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Example data: POPs

POPs: Persistent Organic Pollutants
7 dioxine compounds (D1-D7), 10 fouran compounds (F1-F10)
Two “similar” observations, with very different scale (concentration levels)!
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Domestic heating, obs. 4
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Should we normalize to row sum 1, or analyze (log-)ratios?



Compositional data

Definition: Compositional data consist of vectors x = (x1, . . . , xD) with
D strictly positive components describing the parts on a whole, and which
carry only relative information (Aitchison, 1986; Egozcue, 2009).

Consequences:

• The values x1, . . . , xD as such are not informative, but only their ratios
are of interest.

• The parts x1, . . . , xD do not need to sum up to 1.

• Compositional data follow the so-called Aitchison geometry on the
simplex (and not the standard Euclidean geometry).

Key reference:

J. Aitchison. The Statistical Analysis of Compositional Data. Chapman and
Hall, London, U.K., 1986.



Example data: POPs

Two compositions with D parts:

x = (x1, x2, . . . , xD)

x̃ = (x̃1, x̃2, . . . , x̃D)

Aitchison distance between x and x̃ is defined as:

dA(x, x̃) =
1

D

D−1∑
i=1

D∑
j=i+1

(
log

xi
xj
− log

x̃i
x̃j

)2

For comparison: Euclidean distance:

dE(x, x̃) =

√√√√√ D∑
i=1

(xi − x̃i)2



Example data: POPs
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Original data
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Normalized to row sum 1

Aitchison distance: 1.21 Aitchison distance: 1.21
Euclidean distance: 10636 Euclidean distance: 0.075



Euclidean geometry

Represent information from the simplex in the Euclidean geometry:

• clr (centered log-ratio) coefficients:
Divide values by the geometric mean:

y = (y1, . . . , yD) =

log x1
D
√∏D

i=1 xi
, . . . , log

xD
D
√∏D

i=1 xi


• ilr (isometric log-ratio) coordinates:
z = (z1, . . . , zD−1) can be defined by

zi =

√
D − i

D − i+1
log

xi
D−i
√∏D

j=i+1 xj
, i = 1, . . . , D − 1.



clr & ilr

Both, clr and ilr are isometric, which means that

dA(x, x̃) = dE(clr(x), clr(x̃)) = dE(ilr(x), ilr(x̃))

where dE stands for Euclidean distance.

This means that after expressing the information in clr coefficients or ilr
coordinates, the data are in the usual Euclidean geometry. Most standard
statistical methods are designed for this geometry.

A log-transformation does not transfer the compositions to this Euclidean
geometry!



Example data

Data set with compositional parts (dioxins and indicator PCBs)
PCB77, PCB126, PCB169, PCB105, PCB114, PCB118, PCB123, PCB156,
PCB157, PCB167, PCB189, PCB28, PCB52, PCB101, PCB138, PCB153,
PCB180
measured in 56 “emissions” (ng/m3) and 65 “products” (µg/g or ng/g).
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Correlation matrix

Correlations for “Emission” computed “classically” from original data:
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Correlation matrix

Correlations for “Emission” computed “classically” from “length 1 data”:
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Correlation matrix

Correlations for “Emission” computed from clr coefficients:
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Robust PCA

for data normed to row sum 1 (left) and CoDa PCA (right)
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Discriminate two groups

Two groups (red, green), normally distributed, equal covariance matrix:
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Discriminate two groups

Two groups (red, green), normally distributed, equal covariance matrix:
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Robust QDA (all POPs)

Robust QDA is applied to the ilr coordinates of the complete data set:
Diagnostics based on robust distances: Mahalanobis distances for each group,
using robust estimates of location and covariance from QDA.
Can be used to assign (or not) new observations to a group.
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Group profiles

Robust group centers can be back-transformed from
ilr coordinates to the simplex.
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Group profiles

Group centers obtained from median profiles,
incorrectly computed in the simplex.
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Benefit of log-ratios

So, what are ilr coordinates?
They form an orthonormal basis, considering ALL pairwise log-ratios.
They form an isometry, i.e.

Aitchison distances in the simplex = Euclidean distances in ilr.

log-ratios are scale invariant, i.e.

log
(
xi
xj

)
= log

(
const · xi
const · xj

)
Thus, no matter if the data sum up to 1, and
no matter if the data sum up to completely different concentration levels!



Why log-ratios?

• Compositions consist of relative contributions to a whole (mg/kg, %,
proportions, etc.).
This relative information is analyzed in form of log-ratios (log guaran-
tees same variance if nominator and denominator change).

• Compositions live in the simplex sample space. They do not follow
the usual Euclidean geometry, for which most statistical methods are
designed.

• Work with ilr coordinates, and transform back for an interpretation, if
necessary.

• An appropriate treatment does not necessarily lead to better results,
but at least the interpretation of the results is correct.



Data quality issues

• Missing values can be imputed (with CoDa methods!), but they should
occur only rarely!

• Values BDL can be estimated (with CoDa methods!), but they should
occur only rarely, and the DL has to be known!

• Usually, multivariate methods require more samples than variables!

• If only few samples per group: covariance-based methods (discrimi-
nant analysis) are problematic −→ switch to distance-based methods
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Software R

For the computations, we used the R package “robCompositions”:

• Principal component analysis (here robust):

res <- pcaCoDa(x) # x is the original data matrix

biplot(res) # shows a biplot

• Linear discriminant analysis (LDA):

x.ilr <- isomLR(x) # express data x in ilr coordinates

library(rrcov)

res <- LdaClassic(x.ilr,grp) # grp contains grouping info

predict(res) # shows error rate and confusion table

Use “Linda” for robust LDA, “QdaClassic” for quadratic discriminant
analysis (QDA), and “QdaCov” for robust QDA.


