. WS	24,2	0,9	0,0
13-5	stat. WS	12,4	1,3	0,0
13-6	stat. WS	26,6	1,1	0,0
13-7	stat. WS	23,2	1,0	0,0
13-8	stat. WS	23,5	0,7	
13-9	stat. WS	31,1	0,8	
13-10	stat. WS	30,0	0,7	
13-11	stat. WS	23,9	0,5	
13-12	stat. WS	26,0	0,4	
14-1	stat. WS	0,3	0,2	0,1
14-2	stat. WS	0,3	0,0	0,2
14-3	stat. WS	0,2	0,0	0,2
14-4	stat. WS	0,2	-0,3	0,3
14-5	stat. WS	0,2	0,0	0,2
14-6	stat. WS	0,2	-0,1	0,2
14-7	stat. WS	0,3	-0,1	0,2
14-8	stat. WS	0,3	0,0	0,2
14-9	stat. WS	0,3	-0,1	0,2
14-10	stat. WS	0,2	-0,1	0,2
14-11	stat. WS	0,1	-0,1	0,3

Probenummer	Тур	Wassergehalt [%]	Glühverlust [%]	TOC [%]
14-12	stat. WS	0,3	-0,1	0,2
15-1	stat. WS	0,3	0,2	0,1
15-2	stat. WS	0,3	0,2	0,1
15-3	stat. WS	0,3	0,1	0,1
15-4	stat. WS	0,3	0,2	0,1
15-5	stat. WS	0,3	0,2	0,1
15-6	stat. WS	0,4	0,3	0,2
15-7	stat. WS	0,3	0,1	0,1
15-8	stat. WS	0,3	0,2	0,1
15-9	stat. WS	0,3	0,2	0,1
15-10	stat. WS	28,1	0,9	0,1
15-11	stat. WS	0,3	0,2	0,1
16-1	stat. WS	0,4	0,1	0,1
16-2	stat. WS	0,3	0,1	0,0
16-3	stat. WS	0,3	0,1	0,1
16-4	stat. WS	0,4	0,2	0,1
16-5	stat. WS	0,3	0,1	0,1
16-6	stat. WS	0,3	0,1	0,0
16-7	stat. WS	0,3	0,1	0,1
16-8	stat. WS	0,3	0,1	0,1
16-9	stat. WS	0,3	0,0	0,1
16-10	stat. WS	0,3	0,1	0,1
16-11	stat. WS	0,3	0,1	0,1
16-12	stat. WS	0,3	0,1	0,1
16-13	stat. WS	0,2	0,0	0,1
17-1	Rostfeuerung	8,0	3,1	
17-2	Rostfeuerung	8,0	2,8	
17-3	Rostfeuerung	7,0	2,2	
17-4	Rostfeuerung	8,9	2,8	
17-5	Rostfeuerung	4,9	3,4	
17-6	Rostfeuerung	8,1	2,4	
17-7	Rostfeuerung	10,9	3,6	
17-8	Rostfeuerung	2,5	3,1	
17-9	Rostfeuerung	13,5	3,8	
17-10	Rostfeuerung	13,4	4,5	
17-11	Rostfeuerung	11,3	3,2	
17-12	Rostfeuerung	15,5	3,9	-
17-13	Rostfeuerung	16,7	3,8	
17-14	Rostfeuerung	18,3	3,9	
17-15	Rostfeuerung	14,6	3,8	
17-16	Rostfeuerung	17,4	3,8	
17-17	Rostfeuerung	20,3	3,2	
17-18	Rostfeuerung	18,9	3,6	

Probenummer	Тур	Wassergehalt [%]	Glühverlust [%]	TOC [%]
18-1	Pyrobuster	0,6	0,9	1,3
19-1	WS	28,5	0,5	1,0
19-2	WS	28,2	0,5	
19-3	WS	29,6	1,3	
19-4	WS	29,3	0,4	
19-5	WS	26,0	0,5	
20-1	WS	0,3	-4,1	3,1
20-2	WS	0,6	-1,4	2,5
20-3	WS	0,6	0,8	0,8
20-4	WS	0,8	0,2	1,5
20-5	WS	1,0	0,4	0,2
20-6	WS	0,7	0,2	0,2
20-7	WS	0,8	0,3	0,7
20-8	WS	0,5	0,2	0,2
21-1	WS	0,4	3,3	3,6
22-1	WS	0,3	-0,1	0,6
22-2	WS	0,2	-0,7	0,6
22-3	WS	0,2	-0,4	0,5
22-4	WS	0,2	-0,2	0,3
22-5	WS	0,2	-0,2	0,2
22-6	WS	0,2	-0,5	0,5
23-1	Etagenofen			0,3
23-2	Etagenofen			0,5
23-3	Etagenofen			0,2
23-4	Etagenofen			0,1
23-5	Etagenofen			0,2
23-6	Etagenofen			0,0
23-7	Etagenofen			0,3
23-8	Etagenofen			0,1
23-9	Etagenofen			0,4
23-10	Etagenofen			0,2
23-11	Etagenofen			0,1
23-12	Etagenofen			0,3
25-8	WS-Vergaser	0,5	6,4	
25-9	WS-Vergaser	0,4	3,5	
25-10	WS-Vergaser	0,5	4,8	
26-1	Rost (Flugverbrennung)	1,2	3,3	3,0
26-2	Rost (Flugverbrennung)	2,1	11,3	8,0
26-3	Rost (Flugverbrennung)	0,6	0,7	0,7
26-4	Rost (Flugverbrennung)	1,2	5,7	4,9

Probenummer	Тур	Wassergehalt [%]	Glühverlust [%]	TOC [%]
26-5	Rost (Flugverbrennung)	1,4	6,7	6,5
26-6	Rost (Flugverbrennung)	1,4	8,7	6,8
26-7	Rost (Flugverbrennung)	1,8	7,3	5,4
26-8	Rost (Flugverbrennung)	4,6	13,1	8,7
26-9	Rost (Flugverbrennung)	1,5	7,2	5,9
26-10	Rost (Flugverbrennung)	1,6	5,1	4,0
26-11	Rost (Flugverbrennung)	21,9	12,2	8,9
26-12	Rost (Flugverbrennung)	0,7	0,8	0,4

Abbildung 54: Differenz-Thermoanalyse (DTA) von Probe 3-1

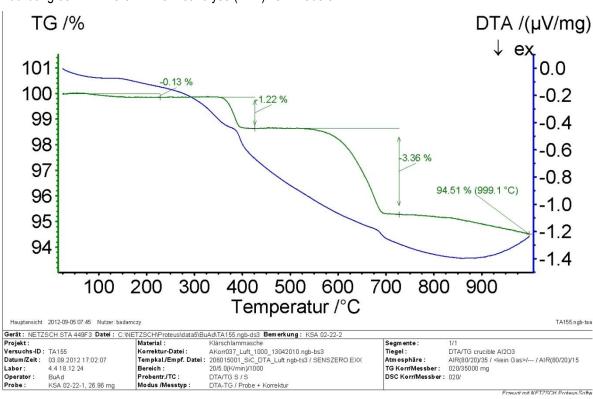
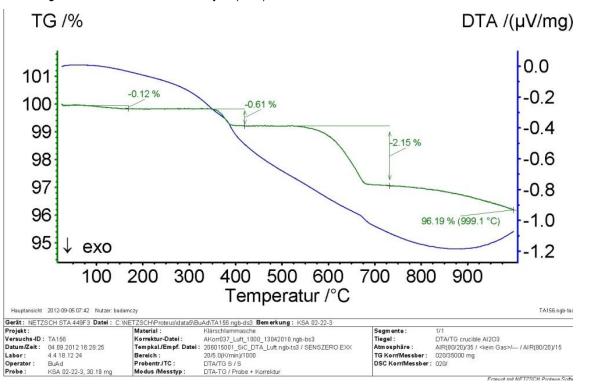
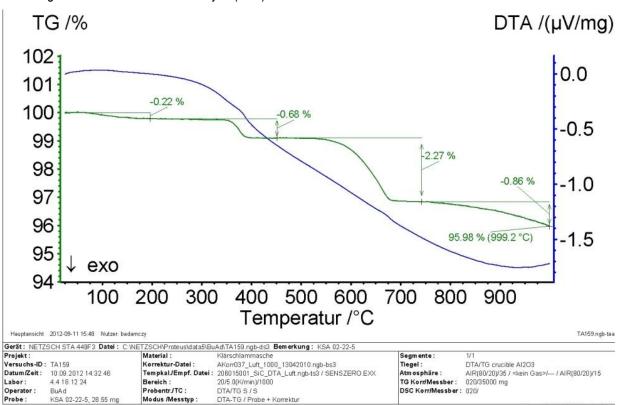




Abbildung 55: Differenz-Thermoanalyse (DTA) von Probe 3-2



TG /% DTA /(µV/mg) 102 0.0 -0.20 % 101 -0.2 -0.46 % 100 -0.4-1.35 % 99 -0.698 97 -0.8 97.35 % (999.1 °C) 96 -1.0 exo 700 200 300 400 500 600 800 900 100 Temperatur /°C | Gerät: NETZSCH STA 449F3 | Datei : C:NETZ:
| Projekt: | M. |
| Versuchs | D: | TA157 | K. |
| Varsuchs | C:NETZ: | Tatanzeit: 05 09 2012 15:47:14 | Tellabor: 4.4 18.12 24 | Be SCH\Proteus\data5\BuAd\TA157.ngb-ds3 Bemerkung: KSA 02-22-4 | Segmente : 1/1
| Tiegel : DTA/
| Atmosphäre : AIR(6
| TG Korr/Messber : 020/
| DSC Korr/Messber : 020/ Klarschlammasche AKom037_Luft_1000_13042010.ngb-bs3 208015001_SIC_DTA_Luft.ngb-ts3 / SENSZERO.EXX 20/5.0(k/min)/1000 Material: Korrektur-Datei : Tempkal./Empf. Datei : DTA/TG crucible Al2O3 AlR(80/20)/35 / <kein Gas>/--- / AlR(80/20)/15 020/35000 ma Bereich: Probentr./TC: Operator : Probe : DTA/TG S / S KSA 02-22-4, 33.20 mg Modus /Messtyp DTA-TG / Probe + Korrektur Erzeurd mit NETZSCH Proteins Softw.

Abbildung 57: Differenz-Thermoanalyse (DTA) von Probe 3-4

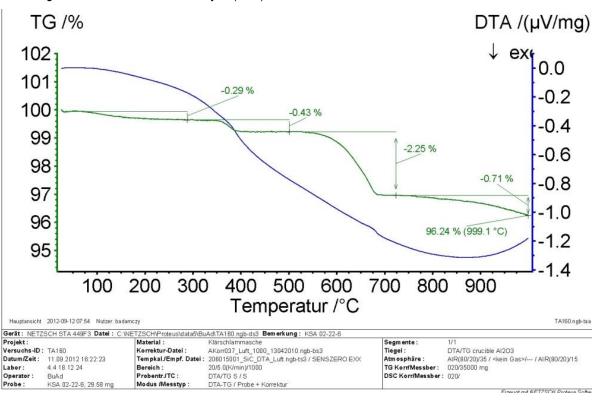
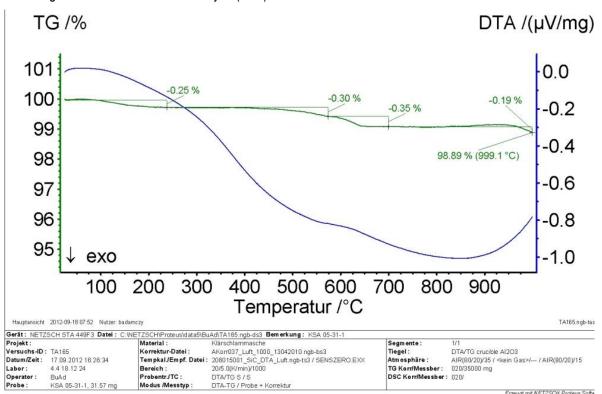



Abbildung 59: Differenz-Thermoanalyse (DTA) von Probe 3-6

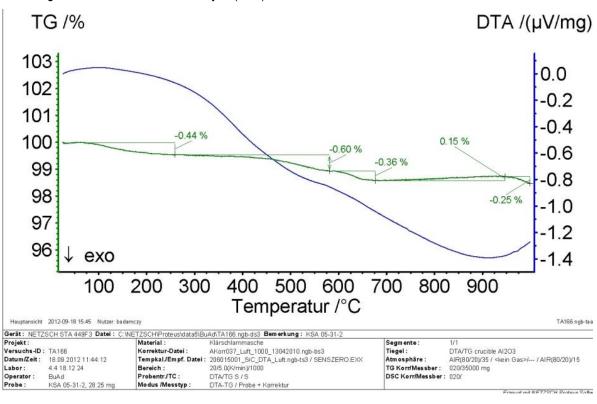
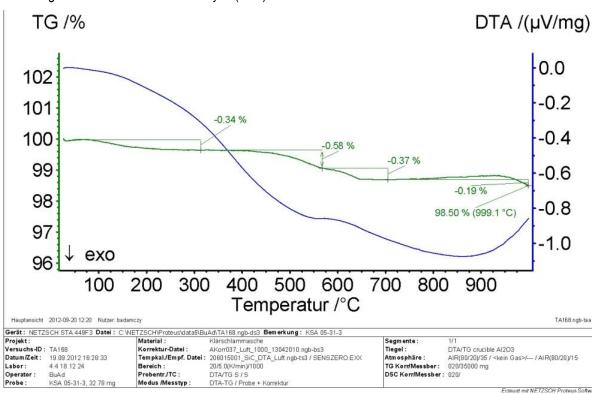



Abbildung 61: Differenz-Thermoanalyse (DTA) von Probe 7-2

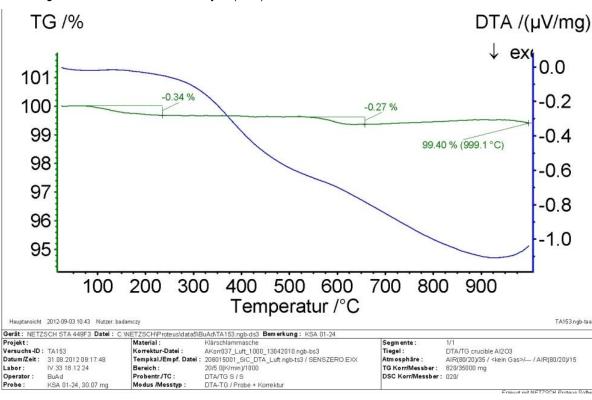
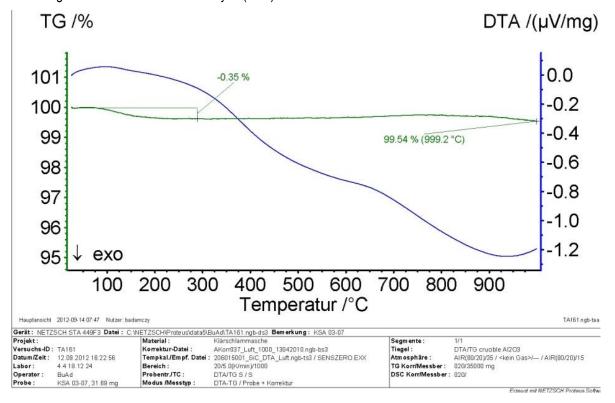
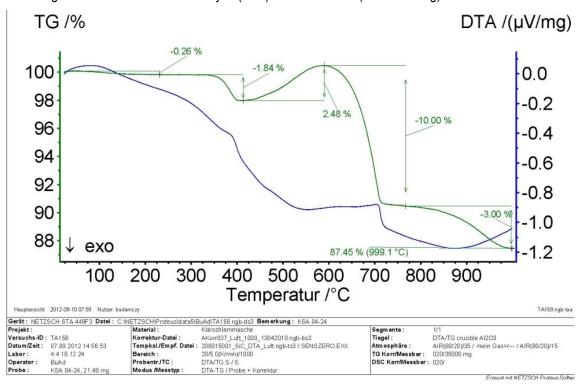



Abbildung 63: Differenz-Thermoanalyse (DTA) von Probe 11-1

DTA /(µV/mg) TG /% 0.0 -1.65 % 100 -0.298 2.55 -0.4-10.10 % 96 -0.6 94 -0.8-1.092 -1.290 -3.20 % -1.4 88 exo 87.44 % (999.1 -1.6 400 500 600 200 300 700 900 100 800 Temperatur /°C Hauptansicht 2012-08-31 08:03 Nutzer: badamczy TA152.ngb-taa Gerät: NETZSCH STA 449F3 Datei: C:\NI Projekt: Versuchs-ID: TA152 Datum/Zeit: 30.08.2012 14:30:19 ZSCH\Proteus\data5\BuAd\TA152.ngb-ds3 Bemerkung: KSA 04-24
 Material :
 Klärschlammasche

 Kornektur-Datei :
 AKorr037_Luft_1000_13042010.ngb-bs3


 Tempkal/Empf. Datei :
 208015001_SIC_DTA_Luft.ngb-ts3 / SENSZERO.EXX


 Bereich :
 20/5.0(K/min)/1000

 Probentr/TC :
 DTA/TG S / S

 Modus /Messtyp :
 DTA-TG / Probe + Korrektur
 Segmente: Tiegel: Atmosphäre: DTA/TG crucible Al2O3 AIR(80/20)/35 / <kein Gas>/--- / AIR(80/20)/15 820/35000 mg : 020/ 30.08.2012 14:30:19 IV.33 18.12 24 BuAd KSA 04-24, 25.96 mg

Abbildung 65: Differenz-Thermoanalyse (DTA) von Probe 20-1

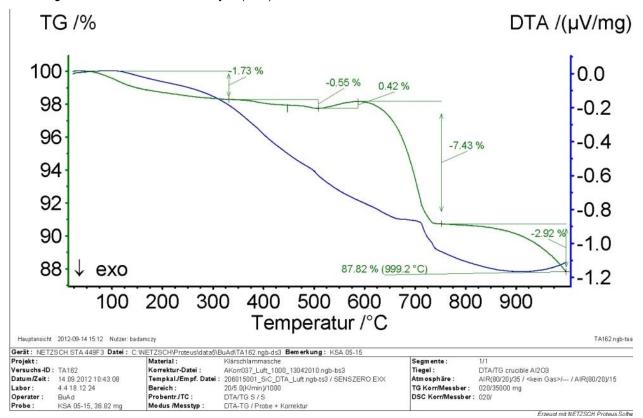


Abbildung 67: Differenz-Thermoanalyse (DTA) von Probe 20-2

11.5 Massenströme ausgewählter Anlagen

11.5.1 Anlage 2

Die Frachten in den folgenden Tabellen sind berechnet für Juni 2013 mit folgenden Mengen: entwässerter Klärschlamm 5464,9 t, Gipsschlamm 21 t, Klärschlammasche 1082,1 t.

Tabelle 172: Konzentrationen und Frachten verschiedener Massenströme der Anlage 2 (Hauptelemente)

Element	MF 2-1 (entw. KS) Konzentration [%]	MF 2-2 (Gips- schlamm) Konzentration [%]	MF 2-4 (KSA) Konzentration [%]	MF 2-1 (entw. KS) Fracht [t]	MF 2-2 (Gips- schlamm) Fracht [t]	MF 2-4 (KSA) Fracht [t]
Al	1,0	3,6	3,8	55,5	0,748	40,9
Ca	2,7	20,4	12,2	146,5	4,276	132,2
Fe	3,2	3,8	17,3	176,3	0,792	186,8
K	0,3	0,3	1,3	16,3	0,058	14,3
Mg	0,3	1,2	1,4	17,1	0,242	15,5
Na	0,1	0,2	0,5	6,6	0,045	5,6
Р	2,2	0,3	10,7	121,0	0,057	115,9
S	1,4	8,9	1,0	75,5	1,867	10,5
Si	2,4	6,7	6,4	129,4	1,414	69,2
Ti	0,1	0,1	0,4	5,1	0,026	4,5

Tabelle 173: Konzentrationen und Frachten verschiedener Massenströme der Anlage 2 (Spurenelemente)

Element	MF 2-1 (entw. KS) Konzentration [mg/kg]	MF 2-2 (Gipsschlamm) Konzentration [mg/kg]	MF 2-4 (KSA) Konzentration [mg/kg]	MF 2-1 (entw. KS) Fracht [kg]	MF 2-2 (Gips- schlamm) Fracht [kg]	MF 2-4 (KSA) Fracht[kg]
Sc	1,0	9,0	3,6	5,4	0,190	3,9
٧	10,5	71,8	44,8	57,2	1,507	48,5
Cr	42,8	72,1	90,4	234,0	1,515	97,8
Mn	1114	4362	2879	6090	91,6	3116
Со	12,0	11,5	14,9	65,3	0,242	16,1
Ni	17,5	71,1	49,4	95,7	1,493	53,5
Cu	523	91	2541	2859	1,921	2749
Zn	845	350	3393	4620	7,355	3671
Ga	2,3	11,3	7,3	12,4	0,236	7,9
Ge	1,6	9,9	6,1	8,8	0,207	6,6
As	5,1	38,7	26,7	27,8	0,813	28,9
Se	0,5	36,8	1,3	2,5	0,773	1,4
Sr	107	225	604	585,7	4,734	653,2
Υ	2,5	75,8	6,9	13,5	1,592	7,4
Zr	45,3	65,1	195,8	247,7	1,368	211,9
Nb	1,7	5,5	5,5	9,4	0,115	5,9
Мо	5,0	10,1	21,5	27,2	0,213	23,3
Ag	12,9	0,5	12,2	70,8	0,011	13,2
Cd	1,0	3,0	1,8	5,3	0,063	2,0
Sn	20,7	3,4	89,6	113,2	0,072	96,9
Sb	2,4	4,5	10,2	13,3	0,095	11,0
Ва	n.B.	n.B.	n.B.	n.B.	n.B.	n.B.
La	8,5	44,1	29,2	46,6	0,926	31,6
Се	11,0	52,3	36,8	60,3	1,099	39,8
Pr	1,0	8,4	3,1	5,6	0,176	3,4
Nd	3,7	34,2	10,6	20,1	0,719	11,4
Sm	0,6	7,3	1,6	3,1	0,152	1,8
Eu	0,1	1,8	0,4	0,6	0,038	0,4
Gd	0,8	9,0	2,3	4,4	0,190	2,4
Tb	0,1	1,2	0,2	0,4	0,026	0,2
Dy	0,4	8,2	1,0	2,1	0,173	1,1
Но	0,1	1,7	0,2	0,4	0,035	0,2
Er	0,2	5,2	0,6	1,2	0,108	0,6
Tm	0,0	0,7	0,1	0,2	0,014	0,1
Yb	0,2	4,3	0,6	1,2	0,090	0,7
Lu	0,0	0,6	0,1	0,2	0,012	0,1
Hf	1,3	1,9	4,7	7,2	0,039	5,1
Та	0,2	0,4	0,4	1,3	0,008	0,4
W	37,3	7,9	23,0	204	0,166	24,9
Au	0,6	0,2	1,0	3,5	0,004	1,1

Element	MF 2-1 (entw. KS) Konzentration [mg/kg]	MF 2-2 (Gipsschlamm) Konzentration [mg/kg]	MF 2-4 (KSA) Konzentration [mg/kg]	MF 2-1 (entw. KS) Fracht [kg]	MF 2-2 (Gips- schlamm) Fracht [kg]	MF 2-4 (KSA) Fracht[kg]
Hg	1,28	17,0	2,02	7,0	0,357	2,2
Pb	54,4	49,3	162	297	1,036	176
Th	0,8	4,6	2,2	4,5	0,096	2,4
U	0,9	7,0	3,7	5,1	0,147	4,0

11.5.2 Anlage 14

Die Frachten in den folgenden Tabellen sind berechnet für 2012 mit folgenden Mengen: Klärschlamm nach Trockner bzw. Zentrifuge 20200 t, Adsorbens 26 t, Klärschlammasche 6420 t.

Tabelle 174: Konzentrationen und Frachten verschiedener Massenströme der Anlage 14 (Hauptelemente)

Eleme nt	MF 14-3 (KS nach Trockner) Konzentrat ion[%]	MF 14-4 (KS nach Zentrifuge) Konzentrati on[%]	MF 14-2 (Adsor-bens) Konzentration [%]	MF 14-1 (KSA) Konzentr ation[%]	MF 14-3 (KS nach Trockner) Fracht [t]	MF 14-4 (KS nach Zentrifug e) Fracht [t]	MF 14-2 (Adsorb ens) Fracht [t]	MF 14-1 (KSA) Fracht [t]
Al	0,9	1,5	0,4	3,6	180,0	311,7	0,11	234,0
Ca	5,3	5,0	30,2	11,8	1064	1011	7,84	754,4
Fe	2,3	0,9	0,5	4,9	455,9	181,3	0,14	317,2
K	0,7	0,8	0,2	2,1	141,9	153,8	0,04	133,6
Mg	0,7	0,6	0,3	1,4	134,4	130,3	0,09	91,7
Na	0,5	0,5	0,6	1,2	100,9	99,5	0,14	76,2
Р	3,4	2,9	0,0	7,8	693,2	584,7	0,01	499,9
S	0,8	0,7	0,8	1,0	156,6	146,7	0,22	63,4
Si	5,8	6,3	4,7	15,2	1181	1275	1,22	976,0
Ti	0,1	0,1	0,0	0,4	22,5	26,4	0,01	23,3

Tabelle 175: Konzentrationen und Frachten verschiedener Massenströme der Anlage 14 (Spurenelemente)

Eleme nt	MF 14-3 (KS nach Trockner) Konzentrat ion[%]	MF 14-4 (KS nach Zentrifuge) Konzentrati on[%]	MF 14-2 (Adsorbens) Konzentratio n[%]	MF 14-1 (KSA) Konzentra tion[%]	MF 14-3 (KS nach Trockner) Fracht [t]	MF 14-4 (KS nach Zentrifug e) Fracht [t]	MF 14-2 (Adsorbe ns) Fracht [t]	MF 14-1 (KSA) Fracht [t]
Sc	0,8	1,0	2,3	2,5	15,8	19,6	0,06	16,0
٧	21,0	22,9	17,9	73,0	424,7	463,1	0,47	468,7
Cr	51,6	56,8	30,6	139,9	1043,0	1148,1	0,80	898,2
Mn	251	257	118	681	5067	5189	3,07	4369
Co	6,2	5,5	3,6	19,5	125,6	111,8	0,09	125,2
Ni	19,5	25,7	12,7	82,6	394,2	519,4	0,33	530,2
Cu	272,6	307,0	15,0	861,4	5506,1	6202,2	0,39	5530
Zn	2362	2917	40	5622	47710	58924	1,04	36095

Eleme nt	MF 14-3 (KS nach Trockner) Konzentrat ion[%]	MF 14-4 (KS nach Zentrifuge) Konzentrati on[%]	MF 14-2 (Adsorbens) Konzentratio n[%]	MF 14-1 (KSA) Konzentra tion[%]	MF 14-3 (KS nach Trockner) Fracht [t]	MF 14-4 (KS nach Zentrifug e) Fracht [t]	MF 14-2 (Adsorbe ns) Fracht [t]	MF 14-1 (KSA) Fracht [t]
Ga	3,7	3,9	2,4	12,4	75,0	79,7	0,06	79,7
Ge	1,2	0,9	1,7	3,4	24,7	17,9	0,04	21,8
As	3,8	3,7	8,0	12,0	77,3	74,5	0,21	77,0
Se	0,8	1,0	3,1	2,4	15,7	20,2	0,08	15,4
Sr	197	163	513	435	3987	3286	13,34	2790
Υ	3,0	3,1	15,6	8,6	60,2	63,4	0,41	55,5
Zr	36,0	50,6	34,0	102,0	726,3	1021,2	0,88	654,5
Nb	2,8	2,7	2,4	8,7	55,9	54,8	0,06	55,8
Мо	5,3	5,4	3,9	15,1	107,5	108,6	0,10	97,1
Ag	2,4	2,1	0,1	6,4	47,9	41,8	0,00	40,9
Cd	0,7	0,8	0,1	2,2	13,6	15,3	0,00	14,1
Sn	26,6	32,7	4,3	85,0	538,3	660,3	0,11	545,5
Sb	4,0	4,4	0,5	15,0	81,2	88,3	0,01	96,0
Ва	3250	3291	3616	8001	65658	66486	94	51368
La	4,7	4,9	11,3	19,8	95,7	98,5	0,29	127,3
Ce	8,2	8,3	14,2	36,5	166,1	167,3	0,37	234,2
Pr	1,0	1,0	2,1	3,9	20,8	20,9	0,06	25,0
Nd	4,1	4,1	8,4	13,0	82,8	83,7	0,22	83,7
Sm	0,9	0,9	1,7	2,7	17,8	18,0	0,04	17,1
Eu	0,3	0,4	0,4	0,8	6,7	7,6	0,01	5,5
Gd	0,9	0,9	2,1	2,7	17,8	18,4	0,05	17,2
Tb	0,1	0,2	0,3	0,4	3,0	3,1	0,01	2,8
Dy	0,8	0,8	1,8	2,1	15,4	15,9	0,05	13,8
Но	0,2	0,2	0,4	0,4	3,1	3,3	0,01	2,8
Er	0,4	0,5	1,1	1,2	9,0	9,5	0,03	7,9
Tm	0,1	0,1	0,2	0,2	1,5	1,6	0,00	1,3
Yb	0,5	0,5	0,9	1,2	9,2	9,6	0,02	7,6
Lu	0,1	0,1	0,1	0,2	1,3	1,4	0,00	1,0
Hf	1,1	1,6	0,8	3,1	23,1	31,9	0,02	19,6
Та	0,3	0,3	0,2	0,9	5,6	6,2	0,01	6,1
W	17,9	15,8	18,7	79,5	360,9	319,3	0,49	510,6
Au	0,3	0,4	0,0	1,4	6,1	9,1	0,00	9,1
Hg	1,5	2,1	132,8	1,3	30,0	41,9	3,45	8,3
Pb	47,1	61,3	19,8	139,8	950,7	1238	0,51	897,4
Th	0,8	1,2	1,8	3,6	16,3	24,1	0,05	23,1
U	5,3	4,1	1,1	10,1	107,0	82,7	0,03	64,9

11.5.3 Anlage 17

Die Frachten in den folgenden Tabellen sind berechnet für Juni 2013 mit folgenden Mengen: Klärschlamm vorgetrocknet 2114,1 t, Filterasche 99,1 t, Rostasche und Rostasche, frisch 1032,2 t.

Tabelle 176: Konzentrationen und Frachten verschiedener Massenströme der Anlage 17 (Hauptelemente)

Elemen t	MF 17-3 (KS vorgetr.) Konzent ration [%]	MF 17-2 (Filter- asche) Konzentra tion [%]	17-16 (Rost- asche) Konzentra tion [%]	MF 17-1 (Rost- asche, frisch) Konzentration [%]	MF 17-3 (KS vorgetr.) Fracht [t]	MF 17-2 (Filter- asche) Fracht [t]	17-16 (Rost- asche) Fracht [t]	MF 17-1 (Rost- asche, frisch) Fracht [t]
Al	0,9	0,8	3,3	1,6	18,7	0,75	33,8	16,9
Ca	5,6	4,6	11,2	12,4	117,7	4,57	116,0	128,0
Fe	3,3	1,6	7,9	5,3	70,1	1,63	81,9	54,8
K	0,6	0,3	1,1	0,8	12,3	0,34	11,2	7,8
Mg	0,8	0,5	1,1	2,4	17,9	0,46	11,7	24,5
Na	0,6	15,5	0,6	0,7	11,9	15,34	6,1	7,4
Р	4,6	1,7	8,5	7,0	98,2	1,64	88,3	72,1
S	0,9	15,6	0,7	0,6	18,4	15,50	6,9	6,0
Si	3,9	4,7	9,4	8,1	81,9	4,64	96,5	83,8
Ti	0,1	0,1	0,3	0,1	2,1	0,06	3,4	1,5

Tabelle 177: Konzentrationen und Frachten verschiedener Massenströme der Anlage 17 (Spurenelemente)

Elemen t	MF 17-3 (KS vorgetr.) Konzentr ation [%]	MF 17-2 (Filter- asche) Konzentra tion [%]	17-16 (Rost- asche) Konzentra tion [%]	MF 17-1 (Rost- asche, frisch) Konzentration [%]	MF 17-3 (KS vorgetr.) Fracht [t]	MF 17-2 (Filter- asche) Fracht [t]	17-16 (Rost- asche) Fracht [t]	MF 17-1 (Rost- asche, frisch) Fracht [t]
Sc	0,9	1,3	1,3	2,7	1,83	0,13	1,38	2,84
V	18,6	12,0	47,8	45,4	39,29	1,19	49,39	46,82
Cr	55,7	45,4	142,3	152,9	117,7	4,50	146,9	157,8
Mn	383	190	1008	919	808,7	18,87	1040	948,4
Co	6,6	5,8	15,4	22,1	13,99	0,57	15,90	22,84
Ni	25,8	18,2	69,0	63,0	54,48	1,80	71,17	65,05
Cu	296,4	189,2	669	814,4	626,7	18,75	690,2	840,6
Zn	2216	1453	2198	3181	4684	143,99	2269	3284
Ga	7,0	3,4	11,2	12,3	14,74	0,34	11,55	12,65
Ge	3,9	1,9	4,9	4,5	8,27	0,19	5,06	4,66
As	5,4	21,9	10,0	9,5	11,33	2,17	10,29	9,86
Se	2,4	10,2	2,3	3,2	5,08	1,01	2,40	3,28
Sr	312	103	581	765	659,2	10,20	599,3	790,1
Υ	15,0	7,4	17,5	27,4	31,7	0,73	18,08	28,30
Zr	32,5	27,9	55,3	53,4	68,7	2,76	57,13	55,11
Nb	2,3	2,2	7,5	2,8	4,85	0,22	7,70	2,93

Elemen t	MF 17-3 (KS vorgetr.) Konzentr ation [%]	MF 17-2 (Filter- asche) Konzentra tion [%]	17-16 (Rost- asche) Konzentra tion [%]	MF 17-1 (Rost- asche, frisch) Konzentration [%]	MF 17-3 (KS vorgetr.) Fracht [t]	MF 17-2 (Filter- asche) Fracht [t]	17-16 (Rost- asche) Fracht [t]	MF 17-1 (Rost- asche, frisch) Fracht [t]
Мо	6,9	10,1	27,2	20,0	14,62	1,00	28,04	20,62
Ag	2,8	4,0	8,2	13,0	5,82	0,40	8,50	13,37
Cd	0,9	7,8	1,8	1,0	1,83	0,77	1,85	1,06
Sn	25,2	112,6	70,4	36,6	53,31	11,16	72,65	37,79
Sb	3,4	10,5	11,3	11,4	7,10	1,04	11,69	11,80
Ва	3164	3420	4121	3295	6690	338,93	4254	3401
La	20,9	7,7	33,5	22,8	44,20	0,77	34,61	23,53
Ce	35,8	13,3	66,2	41,2	75,8	1,32	68,32	42,51
Pr	4,9	1,4	6,2	5,4	10,43	0,14	6,37	5,62
Nd	19,1	5,2	23,8	21,5	40,31	0,52	24,59	22,23
Sm	4,0	1,1	4,7	4,8	8,48	0,11	4,90	4,92
Eu	0,9	0,4	1,8	1,7	1,90	0,04	1,81	1,74
Gd	4,0	1,1	4,8	4,7	8,42	0,11	4,93	4,87
Tb	0,8	0,3	1,5	1,6	1,75	0,03	1,52	1,66
Dy	3,6	0,9	3,8	4,3	7,55	0,09	3,94	4,46
Но	0,7	0,2	0,8	0,9	1,53	0,02	0,84	0,95
Er	2,0	0,5	2,3	2,7	4,26	0,05	2,39	2,76
Tm	0,3	0,1	0,4	0,5	0,73	0,01	0,46	0,53
Yb	1,9	0,5	2,3	2,7	3,95	0,05	2,43	2,74
Lu	0,2	0,1	0,2	0,3	0,51	0,01	0,24	0,34
Hf	0,9	1,0	1,7	0,8	1,90	0,10	1,78	0,83
Та	0,2	0,2	0,9	0,3	0,39	0,02	0,98	0,32
W	12,5	19,3	35,3	70,1	26,4	1,92	36,40	72,38
Au	0,4	0,3	1,1	1,6	0,94	0,03	1,19	1,68
Hg	0,6	10,6	0,4	1,0	1,33	1,05	0,45	1,02
Pb	47,0	95,0	104,4	103,8	99,3	9,41	107,74	107,18
Th	4,8	2,2	4,6	2,7	10,22	0,22	4,80	2,82
U	5,7	2,3	11,2	13,6	12,14	0,23	11,53	14,03

12 Quellenverzeichnis

Bau, Michael and Dulski, Peter, (1996). Anthropogenic origin of positive gadolinium anomalies in river waters. Earth Planet Sc. Lett. 143, 245-255.

DIN 13137, (2001-12). Charakterisierung von Abfall - Bestimmung des gesamten organischen Kohlenstoffs (TOC) in Abfall, Schlämmen und Sedimenten, German Standardisation Organisation

DIN 18128, (2002-12). Baugrund - Untersuchung von Bodenproben - Bestimmung des Glühverlustes. Deutsches Institut für Normung, German Standardisation Organisation

DIN 19528, (2009-01). Elution von Feststoffen - Perkolationsverfahren zur gemeinsamen Untersuchung des Elutionsverhaltens von organischen und anorganischen Stoffen für Materialien mit einer Korngröße bis 32 mm - Grundlegende Charakterisierung mit einem ausführlichen

Säulenversuch und Übereinstimmungsuntersuchung mit einem Säulenschnelltest Deutsches Institut für Normung, German Standardization Organization

DIN 19529, (2009-01). Elution von Feststoffen - Schüttelverfahren mit einem Wasser-/Feststoffverhältnis von 2 l/kg zur Untersuchung der Elution von anorganischen Stoffen für Materialien mit einer Korngröße bis 32 mm - Übereinstimmungsuntersuchung. Deutsches Institut für Normung, German Standardization Organization

DIN 19741, (2012-01). Bodenbeschaffenheit - Bestimmung der Gehalte von Platingruppenelementen (Platin, Palladium, Rhodium) in Böden, Bodenmaterialien und Schlämmen, German Standardisation Organisation

DIN EN 15957, (2011-12). Düngemittel - Extraktion des in neutralem Ammoniumcitrat löslichen Phosphors, German Standardisation Organisation

DIN EN ISO 11885, (2009-09). Wasserbeschaffenheit - Bestimmung von ausgewählten Elementen durch induktiv gekoppelte Plasma-Atom-Emissionsspektrometrie (ICP-OES). Deutsches Institut für Normung, German Standardization Organization

DIN EN ISO 17294-2, (2005-02). Wasserbeschaffenheit - Anwendung der induktiv gekoppelten Plasma-Massenspektrometrie (ICP-MS) - Teil 2: Bestimmung von 62 Elementen, Deutsche Fassung EN ISO 17294-2:2004. Deutsches Institut für Normung, German Standardization Organization

Dissanayake, C. B. and Chandrajith, Rohana, (2009). Phosphate mineral fertilizers, trace metals and human health. J. Natn. Sci. Foundation Sri Lanka 37, 153-165.

Düngemittelverordnung, (2012). Verordnung über das Inverkehrbringen von Düngemitteln, Bodenhilfsstoffen, Kultursubstraten und Pflanzenhilfsmitteln (Düngemittelverordnung - DüMV)

EUCommission, (2010). Critical raw materials for the EU,

Gethke-Albinus, Katrin, (2012). Verfahren zur Gewinnung von Sekundärphosphaten aus flüssigen Stoffströmen und deren Einfluss auf die deutsche Phosphorbilanz. PhD thesis RWTH Aachen

Guardia, Mark J. La, Hale, Robert C., Harvey, Ellen, Bush, Elizabeth O., Mainor, T. Matteson and Gaylor, Michael O., (2004). Organic Contaminants of Emerging Concern in Land-Applied Sewage Sludge (Biosolids). J. Residuals Sci. Tech. 1, 111-122.

Harrison, E. Z., Oakes, S. R., Hysell, M. and Hay, A., (2006). Organic chemicals in sewage sludges. Sci. Total Environ. 367, 481-497.

Hu, Zhengyi, Haneklaus, Silvia, Sparovek, Gerd and Schnug, Ewald, (2006). Rare earth elements in soils. Commun. Soil Sci. Plant Anal. 37, 1381-1420.

Lehrmann, Falko, (2010). persönliche Mitteilung

Marani, D., Braguglia, C. M., Mininni, G. and Maccioni, F., (2003). Behaviour of Cd, Cr, Mn, Ni, Pb, and Zn in sewage sludge incineration by fluidised bed furnace. Waste Manage. 23, 117-124.

NRW, LUA, (2000-07). Merkblatt 1 Bestimmung von PAK in Bodenproben

Ochsenkühn-Petropulu, M., Lyberopulu, Th and Parissakis, G., (1994). Direct determination of landthanides, yttrium and scandium in bauxites and red mud from alumina production. Anal. Chim. Acta 296, 305-313.

Römer, Wilhelm, Gründel, Michael and Güthoff, Friedrich, (2010). U-238, U-235, Th-232 und Ra-226 in einigen ausgewählten Rohphosphaten, Phosphatdüngern, Boden- sowie Pflanzenproben aus einem P-Düngungsversuch. Journal für Kulturpflanzen 62, 200-210.

UN-Habitat, (2008). Global Atlas of Excreta, Wastewater, Sludge and Biosolids Management USGS, (2013). Phosphate Rock. U.S. Geological Survey, Mineral Commodity Summaries

Wiechmann, Dipl.-Ing. Benjamin, Dienemann, Dipl.-Ing. Claudia, Kabbe, Dr. Christian, Brandt, M. Sc. Simone, Vogel, Dr. Ines and Roskosch, Dr. Andrea, (2012). Klärschlammentsorgung in der Bundesrepublik Deutschland,

Zhang, Fu-Shen, Yamasaki, S. and Kimura, K., (2002). Waste ashes for use in agricultural production: II. Contents of minor and trace metals. Sci. Total Environ. 286, 111-118.