

Biomonitoring Equivalents and Interpretation: Current Activities

Lesa L. Aylward Sean M. Hays Summit Toxicology, LLP June 7, 2013

Overview

- US agency activities
- Health Canada activities
- Recent Case Studies and Publications
- Urinary flow data from NHANES application to biomonitoring evaluation and interpretation

US Agency Activities

- USEPA
 - Engagement of scientists in the Computational Toxicology group, Office of Research and Development, and Office of Water
 - Participation on manuscripts
 - NHANES data review
 - Speciated urinary arsenic evaluation

• CDC

 Urinary flow data evaluation and modeling analysis and manuscript

US Agency Activities (cont'd)

- ATSDR Health Consultation/Exposure Investigation
 - Concern over potential exposure to 2,4-D in a rural area
 - Urinary biomonitoring in 64 volunteers from 38 households
- Comparison of results to NHANES:

"Based on this comparison, the fraction of the... participants above the NHANES 75th percentile was higher than expected. **This suggests an increased exposure relative to the rest of the United States.**"

ATSDR Conclusions

BE values used to assess potential risks:

"The maximum concentration of 2,4-D... was about 7-fold less than the BE, and the average concentration was 175-fold less than the BE."

"Despite an apparent greater exposure than the US population, these data indicate that, at the time of testing, the participants were not exposed to 2,4-D at levels that are expected to cause adverse health effects."

Health Canada Activities

- Sponsored several new BE values over the past two years
 - Selenium
 - 3-PBA
 - Fluoride
 - Diisobutyl phthalate (DiBP)
 - Dicyclohexyl phthalate (DCHP)
 - Diisodecylphthalate (DiDP)
 - Cobalt
- Used analogies for data-poor chemicals
- Health Canada plans to address at least 6 more chemicals over the next 2 years
- CHMS data review (multiple analytes with BEs) manuscript near submission

Case Study: US NHANES Data Review

Current Publication

 Review of NHANES data in the context of BE values – Environmental Health Perspectives, March 2013, 121:287-294.

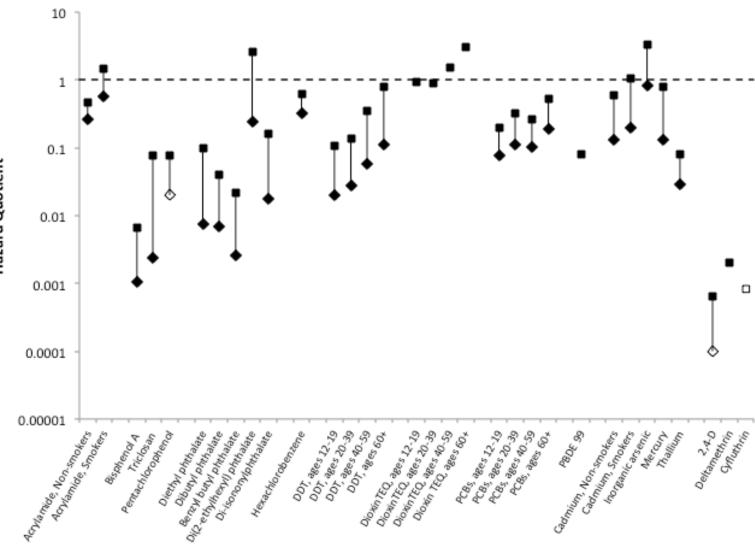
Review

Evaluation of Biomonitoring Data from the CDC National Exposure Report in a Risk Assessment Context: Perspectives across Chemicals

Lesa L. Aylward,¹ Christopher R. Kirman,² Rita Schoeny,³ Christopher J. Portier,⁴ and Sean M. Hays⁵

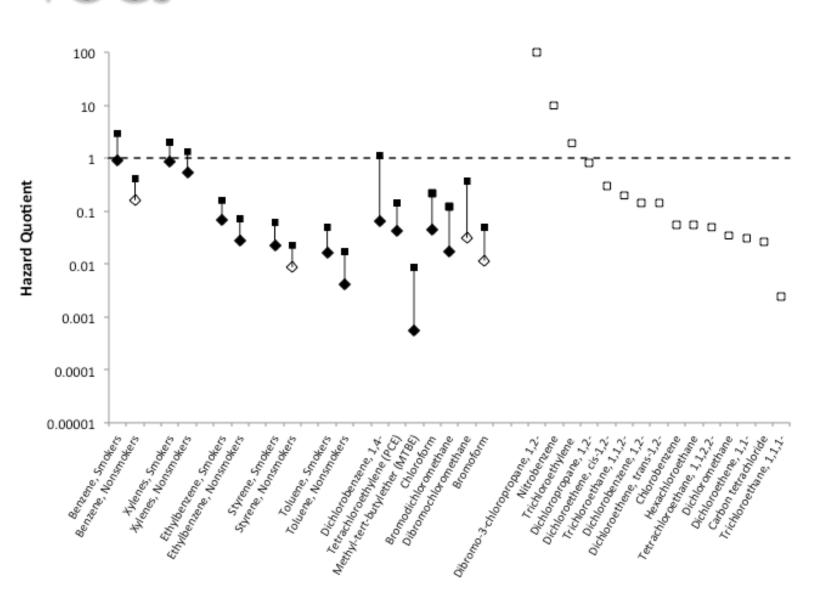
¹Summit Toxicology LLP, Falls Church, Virginia, USA; ²Summit Toxicology LLP, Orange Village, Ohio, USA; ³Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC, USA; ⁴National Center for Environmental Health/Agency for Toxic Substances and Disease Registry, Atlanta, Georgia, USA; ⁵Summit Toxicology LLP, Lyons, Colorado, USA

- Covers approximately 130 NHANES analytes
- Coauthors from USEPA, CDC/ATSDR


BE Review Paper

 Place NHANES biomonitoring data into a risk assessment (hazard quotient) perspective

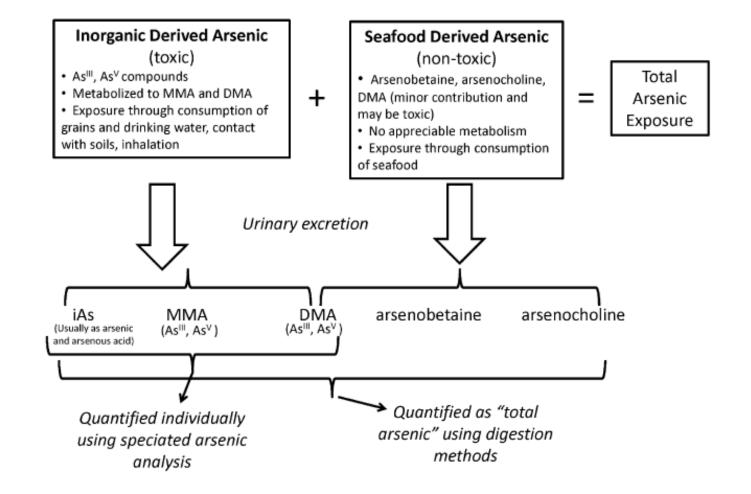
$$HQ = \frac{[Biomarker]}{BE_{RfD}}$$


 Allows evaluation of both detected and non-detected analytes, and evaluation of both blood and urinary biomarkers

Non-VOCs, GM to 95th %ile

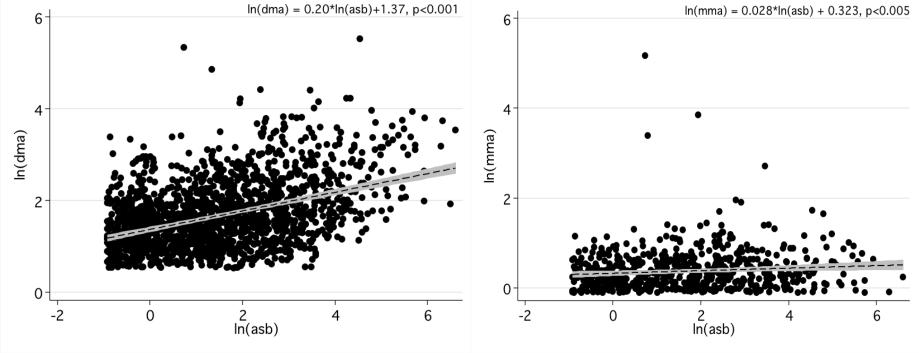
Hazard Quotient

VOCs

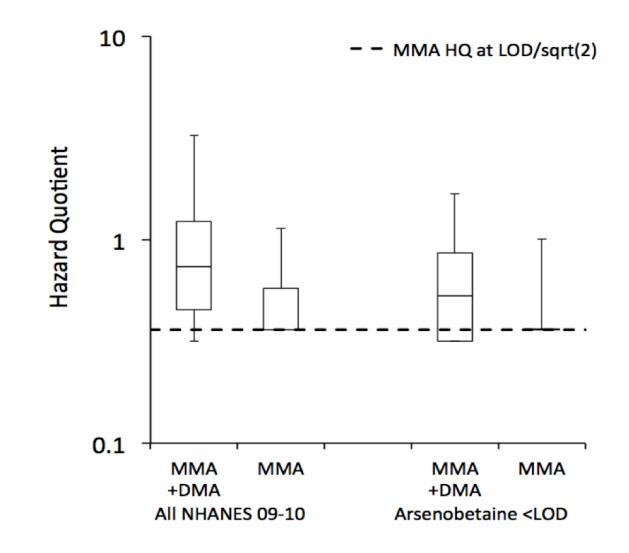

Case Study: Speciated Urinary Arsenic

Evaluation of Speciated Urinary Arsenic

- Manuscript coauthored with USEPA Office of Water and Office of Research and Development scientists
- Examines NHANES speciated urinary arsenic data in risk assessment context
 - Patterns among iAs, DMA, MMA
 - Comparison to BE values

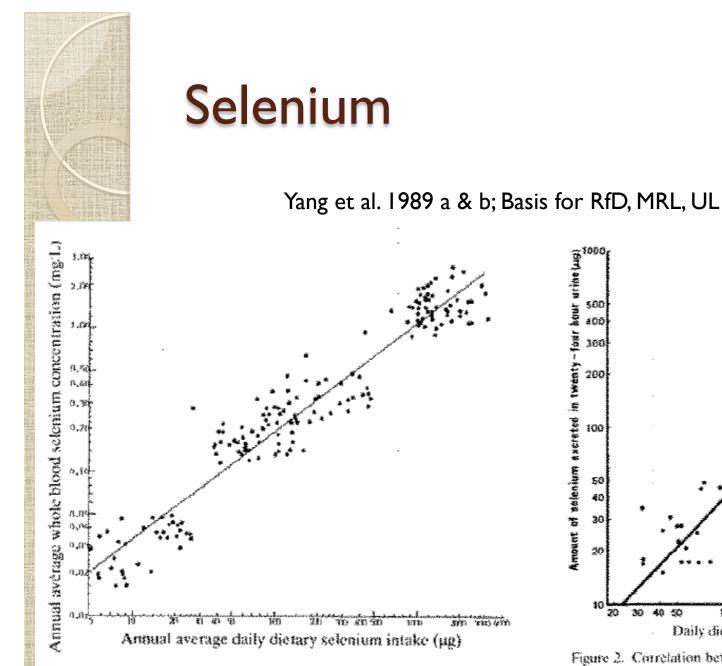

Arsenic Biomarkers

From Hays et al. 2010, Regulatory Toxicology Pharmacology, 58:1-9.



DMA and MMA vs. Arsenobetaine

Hazard Quotients, NHANES 2009-2010



Case Study: Selenium

Selenium

- Essential micronutrient
 - Recommended Dietary Allowances (RDAs) have been set
- Toxic (selenosis) at high exposures
 - RfD, MRL
 - Upper Limits (ULs) on RDAs
- Most guidelines based on studies in China of both low and high selenium exposure regions
 - Detailed data correlating selenium in blood & urine with average daily dietary intake of selenium

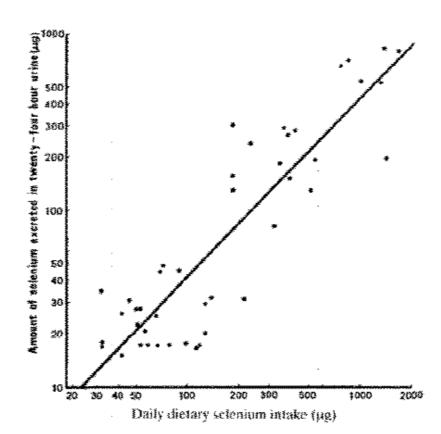
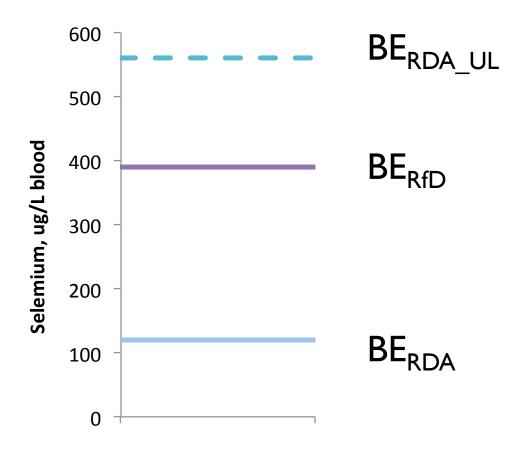


Figure 1. Correlation between dietary Se-intake and blood Se concentration of 167 male adults. (Log Y = 0.767 Log X - 2.248, r = 0.962, p < 0.001)

\$75) 'E3E) (213)

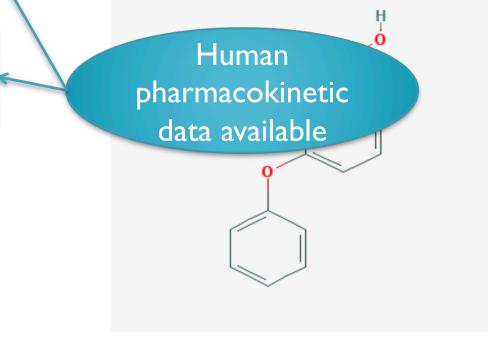
RED


Figure 2. Correlation between daily selenium intake and amount of selenjum excreted in twenty-four hour urine of adult inhabitants. (Log Y = 1,021 Log X -0,418, r = 0.886, p < 0.001, n = 44)

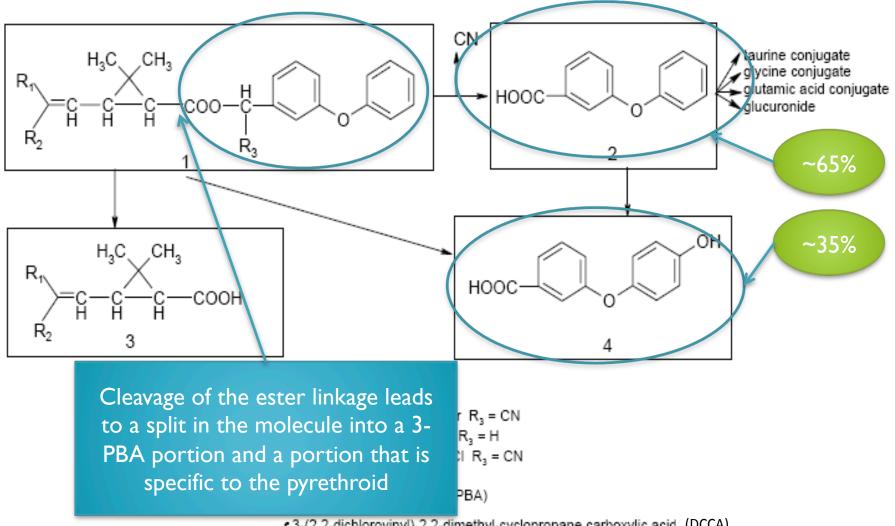
Selenium Guidelines & BEs

Cuidalina	Daily Dose	BE
Guideline	(µg/kg-d)	(µg/L blood)
RDA (NAS, 2000)	0.8	120
RfD (US EPA, 1991)	5.0	390
MRL (ATSDR, 2003)	5.0	390
UL (NAS, 2000)	5.7	560

CHMS Cycle I


Provisional BE Values for 3-PBA

Urinary 3-Phenoxy Benzoic Acid


- Evaluation contracted for by Health Canada
- Non-specific metabolite arising from multiple pyrethroids
- Cannot be interpreted directly in terms of toxicity
- Structural similarities across contributing pyrethroids may allow assumption of pharmacokinetic similarity
- Screening approaches can be applied for a tiered assessment

Pyrethroids with 3-PBA Moiety

Cyhalothrin Permethrin Cypermethrin Deltamethrin Tralomethrin Fenpropathrin Cyphenothrin **Esfenvalerate** Flucythrinate Phenothrin

Pyrethroid Structures Leading to 3-PBA

3 3-(2,2-dichlorovinyl)-2,2-dimethyl-cyclopropane carboxylic acid (DCCA) 3-(2,2-dibromovinyl)-2,2-dimethy-cyclopropane carboxylic acid (DBCA)

4 { 3-(4-hydroxy)-phenoxybenzoic acid (4-OHPBA)

Estimation of Urinary 3-PBA for Each Pyrethroid

- Identify all pyrethroids leading to 3-PBA
- Identify TDIs/ADIs for each pyrethroid
- Apply available pk data to estimate unit urinary 3-PBA concentrations (ug/L per mg/kg-d) for each pyrethroid
- Calculate Provisional BE values corresponding to available RfD or TDIs for each pyrethroid

Tiered Evaluation Approach

- Tier I: Compare biomonitoring data to most stringent pyrethroid-specific Provisional BE value
 - Effectively attributes all 3-PBA to exposure to the most potent compound
 - Ignores within-person, within- and across-day variability
- If available biomonitoring data below Tier I Provisional BE, suggests low cumulative exposure and risk
 - If data exceed Tier I, proceed to more detailed assessments

Provisional BE Values (μ g/L)

Compound	USEPA BE _{RfD}	JMPR BE _{ADI}	
Cyhalothrin	6	117	
Permethrin	1875	375	
Cypermethrin	425	142	
Deltamethrin	6	58	
Fenpropathrin	208	250	
Cyphenothrin	79		
Esfenvalerate ^b	14	142	
Tau-fluvalinate	29		
d-Phenothrin	58	583	
	Tier I Provisional BE Value		

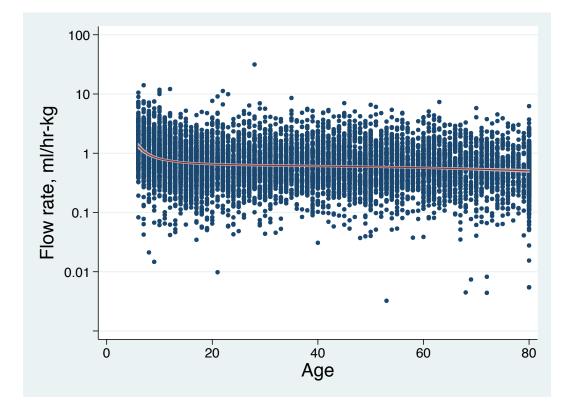
A Look At CHMS Cycle 1 Data 3-PBA, µg/L Urine

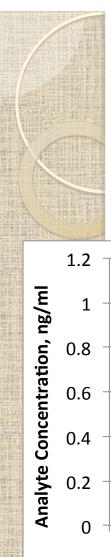
Age Group	Geometric Mean	95 th %ile	Pass Tier I (< 6 µg/L)?
All	0.25	2.96	1
6-11	0.21	I.78	1
12-19	0.28	3.26	1
20-39	0.25	2.54	1
40-59	0.27	3.54	1
60-79	0.24	2.22	1

Urinary Flow Rate Data From NHANES

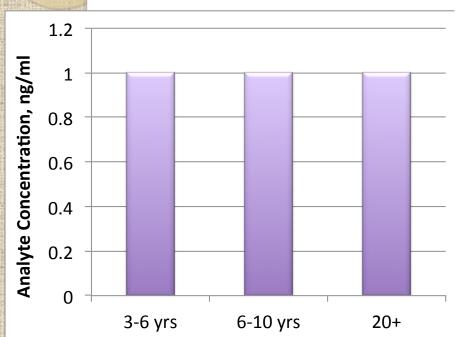
NHANES 2009-2010 Dataset

- Spot sample urinary flow rate data (n~8,000 ages 6 to 85):
 - "Participants will be asked to record their time of last void before coming to the MEC."
 - Volume of void at MEC measured (ml)
 - Flow rate=Volume/(Time since last void) (ml/min)
- Collaboration with US CDC researchers to analyze and model flow rate data
- Results can inform biomonitoring study design and data interpretation

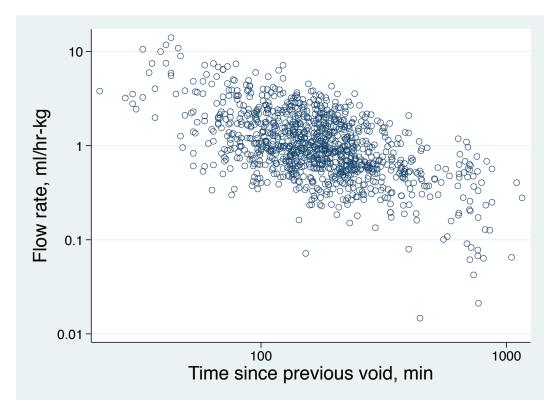

Challenge


- Hydration status (urinary flow rate) affects the urinary concentration independent of the excretion rate of the analyte
 - Concentration is usually equated with exposure level
- Methods for adjusting for hydration status are imperfect
- Urinary flow rates (ml/hr) allow calculation of analyte excretion rate, ER, expected to be directly related to daily dose by the urinary excretion fraction:

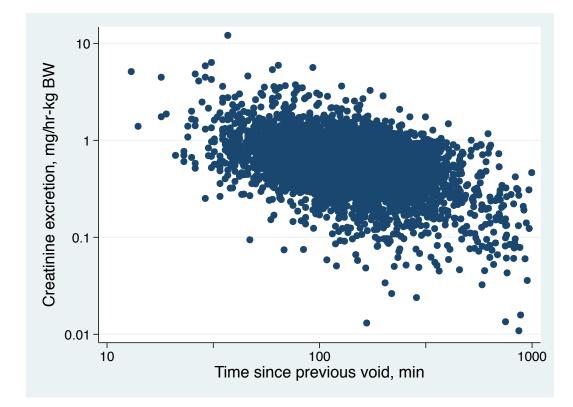
$$ER(ug / hr - kg) = \frac{Void \ volume, ml}{Time, hr * BW, kg} * C_{analyte} \qquad Dose(ug / d - kg) = F_{UE} * ER(ug / d - kg)$$


Factors Influencing Flow Rate: Age

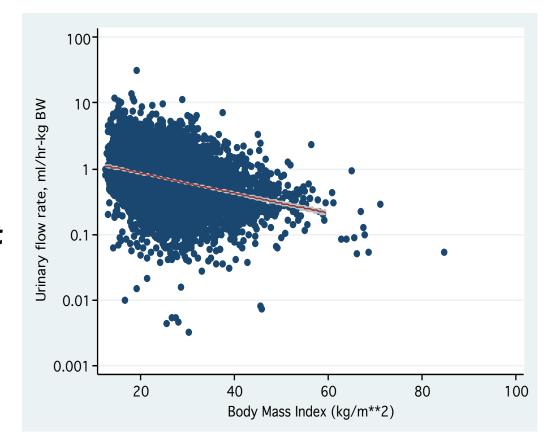
At the same urinary concentration of an analyte, children excrete more analyte per unit time and kg bodyweight than adults



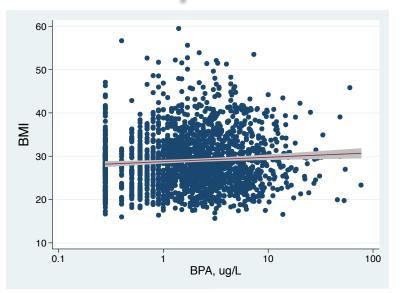
Why It Matters


Time Since Previous Void

At the same urinary concentration of an analyte, participants with a shorter time since last void excrete more analyte per unit time than participants with longer time since last urinary void.


Time Since Previous Void (cont'd)

Also influences creatinine excretion rate



Body Mass Index

At the same urinary concentration of an analyte, participants with a lower body mass index excrete more analyte per unit time and kg bodyweight than participants with higher body mass indices.

Example: BMI and Urinary BPA

Flow Rate Analyses - Status

- Descriptive statistics complete
- Completing modeling for prediction of flow rate and creatinine excretion rate in spot samples
- Manuscript in preparation. Goals:
 - Familiarize researchers with database
 - Identify variables predicting flow rate and creatinine excretion rate under spot sample conditions
 - Discuss applications in study design and data interpretation