The Maternal-Infant Research on Environmental Chemicals (MIREC): A Canadian biomonitoring birth cohort research platform
The Exposome

- The cumulative measure of environmental influences and associated biological responses throughout the lifespan, including exposures from the environment, diet, behavior, and endogenous processes

The MIREC Study Cohort
MIREC Study Investigators

Co-principal investigators:
- Tye Arbuckle and William Fraser

Co-investigators:
- Health Canada
 - Mandy Fisher
 - Melissa Legrand
 - Premkumari Kumarathasan
 - Renaud Vincent
 - Kevin Cockell
 - Maya Villeneuve
 - Sheryl Tittlemier
 - Monique D’Amour
 - Bob Dabeka
 - Thea Rawn
 - Xu-Liang Cao
 - Adam Becalski
 - Nimal Ratnayake (retired)
 - Genevieve Bondy
 - Dawn Jin
 - Zhongwen Wang
 - Steve Brooks
 - Nick Hidiroglou (deceased)
 - Amanda MacFarlane

- Alain LeBlanc, INSPQ
- Jean-Philippe Weber (retired)
- Pierre Julien, Centre Hospitalier Universitaire de Québec (CHUQ)
- Denise Avard, McGill University
- Hope Weiler, McGill University
- Zhong-Cheng Luo, CHU Sainte-Justine
- Adrienne Ettinger, Harvard University
- Robert Platt, McGill University
- Grant Mitchell, CHU Sainte-Justine

Site Investigators:
- Peter von Dadelszen (Vancouver)
- Denise Hemmings & Jingwei Wang (Edmonton)
- Michael Helewa & Shayne Taback (Winnipeg)
- Mathew Sermer (Toronto)
- Warren Foster (Hamilton)
- Greg Ross & Paul Fredette (Sudbury)
- Graeme Smith (Kingston)
- Mark Walker (Ottawa)
- William Fraser & Roberta Shear (Montreal)
- Linda Dodds (Halifax)
MIREC Study Objectives

• To obtain national-level data on maternal and newborn exposure to priority environmental chemicals

• To obtain contemporary levels of priority environmental chemicals, selected nutrients and relevant immunoprotective endpoints in mature human milk

• To investigate potential associations between early life exposure to environmental chemicals and adverse effects on health of pregnant women and their infants
MIREC Study Design

- A national-level pregnancy cohort study
- 2001 participants from 10 cities across Canada
- Interdisciplinary framework and team:
 - Epidemiology, toxicology, psychology, obstetrics, pediatrics, chemistry, nutrition, endocrinology, biostatistics, etc.
Description of the Cohort: Comparison with Canadian Birth Statistics (2009) or Canadian Health Measures Survey (CHMS) Women

- Parity – similar (44% had no previous live births)
- Preterm births somewhat higher (8.8 vs 7.7%)
- Birth weight tended to be higher (3420 vs 3391 g)
- Somewhat fewer multiple births (2.4 vs 3.3%)
- Slightly higher M:F infant ratios (52.5 vs 51.3% male)
- More educated (62 vs 42% in CHMS with university degree)
Description of the Cohort: Comparison with Canadian Birth Statistics or CHMS Women

- Maternal age – tended to be slightly older (32 vs 29 years)
- More likely to be married or living as married (95 vs 60%)
- Less likely to be current smoker (6 vs 21% in CHMS)
- Less likely to be obese (15 vs 21% in CHMS)
- Higher household income (38 vs 21% > $100,000 in CHMS)
- Women more likely to be born in Canada (81 vs 73%)
Selection of Chemicals for Biomonitoring

- Sub-set of chemicals from Canadian Health Measures Survey
- Potential for reproductive toxicity and/or endocrine modulation
- Feasibility – valid biomarker of exposure
- Metals, phenols, phthalates, brominated flame retardants, organophosphate pesticides, perfluoroalkyl acids, cotinine, PCBs and other POPs
Data Collection

Prenatal Visit 1 (6-13 wks)
- Maternal Urine: phthalates, arsenic speciation, bisphenol-A, OP pesticides, specific gravity, telopeptide bone resorption, pyridinium, creatinine, oxidative stress markers
- Maternal Blood: PFAAs, cotinine, metals, PCBs, PBDEs, OC Pesticides, selenium, glutathione peroxidase, Vit D, PTH, lipids, endothelins, oxidative stress markers, SNPs

Prenatal Visit 2 (16-21 wks)
- Maternal Urine: Biobank
- Maternal Blood: Biobank

Prenatal Visit 3 (32-34 wks)
- Maternal Urine: pyridinium, creatinine, oxidative stress, telopeptide bone resorption
- Maternal Blood: cotinine, metals, selenium, glutathione peroxidase, Vit D, PTH, endothelins, oxidative stress markers

Delivery
- Maternal Blood: cotinine, selenium, glutathione peroxidase, Vit D, PTH, endothelins, oxidative stress markers
- Cord Blood: metals, PBDEs, OCs, PCBs, PFAAs, cotinine, lipids, Vit D, PTH, bone resorption

Postpartum Day 1 or 2
- Medical Record √
- Chart Review √
- Meconium: metals, tobacco metabolites

Post delivery (2-10 wks)
- Maternal Hair: total mercury (for mothers who will breast feed)

Biobank: 83/126 aliquots
Labs: 43/126 aliquots
Findings: Maternal exposure to environmental chemicals in 1st trimester

- **Bisphenol A (BPA):**
 - Almost 88% of the women had detectable urinary levels of BPA.
 - The GM urinary BPA levels: (1) decreased with increasing maternal age, (2) were higher in current smokers or women who quit during pregnancy compared to never smokers, and (3) tended to be higher in women who provided a fasting urine sample and who were born in Canada, and had lower incomes and education.

- **Phthalate metabolites (n = 11)**
 - MCHP, MMP, MiNP, MOP rarely detected
 - Highest measured levels were MEP (GM: 32.02 μg/L) and MnBP (GM: 11.59 μg/L).
 - Exposure among this population of pregnant women was comparable to or even lower than that observed in a Canadian national population-based survey.
Median Maternal Urinary Concentrations of Total BPA

[Bar chart showing median total BPA concentrations in various locations, with a y-axis labeled Median Total BPA (µg/L) and an x-axis listing locations such as France, Cincinnati, New York 1, Spain, New York 2, New York 3, California 2, Australia, Korea, Puerto Rico, Mexico, Denmark, NCS, Canada.]
Median Maternal Urinary Concentrations of Phthalates

INMA SPAIN 1997-2002
MT SINAI USA 1998-2001
MIREC 2008-2011
CHMS 2007-09 F 20-39
CHMS 2009-11 F 20-39
ODENSE DENMARK 2010-2012
TIDES USA 2010-2012*

Median Urinary Concentration (µg/L)
Findings: Maternal exposure to environmental chemicals in 1st trimester

- Free and Conjugated forms of BPA and Triclosan (TCS)
 - The glucuronides of BPA and TCS were the predominant forms measured (detected in 95% and 99% of samples, respectively),
 - The free forms were detected in 43% and 80% of samples, respectively.
 - Urinary TCS levels were significantly higher in women ≥ 25 years of age, never vs. current smokers, and women with high household income and high education.
 - These results suggest maternal characteristics predicting elevated urinary levels of BPA and TCS largely act in opposite directions.
Metals in Maternal-Fetal Biospecimens

<table>
<thead>
<tr>
<th>Metal</th>
<th>Sample</th>
<th>N</th>
<th>LOD</th>
<th>%<LOD</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium (Cd) (µg/L)</td>
<td>1<sup>st</sup> trimester</td>
<td>1938</td>
<td>0.0450</td>
<td>2.63</td>
<td>0.2023</td>
</tr>
<tr>
<td></td>
<td>3<sup>rd</sup> trimester</td>
<td>1673</td>
<td>0.0450</td>
<td>3.89</td>
<td>0.2023</td>
</tr>
<tr>
<td></td>
<td>Cord blood</td>
<td>1420</td>
<td>0.1124</td>
<td>80.77</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>Meconium<sup>a</sup></td>
<td>1591</td>
<td>0.004</td>
<td>97.36</td>
<td>ND</td>
</tr>
<tr>
<td>Lead (Pb) (µg/dL)</td>
<td>1<sup>st</sup> trimester</td>
<td>1938</td>
<td>0.1036</td>
<td>0</td>
<td>0.6009</td>
</tr>
<tr>
<td></td>
<td>3<sup>rd</sup> trimester</td>
<td>1673</td>
<td>0.1036</td>
<td>0.18</td>
<td>0.5595</td>
</tr>
<tr>
<td></td>
<td>Cord blood</td>
<td>1419</td>
<td>0.2072</td>
<td>2.61</td>
<td>0.7667<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>Meconium<sup>a</sup></td>
<td>1591</td>
<td>0.004</td>
<td>79.38</td>
<td>ND</td>
</tr>
<tr>
<td>Manganese (Mn) (µg/L)</td>
<td>1<sup>st</sup> trimester</td>
<td>1938</td>
<td>0.5495</td>
<td>0</td>
<td>8.7912</td>
</tr>
<tr>
<td></td>
<td>3<sup>rd</sup> trimester</td>
<td>1673</td>
<td>0.5495</td>
<td>0</td>
<td>12.6374</td>
</tr>
<tr>
<td></td>
<td>Cord blood</td>
<td>1419</td>
<td>0.5495</td>
<td>0</td>
<td>31.8681<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>Meconium<sup>a</sup></td>
<td>1591</td>
<td>0.01</td>
<td>0</td>
<td>4.9</td>
</tr>
<tr>
<td>Total Mercury (Hg) (µg/L)</td>
<td>1<sup>st</sup> trimester</td>
<td>1938</td>
<td>0.1204</td>
<td>9.80</td>
<td>0.7021</td>
</tr>
<tr>
<td></td>
<td>3<sup>rd</sup> trimester</td>
<td>1673</td>
<td>0.1204</td>
<td>11.24</td>
<td>0.5617</td>
</tr>
<tr>
<td></td>
<td>Cord blood</td>
<td>1419</td>
<td>0.4012</td>
<td>28.19</td>
<td>0.8024<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>Meconium<sup>a</sup></td>
<td>1591</td>
<td>0.01</td>
<td>75.11</td>
<td>ND</td>
</tr>
</tbody>
</table>

^a unit for levels of heavy metals in meconium is µg/g.

^b significantly higher than maternal median concentrations (p<0.0001)
Geometric Mean Maternal Blood Levels of Pb, Cd and Hg
MIREC Follow-up Studies
MIREC Research Platform

Pregnancy Birth 6 mo 15 mo 36 mo 5 yrs

MIREC MIREC-ID MIREC-CD3 MIREC-CD
 n=1983 n=525 n=898 Plus
 n=803

DATA & BIOSPECIMEN BANK
MIREC Research Platform Biospecimens in one glance

<table>
<thead>
<tr>
<th>1st Trimester</th>
<th>2nd Trimester</th>
<th>3rd Trimester</th>
<th>Delivery/early postpartum</th>
<th>2-10 weeks postpartum</th>
<th>6 months postpartum</th>
<th>15 months - 5 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal urine</td>
<td>Maternal urine</td>
<td>Maternal urine</td>
<td>Cord blood</td>
<td>Meconium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maternal DNA</td>
<td>Maternal DNA</td>
<td>Maternal DNA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Maternal blood
- Maternal urine
- Maternal DNA
- Maternal blood
- Maternal urine
- Maternal blood
- Maternal urine
- Maternal blood
- Maternal urine
- Cord blood
- Meconium
- Human milk
- Maternal hair

MIREC-ID: 525 MIREC babies

- Infant blood spots
- Infant vaginal cells (birth)

MIREC-CD+: 803 MIREC kids

- Child blood
- Child urine
Analysis of Child Biospecimens (ages 2-5 years)

- **Urine**
 - Bisphenol A and triclosan
 - 22 phthalate metabolites
 - Pyrethroid pesticides

- **Blood**
 - Lead, Mercury, Cadmium,
 - Arsenic, Manganese, Silver,
 - Copper, Molybdenum,
 - Nickel, Selenium, Zinc
Selection of Publications to Date

MIREC Biobank
MIREC Biobank Access

- Important: *individual-level data* cannot leave Canada

- **3-step application process**
 1. Submit the 1-page preliminary application
 - MBMC assesses *feasibility, scientific value, contribution to MIREC*
 - If deemed suitable, MBMC provides preliminary cost estimate
 2. Submit the full application package
 - Project is a) refused or b) receives letter of provisional support confirming:
 - biospecimens and data are still available
 - the associated accessing costs
 3. Once funding is secured and ethics approvals obtained, MBMC conducts final review prior to releasing data and/or biospecimens
 - To ensure the biospecimens are still available, and
 - The proposed research questions are still scientifically relevant
MIREC Ancillary Studies using Biobank

- Diabetes, metabolic syndrome and obesity
- Fatty acid ethyl esters in meconium
- Time-dependent vulnerability to air pollution and multi-pollutant sector impacts on fetal growth
- Impact of prenatal exposure to multiple chemicals on newborn immune system development
- Exposure to free and conjugated forms of BPA and TCS during pregnancy
- Exposure to phthalates, phenols and pyrethroids in young children
Path Going Forward: MIREC- ENDO?

Primary objective:

- To determine whether prenatal or early life exposures to priority environmental chemicals are related to:
 - A modification of the onset of puberty
 - Adverse effects on child growth and metabolic function.
Summary

- MIREC is a unique research platform by virtue of its:
 - Large, geographically diverse and susceptible study population of mothers and infants/children
 - Extensive assessment of prenatal risk factors, especially environmental chemicals
 - Large biobank
 - Multi-site design
 - Established network of multi-disciplinary investigators
 - Regulatory and policy development potential
 - Measures of the early exposome
For more information:

- http://www.mirec-canada.ca/
- Biobank access: mirec.project@recherche-ste-justine.qc.ca
MIREC
Maternal-Infant Research on Environmental Chemicals

Étude mère-enfant sur les composés chimiques de l’environnement

Funding agencies
Health Canada
Ontario Ministry of the Environment
Canadian Institutes of Health Research
Project initiated by Health Canada
in collaboration with CHU Ste-Justine

Organismes subventionnaires
Santé Canada
Ministère de l’Environnement de l’Ontario
Instituts de recherche en santé du Canada
Une initiative de Santé Canada,
in collaboration avec le CHU Ste-Justine

Health Canada
Santé Canada
Ontario
IRSC CIHR

CHU Ste-Justine
Mother and Child
University Hospital Center
For the love of children