

Cycling and the built environment – testing bicycle suitability indicators with actual route choices

Ray Pritchard International Cycling Conference, Mannheim 2017

What are bicycle suitability indicators?

 Relate to multiple factors that can affect attractiveness of cycling (esp. safety)

 Distinct from bikeability indicators due to focus upon individual links and nodes

• Lowry et al. 2012 (definition)

Paths and streets

- Infrastructure in focus, rather than destination accessibility/greenness etc...
- Should consider topography/effort/time

Vector-based classification (segments)

[Image removed due to copyright restrictions.]

Raster-based classification (layers)

[Image removed due to copyright restrictions.]

Bicycle Suitability (BLOS) e.g.: Callister & Lowry 2013 Bikeability (BikeScore)

Research gap with BSIs

- BSI Metrics usually based on empirical data (with limitations)
- Study aims to "reverse engineer" the metrics with new empirical OD data
- Route-based data to sum characteristics over many streets/paths/intersections

Selection criteria

- Ability to apply at network level across all transport links
- Addresses both paths and streets
- Combination with intersections?

Bicycle Suitability Indicators 5

	Name of Method
	Bicycle Safety Index F
	Bicycle Stress Level
	Road Condition Index
NTNU	Interaction Hazard Sc
	Bicycle Suitability Rat
	Bicycle Level-of-Servi
	Bicycle Level-of-Servi
	Bicycle Suitability Sco
	Bicycle Applied Mode
	Bicycle Compatibility
	Bicycle Suitability Ass
	Rural Bicycle Compat
Ors	Compatibility of Road
atc	Bicycle Level-of-Servi
dica	Denmark Bicycle Leve
<u> </u>	Bicvcle Level-of-Servi
t	Bicycle Environmenta

Name of Method	Acronym	Reference	Reference Date
Bicycle Safety Index Rating	BSIR	Davis	1987
Bicycle Stress Level	BSL	Sorton and Walsh	1994
Road Condition Index	RCI	Epperson	1994
Interaction Hazard Score	HIS	Landis	1994
Bicycle Suitability Rating	BSR	Davis	1995
Bicycle Level-of-Service	BLOS	Botma	1995
Bicycle Level-of-Service	BLOS	Dixon	1996
Bicycle Suitability Score	BSS	Turner et al	1997
Bicycle Applied Model	BAM	Landis	1997
Bicycle Compatibility Index	BCI	Harkey et al	1998
Bicycle Suitability Assessment	BSA	Emery and Crump	2003
Rural Bicycle Compatibility Index	RBCI	Jones and Carlson	2003
Compatibility of Roads for Cyclists	CRC	Noel et al	2003
Bicycle Level-of-Service	BLOS	Zolnik and Cromley	2007
Denmark Bicycle Level-of-Service	DBLOS (segments)	Jensen	2007
Bicycle Level-of-Service	BLOS	Petritsch et al	2007
Bicycle Environmental Quality	BEOI	SFDPH	2009
Index			
Bicycle Quality Index	BQI	Birk et al	2010
Bicycle Level-of-Service	BLOS	HCM2010	2010
Level of traffic stress	LTS	Mekuria	2012
Infrastructure-based bikeability	IBBI	Van Acker	2012
index			
Denmark Bicycle Level-of-Service	DBLOS	Jensen	2013
-	(intersections)		
Place syntax bike network analysis	PSyn	Manum	2013
MMLOS- bike	MMLOS	HCM6	2016

Example: Bicycle Stress Level

A function of: Traffic volume Speed Width of outside lane

•

•

But.. no paths, intersections

Example: Highway Capacity Manual - BLOS

NTNU

		Calculate BLOS (Intersections)	_		>
💐 Calculate	BLOS (Streets)				
Streets		Intersections		•	
Width of Outs	ide Shoulder	Signal Field SIGNAL		~	•
Curb present		Width of Cross Street Wcd	Left-turn Deman Flow Rate	~	-
Proportion of ppk	On-street Parking	Curb Presence c	vlt	~]
Width of Outs Wol	ide Lane	Left-turn Deman Flow Rate	Through Demand Flow Rate	~	
Width of Bicyc Wbl	le Lane	Through Demand Flow Rate vth	vth	~	
Study Hour Di	rectional Vehicle Volume	Right-turn Deman Flow Rate	Right-turn Deman Flow Rate	~	
Percent Heavy PHV	/ Vehicles	Number of Through Lanes Nth	vrt	~	
Average Vehic SR	cle Speed	Width of Outside Lane Wol			Ţ
Number of Th Nth	rough Lanes	Width of Bike Lane		~	ר ק
Pavement Cor	naition	Proportion of Occupied On-Street Par	king		
8	(ArcGIS plugin from Lowry et al. 2013)	Width of Outside Shoulder Wos		~	

NTNU

Research study design

9

Study design: mapping of preferred path along restricted OD pairs in Trondheim

NTNU

Revised instructions and some cleaning helped ($n_{valid} = 467$)

Results

Results

14

Network link popularity heatmap

Correlated? Which BSI is best?

Bicycle Suitability Indicator(s)

Route choice popularity

15

Before this can be answered...

- More detailed metrics to compare
- Impedance at intersection
- Data for the metrics (like signal timing at traffic lights)
- Statistics also related to respondent attributes

The bigger picture

- Cycling infrastructure affects mode, route and induced shift
- But how to distinguish between the different types of change?

Future studies should consider

Broader target group

Faster methods for map-matching

Revealed preference comparison?

Summary

- Stated preference current and future cyclists
- Need to distinguish route from mode choice
- Preferences and impressions of cyclists and future cyclists are very different

Thanks!

Ray Pritchard, Yngve Frøyen, Bernhard Snizek Raymond.Pritchard@ntnu.no