Biomonitoring Equivalents – Current Activities and Use of Toxicokinetic Modeling

March 6, 2015

Lesa L. Aylward
Sean M. Hays
Overview

- Update on current BE activities
 - Recent BE development activities
 - Use of biomonitoring data and BE values in public health and regulatory activities

- Use of toxicokinetic models in BE development and biomonitoring data interpretation
 - Empirical human data
 - Simple TK models
 - Steady-state PBPK models for VOCs
 - Fully-developed PBPK models
Recent BE Development Activities

- BE development continues under contract to Health Canada
- New or recently developed BEs
 - Selenium
 - Fluoride
 - 3-PBA
 - Silver
 - Molybdenum
- Additional compounds anticipated for late 2015-2016
 - Parabens
 - Other metals (vanadium)
Recent BE Development

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Human TK data</th>
<th>PBPK model</th>
<th>Analogue data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selenium</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoride</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-PBA</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Silver</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Molybdenium</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- BE values for selenium, molybdenium, and fluoride consider both potential toxicity AND nutritional essentiality or recommended minimal intake levels.
- 3-PBA is a non-specific metabolite of numerous pyrethroids.
- Silver evaluation addresses both ionic and nano silver exposure.
Selenium
(Hays et al. 2014, Reg. Toxicol. Pharmacol. 70:333)

- BE values for selenium in whole blood, blood plasma, and urine
- Considers both nutritional essentiality and potential toxicity (selenosis)
- Human data on biomarker concentrations as a function of exposure
 - Same datasets used to identify NOAEL for selenosis
Selenium Whole Blood BE Values

- IOM UL
- EPA RfD
- ATSDR MRL

Range of CHMS blood levels

IOM EAR

Selenium in Whole Blood, ug/L

0 100 200 300 400 500 600
Fluoride
(Aylward et al., provisionally accepted, Reg. Toxicol. Pharmacol.)

- BE values for urinary fluoride
- Considers both benefits of fluoridation for prevention of dental caries and aesthetically undesirable dental fluorosis or skeletal fluorosis following excess exposure
- Human data on urinary fluoride vs. exposure levels; consideration of age-specific relationships in fluoride excretion data
CHMS Urinary Fluoride Compared to BE Values
Silver

- BE values for urine and whole blood derived
- Current RfD and other values are based on protection against argyria (discoloring accumulation of silver in tissues) following ionic silver exposure.
 - Human data from therapeutic use of silver compounds
- Nano-silver is now widely used, but governmental exposure guidance values have not been developed
 - BE was also derived for a literature-proposed TDI
- PBPK model addressing both ionic and nano-silver was used

 (Bachler et al. 2013, International J Nanomedicine 8:3365)
Parallel model structures to address both ionic and nanoparticle silver

Run to steady-state at human POD

Manuscript in preparation (with Bachler and von Götz)

Figure 2 Schematic diagram of the PBPK model structures for (A) ionic and (B) nanoparticulate silver, which were used both for rats and humans.

Note: In the ionic silver model no transport of silver from the brain to the blood was modeled, to consider the blood–brain barrier.

Abbreviations: MPS, mononuclear phagocyte system; PBPK, physiologically based pharmacokinetic.
Molybdenum

- BE values for blood and urine
- Considers nutritional essentiality and potential toxic responses (increased serum uric acid in humans- USEPA; kidney alterations in rats – RIVM)
- Extensive human controlled dosing data gives empirical relationships between exposure and blood and urine concentrations.
- Manuscript in preparation.
Use of BE Values and Biomonitoring Data in Regulatory and Public Health Contexts
Health Canada

- Extensive support and use of BEs
 - Funding continues for BE development
 - BEs applied in HC Chemicals Management Plan (CMP) assessments
 - Biomonitoring data also being used with reverse dosimetry in evaluation of chemicals without BE values
- Cross chemical evaluation publication (Tox Letters 2014 231:126)
BE Review Paper

- Place CHMS biomonitoring data into a risk assessment (hazard quotient) perspective

\[HQ = \frac{\text{Biomarker}}{BE_{RfD}} \]

- Allows evaluation of both detected and non-detected analytes, and evaluation of both blood and urinary biomarkers
- Provides a cross-chemical perspective
- Similar to previous publication for US NHANES biomonitoring data
Cross-Chemical Evaluation Using BE Values - CHMS
Chemicals with Short Elimination Half-Lives, St-Amand et al. 2014

![Graph showing hazard quotient vs age group for various chemicals with short elimination half-lives.](image-url)
Cross-Chemical Evaluation Using BE Values - CHMS
Persistent Chemicals, St-Amand et al. 2014

[Graph showing hazard quotients for different chemicals and age groups.]

<table>
<thead>
<tr>
<th>Non-smokers</th>
<th>Smokers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>DDT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age Group (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-11</td>
</tr>
<tr>
<td>12-19</td>
</tr>
<tr>
<td>20-39</td>
</tr>
<tr>
<td>40-59</td>
</tr>
<tr>
<td>60-79</td>
</tr>
<tr>
<td>12-19</td>
</tr>
<tr>
<td>20-45</td>
</tr>
<tr>
<td>40-59</td>
</tr>
<tr>
<td>60-79</td>
</tr>
<tr>
<td>6-11</td>
</tr>
<tr>
<td>12-19</td>
</tr>
<tr>
<td>20-39</td>
</tr>
<tr>
<td>40-59</td>
</tr>
<tr>
<td>60-79</td>
</tr>
</tbody>
</table>
USEPA

- No aggregate risk assessment activities outside of Office of Pesticide Programs
 - Hazard assessment (e.g., RfD) separate from exposure and risk assessment
 - Exposure assessment done by separate offices (e.g., Office of Water, Office of Air)
 - No cross-chemical prioritization mandate or activity
 - No mandate to use or examine biomonitoring data

- Office of Pesticide Programs does address aggregate exposure, but have not assessed chemicals with available BE values
 - OPP has highly prescribed external exposure assessment paradigms in place – no direct way to inject biomonitoring data into that process
Recent evaluation of phthalate esters (PEs) which relied on NHANES urinary sampling data

- Cumulative assessment including multiple PEs based on common toxicological endpoint
- Applied reverse dosimetry rather than a BE or HBM approach
Use of Models in BE Development
Chronic risk assessment-derived POD, TDI, UFs

Model relating exposure to biomarker concentration

BE Value

No changes or evaluations

Literature search and some creativity

Characterize uncertainty and limitations

- Assumption of steady-state, consistent with chronic risk assessment guidance values
- Risk assessment interpretation for population evaluation, parallel to purpose of guidance values
Models

“Essentially, all models are wrong, but some are useful.”
- George Box

➤ Model: A graphical, mathematical (symbolic), physical, or verbal representation or simplified version of a concept, phenomenon, relationship, structure, system, or an aspect of the real world. The objectives of a model include 1) to facilitate understanding by eliminating unnecessary components, 2) to aid in decision making by simulating ‘what-if’ scenarios, 3) to explain, control, and predict events on the basis of past observations.
Approaches Used in BE Development

- Direct extrapolation from measured biomarker concentration at POD
 - HBCDD
 - PCBs
- Empirical datasets and regressions for relationships between external exposure and biomarker concentrations
 - Molybdenum, selenium, fluoride, benzene in urine
- Simple one- or two-compartment toxicokinetic models
 - Multiple short-lived analytes for urinary excretion
 - Dioxins
 - Acrylamide
- PBPK models of varying complexity
 - VOC compounds
 - Silver
Example – Simple 1 or 2 Compartment Models
Hexabromocyclododecane (HBCDD)

- Distributes largely on the basis of lipophilicity into lipid throughout the body.
 - Similar to many other persistent organochlorines.
- Peak lipid concentration resulting from a single dose easily calculated:
 \[C_{lipid} = \frac{Abs\,Dose}{Lipid\,Volume} \]
- Est. half-life for elimination can be used to calculate long term steady state concentration:
 \[C_{lipid_ss} = \frac{Abs\,Daily\,Dose}{Lipid\,Volume \times k} \]
Example - Use of PBTK Modeling for VOCs - Toluene
VOC Model

- Steady-state solutions to the generic VOC PBTK model
 (Chiu and White 2006)
Mass Balance Solution at Steady State

Inhalation concentration

\[Q_p C_I + Q_L C_{VL} = (Q_p (P_B + Q_L) C_A \]

Chemical-specific parameters

\[Abs + Q_L C_A = (Q_L + \frac{V_{max}}{Km}) C_{VL} \]

Oral absorbed dose rate

\[C_{VSS} = C_A (1 - QLC) + C_{VL} * QLC \]

Physiologic parameters: \(Q_p, Q_L \) and \(QLC \)
Comments

- Solutions require that exposures remain in the linear range of the saturable metabolism
 - Generally not exceeded for guidance values; can be exceeded at POD

- Intra-individual variability can be examined easily:
 - 3 physiological parameters: Q_p, Q_L and Q_{LC}
 - Chemical-specific parameters:
 - Metabolic parameter: V_{max}/K_m
 - Phys/chem parameter: P_B

- Steady-state slopes relating blood concentration to exposure easily calculated and can be applied to any selected guidance value:
 - $\mu g/L$ per mg/m^3 or $\mu g/L$ per $mg/kg\cdot d$
Toluene Steady-State Solution

<table>
<thead>
<tr>
<th></th>
<th>Oral slope μg/L per mg/kg-d</th>
<th>Inhalation slope μg/L per mg/m³</th>
<th>Upper Limit C_{VSS}, μg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toluene</td>
<td>11</td>
<td>3.1</td>
<td>47</td>
</tr>
</tbody>
</table>

HBM-I: 0.8 μg/L

POD/TAF=0.26 mg/m³
Cross-VOC Results: Oral and Inhalation Slopes, 37 VOCs
Overall VOC Results – Extrapolation Possibilities

![Graphs showing blood concentration vs. oral and inhalation reference values.](image-url)
TK Variation, Children to Adults: Toluene

- Nong et al. 2006 incorporated data on the development of CYP2E1 capability and physiological parameters in neonates, infants and children into the PBTK model for toluene

Nong et al. 2006, Toxicol Appl Pharmacol, 214:78
Results

- Predicted blood concentrations generally bracketed measured adult concentrations and were within ~3x of adult values.
Considerations- Temporal Variability

- Variation in biomarker concentration in an individual depends on the relationship between the HL of elimination and the intervals between exposure.
Temporal Variability- Cont’d

- Modeling typically estimates steady-state average concentration
- For short-lived compounds, sampling at a particular time point may over- or under-estimate actual average biomarker concentration in the individual

- Issue is relevant for
 - VOCs in blood
 - Parabens in urine
- Not relevant for persistent compounds
Considerations - Uncertainty

- Models are uncertain
- Guidance values are also uncertain!

- Is having estimated HBM values, with their attendant uncertainties, more valuable and useful than not having them?
Considerations – HBM Values vs. BE Values

- BEs have always been envisioned as a risk assessment tool
 - Underlying guidance values are risk assessment values, not diagnostic criteria
 - Interpretation of individual results difficult, but BE values can help public health and environmental regulators to identify population-level exposures of concern
 - *Uncertainties attendant to modeling and derivation of guidance values acceptable*

- HBM values seem to be targeted more towards interpretation of individual biomonitoring data with feedback to the individual
 - *Uncertainties may be less acceptable?*